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RS-FISH: precise, interactive, fast, and 
scalable FISH spot detection

Ella Bahry1,7, Laura Breimann    1,2,7, Marwan Zouinkhi1,3,7, Leo Epstein1,4, 
Klim Kolyvanov1, Nicholas Mamrak5, Benjamin King5, Xi Long3, 
Kyle I. S. Harrington    1,4  , Timothée Lionnet    5,6   & Stephan Preibisch    3 

Fluorescent in-situ hybridization (FISH)-based methods extract spatially 
resolved genetic and epigenetic information from biological samples by 
detecting fluorescent spots in microscopy images, an often challenging 
task. We present Radial Symmetry-FISH (RS-FISH), an accurate, fast, and 
user-friendly software for spot detection in two- and three-dimensional 
images. RS-FISH offers interactive parameter tuning and readily scales to 
large datasets and image volumes of cleared or expanded samples using 
distributed processing on workstations, clusters, or the cloud. RS-FISH 
maintains high detection accuracy and low localization error across a wide 
range of signal-to-noise ratios, a key feature for single-molecule FISH, spatial 
transcriptomics, or spatial genomics applications.

New FISH-based imaging methods are continuously being developed 
to gain insights into cellular processes, for example, by resolving the 
subcellular localization of single RNA molecules1,2 or subnuclear 3D 
arrangement of DNA regions3,4. Classically, single-molecule FISH 
(smFISH) has been used to visualize individual mRNA molecules for 
single genes in small samples1,2. New methods that employ probe 
amplification, probe multiplexing, or barcodes are driving the fields of 
spatial transcriptomics and spatial genomics, enabling the subcellular 
visualization of thousands of genes with single-molecule sensitivity in 
complex tissues5–10, as well as entire chromosomes with high resolution 
at nanometer scale3.

Extracting information from smFISH, spatial transcriptom-
ics, or spatial genomics images relies on the precise detection of 
diffraction-limited spots. Important properties of spot-detection 
software include accuracy and speed of detection, as well as being 
accessible to researchers. Recently, scalability to large datasets has 
become important because the detection of subtle transcriptional 
changes relies on the analysis of thousands of smFISH images11,12, 
increasingly large samples in the tera-byte range are being imaged13, 
and spatial-transcriptomics methods are being applied to increasingly 

large samples, with many rounds of sequential hybridization and imag-
ing (Fig. 1 and Supplementary Notes). Several methods are available; 
however, all commonly used packages do not allow interactive param-
eter tuning, which makes their application tedious. They also do not 
scale to large datasets because they are missing out-of-core processing 
capabilities for large images, have no straightforward path to auto-
mation and distribution for large sets of smaller images, and have 
increased runtimes because of their slower processing times1,14–18. To 
overcome these restrictions, we developed RS-FISH, which uses an 
extension of Radial Symmetry19 (RS) to robustly and quickly identify 
single-molecule spots in 3D with high precision (Fig. 1a). RS-FISH can 
be run as an interactive, scriptable Fiji plugin20, as a command-line tool, 
and as a cluster and cloud-distributable package for large volumes or 
for datasets consisting of thousands of images (Fig. 1g,h).

RS is an efficient, non-iterative alternative to accurate point locali-
zation using Gaussian fitting that was developed for localizing 2D cir-
cular objects by computing the intersection point of image gradients 
(Fig. 1a)19. We first derived a 3D version of the RS method, similar to the 
work of Liu et al.21 (Methods), that additionally extends to higher dimen-
sions, which has potential for spatiotemporal localization of blinking 
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compared with the axial (z) dimensions (Fig. 1d and Methods). Third, 
the computation speed of RS allowed us to combine RS with robust out-
lier removal using random sample consensus22 (RS-RANSAC) to identify 
sets of image gradients that support the same ellipsoid object given a 

