Supplemental Information

Heiko Becker, Dietmar Pfeifer, Gabriele Ihorst, et al. Monosomal karyotype and chromosome 17p loss or TP53 mutations in decitabine-treated patients with acute myeloid leukemia

Supplemental Methods

Derivation of the genetic clonal architecture

The proportion of cells harboring distinct mutations was estimated by multiplying the VAF by 2 (to a maximum of 100%) assuming a heterozygous state of the mutation. For mutations with a VAF >60%, affected by a deletion or monosomy (as concluded from cytogenetics) or located on chr X in male patients a heterozygous state could not be assumed and, thus, the VAF was considered to be similar to the number of affected cells. For mutations located on chromosomes affected by a trisomy, the clonal architecture was evaluated by multiplying the VAF by 1.5 and 3, under the assumption that the mutated or wild-type allele was gained, respectively. Only samples with encompassing cytogenetic data or cases with only one mutation identified were considered. Cytogenetic aberrations were not considered clonedefining events, due to the generally low number and the processing of cells analyzed by metaphase cytogenetics. Mutations that were present in a proportion of cells that was by >20% smaller than the mutation with the highest VAF were considered to have been acquired later during disease course. Mutations with ≤20% difference in the proportion of cells affected were concluded to be present in the same clone. Mutations in minor subclones were present in a proportion of cells that was by >20% different than the mutation with the lowest VAF in the major clone.

Prediction of DNA copy number variations from NGS data

We attempted to retrieve data on chr17 copy number variations (CMV) based on the sequencing data in patients without cytogenetic information and without a *TP53* gene mutation using the CNVPanelizer (Oliveira C and Wolf, T; R package version 1.4.0), but we were not able to reliably derive such data. Briefly, the amplicons representing a gene according to the manufacturer's TruSight Myeloid Targeted Regions BED File were used as input for the CNVPanelizer algorithm. PCR duplicates were not removed and bootstrapping and background methods were repeated 10,000 times. In order to evaluate this approach for the identification of CNVs based on the available NGS data, data from samples with normal karyotype (based on metaphase cytogenetics) were compared with data from samples with -17. The results obtained by the algorithm based on the NGS data did not match the data from the metaphase cytogenetics. Thus, we concluded that the density of data points of the available NGS data is not sufficient to reliably predict CNV.