3D spots. Second, we extended RS to support axis-aligned, ellipsoid 
objects without the need for scaling the image21, enabling RS-FISH to 
account for typical anisotropy in 3D microscopy datasets that results 
from different pixel sizes and point spread functions in the lateral (x,y) 
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Fig. 1 | RS-FISH accurately detects fluorescent spots. a, Illustration depicting 
single fluorescent spot detection using RS-based RANSAC. Left, gradients (blue 
lines) calculated in a local patch around a DoG-detected location (red square) 
for RS fitting. Middle, intensity gradients that agree on a common center point 
(green gradients, green dot) given a defined error (green dotted circle) are 
identified using RANSAC outlier removal, and rejected gradients are plotted in 
white. Using all gradients would lead to a different center point (blue). Right, the 
final RS-FISH center spot (pink dot with black cross) is computed by intersecting 
all green (inlier) gradients. b, Detecting two close spots using multi-consensus 
RANSAC. Both points are detected as a single DoG spot owing to a high noise 
level. Multi-consensus RANSAC identified two independent spots visualized  
as yellow and pink sets of pixels (that is, gradients). c, Single zslice through the  
3D image of a C. elegans larva expressing lea-1 mRNA (smFISH labeling). Red 
circles highlight the RS-FISH-detected spots, and the encircled area is shown  

as x-slice below. Images are representative of four experimental replicates.  
d, To correctly detect spots in anisotropic images, a global scale factor estimated 
from the data is computed. The example image shows a mouse embryonic stem 
cell labeled by smFISH for Cdx2 mRNA. e, RS-FISH detections can be exported as 
result table or CSV file or transferred to the ROI manager, and can be overlayed 
onto data for inspection using Fiji or BigDataViewer. The example image shows a 
max projection of five z-slices of a Drosophila brain with smFISH labeled for Pura 
mRNA27. f, OligoFISSEQ-labeled3 PGP1f cells using barcodes with four different 
fluorophores showing one round of labeling. RS-FISH detected spots are labeled 
in four different colors. (Images by Nguyen et al.3). g, RS-FISH scales to large 
datasets, shown for 4,010 mixed-stage C. elegans embryos with mdh-1 mRNA 
smFISH labeling. h, Large N5 image volumes, like the EASI-FISH 148-GB lightsheet 
image of a tissue section of the lateral hypothalamus (data by Wang et al.13), were 
analyzed with the Apache Spark version of RS-FISH.
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specific error for the gradient intersection point (Methods). This allows 
RS-FISH to identify sets of pixels that support a user-defined localiza-
tion error for individual spots (Fig. 1a), discriminate close detections 
(Fig. 1b and Supplementary Fig. SN7.1), and ignore outlier pixels that 
disturb localization (for example, dead or hot camera pixels).

RS-FISH first generates a set of seed points by thresholding the 
difference-of-gaussian (DoG)23 filtered image to identify potential 
locations of diffraction-limited spots, whose parameters need to be 
adjusted to the average size (sigma) and intensity (threshold) of the 
spots. Next, image gradients are extracted from local pixel patches 
around each spot, which are optionally corrected for non-uniform fluo-
rescence backgrounds. Before RS localization, gradients are rescaled 
along the axial dimension to correct for dataset anisotropy using 
an anisotropy factor that depends on pixel spacing, resolution, and 
point spread function. The anisotropy factor can be computed from 
the microscopy image itself and does not change as long as acquisi-
tion parameters are held constant (Fig. 1d and Methods). Optionally, 
RS-RANSAC can be run in multi-consensus mode, which performs addi-
tional rounds of RANSAC filtering in order to distinguish spots that were 
too close to one another for the DoG detector to separate them during 
seed point generation (Fig. 1b, Supplementary Figs. SN7.1 and SN7.2, 
and Methods). Finally, to avoid potentially redundant detections, spots 
are, by default, filtered to be at least 0.5 pixels apart from each other. 
Each spot’s associated intensity value is, by default, computed using 
linear interpolation at the spot’s sub-pixel location or can be refined 
by fitting a Gaussian to the subset of pixels that support the spot as 
identified by RS-RANSAC.

RS-FISH pixel operations are implemented in ImgLib2 (ref. 24), and 
RS fitting and RS-RANSAC are implemented using the image transfor-
mation framework mpicbg25. All operations can be executed in blocks 
allowing straightforward parallelization and compute effort scales 
linearly with the size of the data up to the petabyte range (Methods). 
Importantly, RS-FISH’s parameters can be interactively tuned on small 
and large datasets using the Fiji plugin (Supplementary Fig. SN8.1). 
Once the right set of parameters is identified on a representative exam-
ple image, RS-FISH can be run and macro-scripted in Fiji, or can be 
executed in a scriptable mode for straightforward parallel execution 
on compute clusters or cloud services (for example, Amazon Web 
Services (AWS)) using Apache Spark, for which we provide example 
scripts, including resaving into the N5 (Zarr compatible) file format 
(Fig. 1g and Supplementary Notes). The results are saved as a CSV file, 
or they can be transferred to the region-of-interest (ROI) manager for 
downstream analysis in Fiji (Fig. 1e and Supplementary Notes). A mask 
filtering tool can classify detections on the basis of a binary mask, for 
example a cytoplasm or nuclear mask (Supplementary Fig. SN12.1). 
The saved point clouds can be overlaid onto the images using Fiji20 or 
BigDataViewer26 for interactive visual inspection of even very large 
datasets (Fig. 1h and Supplementary Video 1).

To validate and benchmark RS-FISH, we performed quantitative 
comparisons against FISH-quant14, Big-FISH18, AIRLOCALIZE17, Star-
fish16, and deepBlink15 using (1) simulated smFISH images with varying 
noise levels to assess detection performance, (2) simulated images of 
spot pairs that are close to one another to assess performance on dense 
datasets, (3) real smFISH Caenorhabditis elegans embryo datasets for 
runtime measurements, (4) real smFISH cell datasets with varying 
noise levels, and (5) large lightsheet datasets13. We show that RS-FISH 
is on par with the best methods in terms of detection performance. 
Notably, it provides high detection accuracy and low localization error  
(Fig. 2a–c and Supplementary Fig. SN4.1–SN7.2) while running 3.8–7.1 
times faster than established methods (Fig. 2d and Supplementary 
Notes). We additionally compare localization error and detection 
accuracy across different noise levels (Fig. 2e,f). RS-FISH shows supe-
rior detection accuracy, especially in the presence of very high noise. 
The localization error is very good in low-noise scenarios and slightly 
increases for higher noise levels, which is partially explained by having 
to localize more spots that other methods do not detect. We provide 
example images of each noise class tested in Figure 2e,f as guidance 
for users to estimate the expected localization quality. We highlight 
that RS-FISH can easily be parallelized on the cloud by running smFISH 
extraction on 4,010 C. elegans image stacks (~100 GB in total) in 18 min-
utes on AWS at the cost of US$18.35 in June 2021 (Fig. 1g). Importantly, 
RS-FISH is currently the only method that can be directly applied to 
large volumes (Fig. 1h and Supplementary Video 1). Processing a recon-
structed 148-GB lightsheet image stack took 32 CPU hours (~1 hour 
on a modern workstation). In comparison, a complex wrapping soft-
ware for distributing AIRLOCALIZE, specifically developed for the 
expansion-assisted iterative FISH (EASI-FISH) project to run on the 
HHMI Janelia cluster, required significant development effort and took 
156 CPU hours to finish the same task13.

We developed RS-FISH based on a generic derivation of 3D RS for 
anisotropic objects that is efficiently implemented using ImgLib2, Fiji, 
and Spark. RS-FISH runs as a Fiji plugin, allowing interactive parameter 
adjustment and result verification on small and large images, making 
the task of correctly detecting diffraction-limited spots in microscopy 
images as accessible as possible. Processing speed is significantly 
improved and similar localization performance to established methods 
is achieved. RS-FISH is simple to install and run through Fiji, addition-
ally providing macro-recording functionality to automate FISH spot 
detection easily. Our efficient block-based implementation allows 
easy single-molecule spot detection in large datasets or big volumes 
using local processing, clusters, or the cloud. Importantly, although we 
have demonstrated RS-FISH’s utility using only a 148-GB dataset, there 
is no conceptual limit that prohibits RS-FISH from being executed on 
significantly larger volumes well into the petabyte range. RS-FISH is 
an accurate, easy-to-use, versatile, and scalable tool that makes FISH 
spot detection on small and especially large datasets amenable to 