Supplemental Table S1. Karyotypes with a loss of 17p aberration

Pat	Karyotype	СК	MK			
1*	46,XY,del(20)(q1?3.1)[2]/44~45,X,-Y,del(5)(q31),der(6)?t(1;6)(q25;q21),der(16;17)(q10;q10),add(17)(p1?),del(20)(q1?3.1),+mar,inc[cp18]	+	-			
2*	55-56,XY,+Y,+r(4),dic(5;17)(q13;p11),+8,+9,+11,+13,+14,+18,+20,+der(22)t(11;22)(q14;p11)[5]	+	-			
	48,XY,der(2)t(1;2)(p11;p25),der(3;12)(q10;q10),dic(5;17)(q11;p11),+8,+21	+	-			
3*	[8]/46,XY,der(2)t(1;2)(p11;p26),der(2;12)(q10;q10),dic(5;17)(q11;p11),der(15)ins(15;22)(q22;q?q?)[3]/46,XY [1]					
4*	46,XX,del(5)(q13q33)[2]/44,XX,del(5)(q13q33),-7,-16,-17,+mar [26]/46,XX [2]	+	+			
5*	44-46,XY,del(2)(p13),der(3)(q21),del(5)(q13q33),del(7)(q22q32),del(13)(q14q22),-15,-16,-17,-18,del(20)(q11),+?21,+1-3mar,inc[cp17]/46,XY[5]	+	+			
6	52,XX,+del(1)(q24),del(5)(q13q33),del(7)(q21q32),+11,+13,+14,+16,-17,+21,+22 [7]	+	+			
7	46,XX,del(5)(q13q33),der(16)del(16)(p11)del(16)(q22),-17,der(20)t(17;20)(q11;q11),+der(20) [17]	+	+			
8	42,XX,inv(3)(q21q26.2),del(5)(q13q33),-7,-11,-14,add(14)(p11),-17,der(17;18)(p10;q10),-18,+mar [16]	+	+			
9	~41,XY,add(1)(q32),-3,-5,-7,-12,del(16)(q22),-17,-18,del(20)(q11q13),+mar, dmin (matrix CGH)	+	+			
10	39-41(XY),-Y,del(4)(q11),der(3)t(3;5)(p21;?)t(5;17),der(5)t(5;17)(q31;q11),-8,der(11)t(3;11)(p21;q23),der(14;15;21;21),+16,-17,del(20)(q11),+21[cp15]	+	+			
11	47-48,XX,del(3)(p11p14),-5,del(6)(p22),+del(6)(p22),-7,+8,+11,add(17)(p11),-18,add(22)(q11),+1-2mar [20]	+	+			
12	45,XY,del(3)(p21),-5,-7,del(10)(q22),der(12;22)(q10;q10),+13,del(17)(p11) [15]	+	+			
13	42,XY,der(?)t(3;?)(q21;?),del(5)(q11q22),der(8),ish 8q22(ETO-),trp(11)(q13q23),-16,-17,del(20)(q11),der(21),inc [cp7]/46,XY [1]	+	+			
14	46,XX,del(5)(q13q31)[9]/46,XX,del(5)(q13q31),del(17)(p11)[11]		-			
15	46,XY,der(5;17)(p10;q10),-17,-18,add(19)(p13),+21,+mar [23]	+	+			
16	45,XX,del(5)(q13q33),-7,-17,+mar [12]/45,XX,del(5)(q13q33),-7,i(8)(q1 0),-17,+mar [7]	+	+			
17	45-46,XX,-2,-4,-5,add(7)(q?22),add(12)(p1?),-?14,-?15,-17,+5-6mar,inc[cp6]	+	+			
18	46,XX,der(5;13)(p10;q10),add(17)(p13),+19,-20 [10]/46,XX [1]	+	+			
19	53-57,XY,+1,add(1)(q23),dic(1;11)(q11;p11),+2,add(2)(q37),add(2)(q21),der(2;7)(p10;q10),add(7)(q11),+8,+9,+10,+11,+13,+15,- 17,+20,add(21)(q22),+22,+3mar [cp20]	+	+			
20	43-45,XY,add(1)(q10),add(4)(p12),-5,add(6)(q13),-7,add(9)(q34),add(12)(p11),-15,-17,-20,+2-4mar [9]	+	+			
	44,XX,-2,-5,+8,-10,-12,der(14)t(14;15),(q22;q15),-15,-17,add(22)(q11),+3mar [7]/45,XX,add(2)(q11),-5,+8,-10,-12,der(14)t(14;15)(q22;q15),-15,-	+	+			
21	17,add(22)(q11),+3mar [3]					
22	45,XY,-9,add(17)(p13),del(20)(q11) [11]	+	+			
23	43-49,XY,der(3),del(5)(q),-14,-15,-17,-18,-20,+21,+1-5mar [cp8]	+	+			
24	46,XX [1]/45,X,-X,add(5)(q11),-17,add(18)(q?22),-21,+mar,+mar [22]	+	+			
25	46,XY,inv(3)(q21q26.2),del(6)(q12q23),dup(7)(q11q21),del(7)(q22),-17,+mar [7]/46,XY[4]	+	+			
Abbreviations: Pat, patient; CK, complex karyotype; MK, monosomal karyotype; n.a., not applicable; n.d., not determined * Patient numbers correspond to numbers in Figure 1						