Fig. 2 | Performance of different spot localization tools. a, Detection 
accuracy for different tools was analyzed using the F1 score calculated from 
true-positive (red circle, white spot), false-positive (red circle, no spot), and 
false-negative (no circle, white spot) detection. Corresponding false-positive and 
false-negative values can be found in Supplementary Figure SN4.2, in which data 
are represented as a boxplot with the full outlier range. F1 score and localization 
error were determined using a set of 50 simulated images (256 × 256 × 32 pixels), 
with different noise levels (example images in Supplementary Fig. 4.1) containing 
either 30 spots (n = 39) or 300 spots (n = 11). The best detection parameters for 
each tool were determined by a grid search over the parameter space (details 
in Supplementary Notes). b, Localization error was measured as Euclidean 
distance (pixels) between the detected spot center and the ground-truth center 
of simulated spots for the same set of images described in a. c, Histograms of 
distance deltas of the ground truth to its corresponding localized spot separated 
by image dimensions (x,y,z) for the different tools, showing that all methods 

are highly accurate while precision varies. The corresponding localization error 
for each dimension separately can be found in Supplementary Fig. SN4.2d,e. 
d, Comparison of processing speed for 13 real 3D smFISH images of C. elegans 
embryos, with images sized around 30 MB containing an average of ~350 spots 
per image (example images in Supplementary Fig. SN4.1). Bar plots in a, b, and d, 
as well as the line plots in e and f, show the mean and a 95% confidence interval of 
the 50 measured detections. e, Influence of different image noise levels on spot 
detection. Plot displays detection accuracy measured as F1 score (y axis) against 
the s.d. of image noise (x axis). Example images corresponding to the different 
noise levels are displayed below the graph. f, Influence of image noise on the 
localization error measured in Euclidean distance to the center of simulated 
points (ground truth) against the s.d. of image noise, using the same data as 
shown in b. For a–f, details on run parameters and tables with raw values are in 
Supplementary Notes.
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researchers and whose functionality extends to the dynamically grow-
ing fields of spatial transcriptomics and spatial genomics.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01669-y.
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Methods
n-dimensional derivation of Radial Symmetry localization
The goal of RS is to accurately localize a bright, circular spot pc with 
sub-pixel accuracy. In noise-free data, image gradients ∇I(pk) at loca-
tions pk point towards the center of the spot and intersect in that single 
point pc (Fig. 1a), thus computing the intersection point solves the 
problem of accurate localization. In realistic images that contain noise, 
these gradients do not intersect, therefore computing pc constitutes 
an optimization problem that RS solved using least-squares minimiza-
tion of the distances dk between the common intersection point pc and 
all gradients ∇I(pk) (Supplementary Fig SN1.1).

We extend RS to 3D similar to Liu et al.21, and additionally describe 
how to generalize the derivation to the n-dimensional case. To achieve 
this, we replace the Roberts cross operator with separable convolution 
for image gradient ∇I(pk) computation, and we use vector algebra to 
compute the intersection point pc of image gradients. The derivations 
are shown in detail in Supplementary Fig SN1.1 and Supplementary 
Notes.

Radial Symmetry for axis-aligned ellipsoid (non-radial) 
objects
Diffraction-limited spots in 3D microscopy images are usually not 
spherical but show a scaling in the axial (z) dimension compared with 
the lateral (xy) dimensions. Previous solutions suggested scaling the 
image in order to be able to detect spots using RS21. This can be impracti-
cal for large datasets, and it might affect localization quality, as the 
image intensities need to be interpolated for scaling. Here, we extend 
the RS derivation to directly compute the intersection point pc from 
anisotropic images by applying a scale vector s to point locations pk 
and applying the inverse scale vector s−1 to the image gradients ∇I(pk). 
Although we derive the case specifically for 3D, it can be straightfor-
wardly applied to higher dimensions. The derivation is shown in detail 
in the Supplementary Notes.

RS-FISH supports a global scale factor (called anisotropy factor) 
for the entire dataset that compensates for anisotropy of the axial 
(z) dimension, which can be computed from an image containing 
diffraction-limited spots (Supplementary Notes).

Radial Symmetry Random Sample Consensus
RS localization is implemented as a fast, closed-form solution, and it 
is therefore feasible to combine it with robust outlier removal. We use 
RANSAC22 to identify the maximal number of gradients ∇I(pk) that sup-
port the same center point pc given a maximal distance error ε, so that 
all dk < ε.

To achieve this, RANSAC randomly chooses the minimal number of 
gradients (that is, two gradients) from the set of all gradients (candidate 
gradients) to compute the center point and tests how many other gra-
dients fall within the defined error threshold ε. This process is repeated 
until the maximal set of gradients is identified (inlier gradients) and the 
final center point pc is computed using all inlier gradients. This allows 
RS-FISH to exclude artifact pixels and to differentiate close-by spots.

The number of gradients that are computed for each spot is 
defined by the support region radius, which can be selected as one of 
the RANSAC parameters. By default, we propose a radius of 3 pixels, 
which corresponds to a 7 × 7 × 7 pixel patch, resulting in 216 gradients 
for the 3D case. These settings are reasonable choices for acquisition 
parameters typically used for smFISH images (500–700 nm emission, 
×63 oil detection objective, EMCCD or sCMOS camera with ~10-µm 
pixels, corresponding to a ~159-nm lateral pixel size in the sample 
plane), where the pixel patch comfortably covers the central peak of 
the point spread function (PSF). Importantly, the radius should be 
adjusted to the respective acquisition settings so that an area that is 
approximately twice the size of the central peak of the PSF is entirely 
covered to ensure that all gradients that point towards the center of 
each spot are included in the localization.

To identify and locate close-by points, RS-FISH runs a multi- 
consensus RANSAC. Here, RANSAC is run multiple times on the same 
set of candidate gradients. After each successful run that identifies a 
set of inliers, the inliers are removed from the set of candidate gradi-
ents, and RANSAC tries to identify another set of inliers (Fig. 1b). This 
process is iterated until no other set of inliers (corresponding to a FISH 
spot) can be found in the local neighborhood of each DoG spot. To not 
detect random noise, the minimal number of inliers required for a spot 
can be adjusted (typically around 30).

Implementation details and limits
RS-FISH is implemented in Java using ImgLib2, the mpicbg framework, 
BigDataViewer, Fiji, and Apache Spark. The computation of RS is per-
formed in blocks with a size of bd for each dimension d (for example, 
256 × 256 × 128 pixels) and requires an overlap of only 1 pixel in each 
dimension with neighboring blocks, thus the overhead o = 1 − Πdbd

Πdbd−2
 is 

minimal (for example, 1.5% for 256 × 256 × 256 blocks or 0.6% for 
1024 × 1024 × 1024 blocks). When processing each block, the local 
process has access to the entire input image, which is either held in 
memory when running within Fiji or is lazy-loaded from blocked N5 
datasets when running on large volumes using Apache Spark. Because 
the computation across blocks is embarrassingly parallel, computation 
time linearly scales with the dataset size. Thus, RS-FISH will run on very 
large volumes supported by N5 and ImgLib2. Owing to current limita-
tions in Java arrays, the theoretical upper limit is 231 = 2,147,483,648 
blocks, with each block maximally containing 231 = 2,147,483,648 pixels 
(for example 2048 × 2048 × 512 pixels). Given sufficient storage and 
compute resources, the limit for RS-FISH is thus 4,072 peta-pixels 
(4,072 petabytes at 8 bit, or 8,144 petabytes at 16 bit) taking into 
account the overhead, whereas every individual block locally processes 
only 2 gigapixels (231 = 2,147,483,648 pixels).

The code can be executed on an entire image as a single block for 
smaller images, or in many blocks multi-threaded or distributed using 
Apache Spark. It is important to note that RS-RANSAC uses random 
numbers to determine the final localization of each spot. We use fixed 
seeds to initialize each block; therefore, the results for a single block of 
the same size in the same image with the same parameters are constant. 
However, for blocks of different sizes (for example, single-threaded 
versus multi-threaded), the results will be slightly different, as the 
RANSAC-based localizations are not traversing the DoG maxima in  
the same order, and thus initialize RANSAC differently. For practicality, the  
interactive Fiji mode runs only in single-threaded mode (although  
the DoG image is computed multi-threaded) to yield comparable 
results across different testing trials. Importantly, this applies only if 
the RANSAC mode is used for localization. Multi-threaded processing 
is available in the recordable advanced mode in the Fiji plugin, while the 
Apache Spark based distribution can be called from the corresponding 
RS-FISH-Spark repository.