Pat	Gene	Chr	Nucleotide change	AA change	VAF	Major clone (M) vs minor subclones (m)
16	TP53	17p13.1	c.365_366delTG	p.V122fs*26	44%	M
16	TP53	17p13.1	c.734G>C	p.G245A	37%	М
16	PTPN11	12q24.13	c.218C>T	p.T73I	32%	M
17	TP53	17p13.1	C.524G>A	p.R1/5H	38%	M
10	DNIMT2A	17p13.1	C.707A>G	p. 12300 p. 1407T	01%	
18	KIT	2p23.3 4a12	c 2447AST	p.14071 n D816\/	17%	m
18	PTPN11	12a24.13	c.182A>G	p.D61G	11%	m
19	TP53	17p13.1	c.747G>C	p.R249S	57%	M
19	ABL1	9q34.12	c.613G>A	p.V205I	44%	Μ
20	JAK2	9p24.1	c.1624_1629delAATGAA	p.N542_E543del	55%	М
20	TP53	17p13.1	c.524G>A	p.R175H	50%	M
21	BCOR	Xp11.4	c.4537C>T	p.R1513*	87%	M
21	TP53	17p13.1	c.308dupA	p.Y103*	75%	M
22		17p13.1	C.030U>1	p.H1/91	21%	
22	FI T3	2p23.3 13a12.2	c.2503G>T	p.R00211 n D835Y	17%	M
23	TP53	17n131	c 1018delA	p.D0001 p.M340fs*5	21%	M
24	EZH2	7a36.1	c.1355dupA	p.Y452*	81%	M
24	ASXL1	20q11.21	c.1934dupG	p.G646Wfs*12	36%	М
25	ZRSR2	Xp22.2	c.515dupG	p.C172Wfs*6	89%	М
25	RUNX1	21q22.12	c.328A>C	p.K110Q	52%	М
25	ASXL1	20q11.21	c.2302C>T	p.Q768*	51%	M
25	ASXL1	20q11.21	c.3306G>T	p.E1102D	51%	M
25	EZH2	7q36.1	C.907+21>C	splicing	49%	M
25		21022.12	C.490U>G	p.R166G	45%	m
25	FLT3	13q12.2	c 1775T>A	p.K643G n V592D	6%	m
25	FZH2	7a36 1	c 1307A>G	p. F436G	46%	M
26	EZH2	7q36.1	c.1583G>C	p.C528S	85%	M
26	RUNX1	21q22.12	c.482T>A	p.L161H	47%	Μ
26	KRAS	12p12.1	c.34G>A	p.G12S	46%	М
26	ASXL1	20q11.21	c.2077C>T	p.R693*	43%	Μ
27	SRSF2	17q25.1	c.283C>G	p.P95A	47%	M
27	EZH2	7q36.1	c.2080C>T	p.H694Y	46%	M
27	EZH2	7q36.1	C./3C>1	p.R25*	46%	M
27		2434 21a22 12	c.5940>1	p.R1520 n \$167T	45%	
27	ASXI 1	20a11 21	c 1934dupG	p.G1071	33%	m
28	RUNX1	21a22.12	c.965C>G	p.S322*	40%	M
28	BCOR	Xp11.4	c.2893A>T	p.R965*	38%	М
28	STAG2	Xq25	c.1876dupA	p.T626Nfs*9	38%	М
28	GATA2	3q21.3	c.253_256dupTGCC	p.R86Lfs*100	35%	М
28	PHF6	Xq26.2	c.821G>A	p.R274Q	33%	M
28	ASXL1	20q11.21	c.1934dupG	p.G646Wfs*12	32%	M
29	IEIZ KDAS	4q24	C.51220eIA	p.S1708fs*11	47%	
29		20a11 21	c. 103/dunG	p.G12K	36%	M
30	STAG2	Xa25	c.646C>T	p.R216*	82%	M
30	IDH2	15a26.1	c.419G>A	p.R140Q	45%	M
30	ASXL1	20q11.21	c.2278C>T	p.Q760*	41%	М
31	SRSF2	17q25.1	c.284C>T	p.P95L	54%	М
31	IDH1	2q34	c.394C>T	p.R132C	49%	М
31	RUNX1	21q22.12	c.610C>T	p.R204*	45%	M
31	ASXL1	20q11.21	c.1900_1922delAGAGAGGCGGCCACCACTGCCAT	p.E635Rfs*15	42%	M
31		11p13	C.1390G>A	p.D464N	30%	m N4
32		21422.12 15a26 1	c.310G>C	p.W100C	01%	
32	SRSF2	17a25 1	c 284C>G	p.R140Q p.P95R	43%	M
32	FLT3	13a12.2	c.1727T>C	p.L576P	33%	m
32	ASXL1	20q11.21	c.1934dupG	p.G646Wfs*12	32%	m
33	CBL	11q23.3	c.1268T>A	p.I423N	92%	М
33	SRSF2	17q25.1	c.284C>A	p.P95H	48%	М
33	TET2	4q24	c.1123G>T	p.E375*	45%	M
33	TET2	4q24	c.3732_3733delCT	p.Y1245Lfs*22	45%	M
33	RAD21	8q24.11		p.Q561"	43%	
33		21422.12 20a11 21		p.1304VIS 231	43% 320/	IVI M
34	SRSF2	∠0411.21 17a25.1	c 284C>T	p. 1391 p. P951	41%	n a
34	IDH1	2a34	c.394C>A	p.R132S	36%	n.a.
34	ASXL1	20g11.21	c.1934dupG	p.G646Wfs*12	28%	n.a.
35	SRSF2	17q25.1	c.284C>A	p.P95H	54%	n.a.
35	IDH2	15q26.1	c.419G>A	p.R140Q	51%	n.a.
35	ASXL1	20q11.21	c.2708C>A	p.S903*	49%	n.a.
36	SRSF2	17q25.1	c.284C>T	p.P95L	49%	n.a.
36	ASXL1	20q11.21	c.2290delC	p.L764Yfs*8	46%	n.a.