Data simulation for assessing localization performance
To create ground-truth datasets for assessing localization perfor-
mance, we generated images simulating diffraction-limited spots in the 
following way: (x,y,z) spot positions were randomly assigned within the 
z-stack chosen dimensions, and each spot was assigned a brightness 
picked from a normal distribution. We computed the intensity I(x,y,z) 
generated by each spot as follows: we first computed the predicted 
average number of photons received by each pixel Ipred(x,y,z) computed 
using a gaussian distribution centered on the spot, with user-defined 
lateral and axial extensions. We then simulated the actual intensity 
collected at each pixel using a Poisson-distributed value with mean 
Ipred(x,y,z). We eventually added gaussian-distributed noise to each 
pixel of the image.

Code for generating the images with simulated diffraction-limited 
spots is available in the GitHub repository. There is also a folder 
included with the simulated data used in the parameter grid search 
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and benchmarking: https://github.com/PreibischLab/RS-FISH/tree/
master/documents/Simulation_of_data.

Additionally, we simulated a dataset that contains spots that are 
very close to each other in order to assess the ability of RS-FISH and 
other tools to differentiate such spots. The code is here: https://github.
com/timotheelionnet/simulated_spots_rsFISH. The images are here: 
https://github.com/timotheelionnet/simulated_spots_rsFISH/tree/
main/out.

Benchmarking RS-FISH against commonly used 
spot-detection tools
RS-FISH performance was benchmarked against the leading tools for 
single-molecule spot detection in images. The tools compared in the 
benchmarking are FISH-quant14 (Matlab), Big-FISH18 (Python), AIRLO-
CALIZE17 (Matlab), Starfish16 (Python), and deepBlink15 (Python, Tensor-
Flow). Localization performance comparison was done on simulated 
images with known ground-truth spot locations, and computation-time 
comparison was performed using real three-dimensional C. elegans 
smFISH images. We created a dedicated analysis pipeline for each tool 
to test localization performance and compute time. For localization per-
formance comparison, a grid search over each tool’s pipeline parameter 
space was run (excluding deepBlink, as a pre-trained artificial neural 
network was used; more details regarding deepBlink are discussed in the 
Supplementary Notes). Importantly, tools use different offsets for their 
pixel coordinates, which depend on the respective pixel origin conven-
tion (for example, does a spot positioned at the center of a pixel lie at 0.0 
or 0.5? Does the z index start with 0 or 1?). In our benchmarks, for each 
tool we detected these offsets by computing the precision (the average, 
signed per-dimension difference between predicted and ground-truth 
spots) and correct for these offsets if necessary (Supplementary  
Fig. SN4.2d,e). RS-FISH assumes that each pixel in an image is a measure-
ment (not a square) that is located at floored coordinates (for example 
11.0, 134.0, 12.0), and the top left pixel of the first slice corresponds to the 
coordinates (0.0, 0.0, 0.0). For computation-time comparison on real 
data, each pipeline’s parameters were selected to produce a similar num-
ber of detected spots for each image. Additionally, we performed bench-
marks for spots that were close to each other (Supplementary Fig. SN7.1  
and SN7.2 and Supplementary Notes) and on real data with varying 
levels of noise (Supplementary Fig. SN6.1 and Supplementary Notes).

The comparison shows that RS-FISH is on par with currently 
available spot-detection tools in localization performance, provid-
ing high detection accuracy and low localization error (Fig. 2a–c,e,f 
and Supplementary Fig. SN4.2) while running 3.8–7.1 times faster  
(Fig. 2d and Supplementary Notes). Additionally, RS-FISH is currently 
the only available tool that can be directly applied to large images, 
which we highlight using a 148-GB lightsheet image stack13 (Fig. 1h, Sup-
plementary Video 1, and Supplementary Notes). The image size of the 
lightsheet stack is 7,190 × 7,144 × 1,550 pixels, and the block size used 
for detection was 256 × 256 × 128 pixels. The detection of spots using 
RS-FISH took 3,263 seconds (~32 CPU hours) for the entire image on a 
36 CPU workstation with 2× Intel Xeon Gold 5220 Processor at 2.2 Ghz. 
The runtime cannot be directly compared with the custom extension 
of AIRLOCALIZE that was developed for the same project, as it is writ-
ten to specifically run only on the Janelia cluster. The compute time of 
156 CPU hours was extracted from the cluster logs of the submission 
scripts and was executed on a mix of Intel SkyLake (Platinum 8168) 
at 2.7 GHz and Intel Cascade Lake (Gold 6248 R) at 3.0 Ghz CPUs. The 
overall speed increase of ~5× generally agrees with our measurements in 
Figure 2d, and the performance of a mix of these CPUs is comparable to 
the workstation CPUs (according to https://www.cpubenchmark.net). 
Importantly, RS-FISH runs on such volumes natively and can easily be 
executed on a cluster or in the cloud, thus it easily scales to significantly 
larger datasets. At the same time, the AIRLOCALIZE implementation 
is limited to the Janelia cluster, but could be extended to other LSF 
clusters that support job submission.

Benchmarking analysis details are in the Supplementary Notes, 
and all scripts and complete documentation are in the RS-FISH GitHub 
repository.

Further properties of RS-FISH
Independent of the software used, localization performance is influ-
enced by the lateral and axial sampling rate of the microscope, which 
has been studied extensively, for example in Thompson et al.27. RS-FISH 
supports a wide range of parameters that are explained in detail (Sup-
plementary Fig. SN8.1) and allows the user to adjust it to the microscope 
settings used.

RS-FISH supports all image data formats supported by Fiji and 
BioFormats, including N5/Zarr. For distributed processing using Spark, 
large images need to be stored in the N5/Zarr format.

Limitations of RS-FISH
RS-FISH is a tool for detecting diffraction-limited spots in 
single-channel 2D or 3D microscopy images. It gives the user a lot of 
flexibility through interactive parameter selection to detect all spots 
in their images. Thus, setting these parameters could potentially be 
daunting for new users. However, we choose default parameters that 
give good results for many typical FISH spot images, and the interactive 
GUI allows users to test out different parameters easily on their images. 
Other tools have limited parameter selection, but RS-FISH is able to 
detect spots more accurately because it allows careful, interactive 
parameter selection. RS-FISH precisely localizes spots in images with 
little noise but is less precise in images that show high noise (compared 
with only FISH-quant and AIRLOCALIZE), which can be partly explained 
by the ability of RS-FISH to correctly detect more spots in high-noise 
cases. Very dense spots or clouds of spots, which might be due to 
smFISH spots of highly expressed genes, are particularly challenging 
to detect using any currently available method. The multi-consensus 
RANSAC improves the situation, but parameter selection is not easy 
and it does not correct for the fact that the gradients of two very close 
spots influence each other (it simply ensures that the error is not higher 
than the user-defined RANSAC error threshold).

The RS-FISH-detected spots can be classified on the basis of their 
position relative to image landmarks within the plugin using binary 
masks. Further downstream analysis, such as co-localization, can be 
easily performed on the results files within Fiji or other analytical 
frameworks in R or Python.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets used for benchmarking are available in the RS-FISH and 
Timothee Lionnet GitHub repositories (links are available in Supple-
mentary Table 3), which includes simulations and 3D smFISH images 
of C. elegans embryos. The raw data underlying Fig. 1 are available at 
figshare (links are available in Supplementary Table 3).

Code availability
RS-FISH is implemented as open-source in Java/ImgLib2 and provided 
as a macro-scriptable Fiji plugin and stand-alone command-line appli-
cation capable of cluster and cloud execution. The code source, tutorial, 
documentation, and example images are available at: https://github.
com/PreibischLab/RS-FISH and https://github.com/PreibischLab/
RS-FISH-Spark.
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