Supplemental Table S2. Gene mutations identified by panel sequencing

36	CATA2	3021 3		n M388 K380dal	16%	na
26	NDAS	1p12 2		p.10000_1000000	210/	n.a.
30	NRAS	1p13.2		p.G12D	3170	11.d.
36	NRAS	1p13.2	C.182A>G	p.Q61R	16%	n.a.
36	VV I 1	11p13	c.1137_1141dupACGGT	p.S381Yfs*70	8%	n.a.
37	EZH2	7q36.1	c.2051G>A	p.R684H	83%	M
37	DNMT3A	2p23.3	c.1240T>G	p.F414V	48%	Μ
37	TET2	4a24	c.679G>T	p.E227*	46%	Μ
37	SE3B1	2a33 1	c 1986C>A	n H662Q	41%	М
37	FI T3	13a12.2	c 2503G>T	n D835V	23%	m
27		110012.2	0.20000/1	p.00001	70/	m
57		11423.3	0.1111120	p.1371D	1 70	
38	BCOR	Xp11.4	c.4266dup1	p.11423Yfs*4	32%	n.a.
38	STAG2	Xq25	c.3085C>T	p.Q1029*	26%	n.a.
38	DNMT3A	2p23.3	c.2225G>C	p.R742P	17%	n.a.
38	CEBPA	19a13.11	c.868G>T	p.E290*	16%	n.a.
38	SF3B1	2n33 1	c 1874G>T	n R625I	16%	na
20		2000.1	0.10140×1	p E164K	110/0	n.a.
20		2020.0			70/	n.a.
38	RUNXT	21022.12	C.//2G>A	p.A2581	1%	n.a.
39	DNM13A	2p23.3	C.2635A>G	p.N879D	34%	M
39	PHF6	Xq26.2	c.946A>T	p.N316Y	32%	Μ
39	STAG2	Xq25	c.328C>T	p.R110*	26%	Μ
39	IDH2	15a26.1	c.419G>A	p.R140Q	25%	Μ
39	BCORL1	Xa26.1	c 4685G>T	n S1562	22%	М
30	BCOR	Xq20.1 Xn11 /	c 1005dupC	p.S10021	10%	M
40	BCODI 4	Xp11.4	$\frac{0.700000000}{0.7715}$	p.000013 40	200/	NA
40		∧y∠0.1		4.04P	30%	
40	IKZE1	7p12.2	C.4821>C	p.L161P	28%	M
41	NPM1-B	5q35.1	c.863_864insCATG	p.W288fs*12	32%	M
41	KDM6A	Xp11.3	c.1063C>T	R355*	27%	M
41	FLT3	13q12.2	c.2516A>C	p.D839A	23%	М
41		15026 1	c 419G>A	n R1400	14%	M
11		12012 2	0.75224	D 28/5C	100/	M
41	PLIS	13012.2	C.2033A>G	p.R645G	10%	
42	DINM13A	2p23.3	C.1019081G	p.0340Lts^5	40%	IVI
43	DNMT3A	2p23.3	c.2645G>C	p.R882P	45%	Μ
10		12~12.2	c.1734_1781dupGGTACAGGTGACCGGCTCCTCAG	p.F594insLVQVTG	1 40/	
43	FLIS	13412.2	ATAATGAGTACTTCTACGTTGATTT	SSDNEYFYVDF	14%	m
44	STAG2	Χα25	c.328C>T	p.R110*	96%	М
44	CBI	11023 3	c 1259G>A	n R4200	77%	M
11		2n23.3	c 1627G>T	p.G543C	50%	M
44		2023.5	0.1027021	p.00400	400/	
44		2434		p.R1320	49%	IVI M
45	IEI2	4q24	c.736dupA	p.1246Nfs^8	94%	M
45	SRSF2	17q25.1	c.284C>A	p.P95H	57%	Μ
45	NPM1	5q35.1	c.860_863dupTCTG	p.W288Cfs*12	47%	M
46	TET2	4a24	c.3866G>A	p.C1289Y	83%	Μ
46	IAK2	9n24 1	c 1849G>T	n V617F	35%	M
17		4a24	c 2782C> A	p.10171	0.0%	N/
47		4424	- 0040 T	- DOCI	50%	
47	SKSFZ	17q25.1	C.284C>1	p.P95L	53%	IVI
47	RUNX1	21q22.12	c.319C>T	p.R107C	43%	Μ
47	RUNX1	21q22.12	c.494_497delinsTCTGT	p.G165Vfs*48	39%	M
47	PTPN11	12q24.13	c.181G>T	p.D61Y	11%	m
47	PTPN11	12a24 13	c 226G>A	n F76K	8%	m
17	DTDNI11	12q2/13	c 1724	n N58V	8%	m
41		12924.15	0.172021	p.14006\/fo*17	460/	nn 0
40		4yz4			40%	II.d.
48	NPM1	5q35.1	c.860_863dup1C1G	p.W288Cfs^12	35%	n.a.
49	CUX1	7q22.1	c.4035G>C	p.E1345D	48%	n.a.
49	TET2	4q24	c.992delT	p.I331Nfs*16	44%	n.a.
49	NPM1-A	5q35.1	c.860_863dupTCTG	p.W288Cfs*12	38%	n.a.
49	PHF6	Xa26.2	c.454G>T	p.E152*	20%	n.a.
49	GATA2	3021 3	c 1163T>C	n M388T	18%	na
	J			n K160 K161deline	1070	
49	PHF6	Xq26.2	c.480_481delinsTT	N*	8%	n.a.
50	גחטו	15026 1	c 515C> A	n D1704	220/	n n
50		13420.1		p.n.172n	JZ 70	11.d.
50	KUNX1	z1q22.12	0.000_009INSGC010	p.m190KIS-23	18%	n.a.
51	SRSE2	17a25 1		p.95_103delPPDSH	35%	М
01		17920.1	0.204_001 00100000001 01 01 01 001001 00 000000	HSRR	0070	
52	SRSF2	17q25.1	c.284_307delCCCCGGACTCACACCACAGCCGCC	p.P95_R102del	15%	n.a.
52	CBL	11q23.3	c.1100A>C	p.Q367P	12%	n.a.
52	GATA2	3q21.3	c.488C>T	p.A163V	11%	n.a.
52	CSF3R	1p34.3	c.2395T>C	p.S799P	10%	n.a.
53	RUNY1	21022 12	c 472T>G	n F158\/	44%	M
52	SE2P4	2022 1	0.412120 0.1086C>A	p.1 100 V	270/	M
55	OF JD I	2433.1		p.002Q	31%	
53		21022.12		p.L1/5_11/60up	30%	IVI
53	FLI3	13q12.2	C.25U3G>1	p.D835Y	18%	m
53	CBL	11q23.3	c.1151G>A	p.C384Y	8%	m
54	SF3B1	2q33.1	c.1997A>C	p.K666T	47%	n.a.
				p.K602insREYEYD	0.407	
54	FLI3	13q12.2	C.1784_1804dupGAGAATATGAATATGATCTCA	LK	24%	n.a.
55	ZRSR2	Xn22.2	c.515G>A	n.C172Y	8%	М
56		8a24 11	c 2 3insCCGAGAG	n M1lfs*12	13%	M
50		12012 0		D025N	200/	
51	rlið Do	13412.2		มาตรอน	30%	
28	п.а.	n.a.	n.a.	n.a.	n.a.	n.a.
59	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
60	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Supplemental Table S3. Response rates and overall survival according to the mutation status as indicated.

	CR/PR/ALE n (%)	CR/PR/ALE vs SD/PD/ED <i>P-value</i>	Median OS (months)	P-value	
>3 mutated genes (n=18) *	9 (53%)	-	3.6	-	
≤3 mutated genes (n=27)	12 (44%)	0.76	4.3	0.74	
Minor subclone (n=9)	5 (56%)	-	2.9	-	
No minor subclone (n=24)	10 (42%)	0.70	5.0	0.05	
<i>TP53</i> mut or minor subclone (n=16)	8 (50%)	-	2.8	-	
<i>TP53</i> wt and no minor subclone (n=17)	7 (41%)	0.73	5.6	0.01	
* In 1 patient best response was not evaluable					