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Purpose: Subject-tailored parallel transmission pulses for ultra-high fields
body applications are typically calculated based on subject-specific B+1 -maps of all
transmit channels, which require lengthy adjustment times. This study investigates the
feasibility of using deep learning to estimate complex, channel-wise, relative 2D B+1 -maps
from a single gradient echo localizer to overcome long calibration times.
Methods: 126 channel-wise, complex, relative 2D B+1 -maps of the human heart from 44
subjects were acquired at 7T using a Cartesian, cardiac gradient-echo sequence obtained
under breath-hold to create a library for network training and cross-validation. The deep
learning predicted maps were qualitatively compared to the ground truth. Phase-only
B+1 -shimming was subsequently performed on the estimated B+1 -maps for a region of
interest covering the heart. The proposed network was applied at 7T to 3 unseen test
subjects.
Results: The deep learning-based B+1 -maps, derived in approximately 0.2 seconds, match
the ground truth for the magnitude and phase. The static, phase-only pulse design per-
forms best when maximizing the mean transmission efficiency. In-vivo application of
the proposed network to unseen subjects demonstrates the feasibility of this approach:
the network yields predicted B+1 -maps comparable to the acquired ground truth and
anatomical scans reflect the resulting B+1 -pattern using the deep learning-based maps.
Conclusion: The feasibility of estimating 2D relative B+1 -maps from initial localizer scans
of the human heart at 7T using deep learning is successfully demonstrated. Because
the technique requires only sub-seconds to derive channel-wise B+1 -maps, it offers high
potential for advancing clinical body imaging at ultra-high fields.
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1 INTRODUCTION

Magnetic resonance imaging (MRI) at ultra-high fields
(UHF) provides ample opportunities for imaging the
human body because of an intrinsic gain in signal-to-noise
ratio (SNR), a higher chemical shift, and in many cases, a
stronger contrast.1 However, the shortened radiofrequency
(RF) wavelength within the tissue at 7T and the resulting
constructive and destructive interference of the transmit
(Tx) magnetic fields (B+1 ) can lead to spatially nonuniform
distributions of the flip angle (FA) and contrast, as well
as to local signal dropouts.2 Such effects reduce the diag-
nostic value of UHF MRI3 when relying on conventional
single-channel transmission imaging, especially when tar-
geting the human body.

Parallel transmission (pTx) in combination with
multi-Tx coils allows to spatially shape the amplitude and
phase of B+1 -distributions in the human body2,4–7 using
dedicated RF pulses. Such pTx methods can be divided
into (1) calibration-free methods, which do not require
additional calibration before the actual measurement, and
(2) subject-tailored approaches.

A straight forward calibration-free pTx technique
would be to drive all Tx channels with a fixed B+1 -phase
(amplitude) setting for all subjects. The used shim vec-
tor is often calculated from electromagnetic simulations
for a given target volume.8,9 To reduce remaining con-
trast variations, the TIAMO method10 acquires multiple
scans with different shim settings at the cost of doubling
the acquisition time. The application of pre-computed uni-
versal pulses, originally developed for the human head,11

is a data-driven, calibration-free method and it has been
recently demonstrated in the body at 7T.12 Universal
pulses and fixed B+1 -phase approaches typically come at
the expense of reduced FA homogeneity as compared to
subject-tailored solutions that optimize pulses for every
individual subject.11–13

Subject-tailored pTx pulses are typically calculated
based on subject-specific B+1 -maps of all Tx channels,
which require potentially lengthy adjustment times at the
beginning of the study. Although rapid 3D B+1 -mapping
of the entire brain at 7T can be achieved within only
40 seconds or less for 8 Tx channels,13 the acquisition in
the body is challenging. Scan times in the thorax can be
substantially longer because of the larger field of view
(FOV) and different sources of motion.14 Furthermore,
some of the faster techniques applied to the brain, such
as DREAM15 or Bloch-Siegert based mapping,16 cannot
be transferred straightforwardly to the body because of
the sensitivity to blood flow or high RF power levels
required at 7T, therefore, leaving only a few options for
B+1 -mapping in the human body. Several works have used
B+1 -mapping methods in a slice-selective manner to limit
scan times to acquire the data within a breath-hold of

fewer than 20 seconds.10,15,17,18 However, when FA opti-
mization over a 3D volume is desired, multi-slice 2D or 3D
B+1 -maps with scan times of more than 3 minutes19 need to
be acquired, requiring multiple breath-hold scans or free
respiratory navigation. Recent preliminary work showed
fast B+1 -mapping based on pre-saturated TurboFLASH
sequences20–22 in under a minute. However, reconstruc-
tion times of at least 8 minutes were needed. In addition
to the time required for mapping and reconstructing B+1 ,
further calibration time is necessary for the RF pulse calcu-
lation, which depends on the complexity of the desired FA
pattern. In total, an overall calibration time of more than
10 minutes is not uncommon for the human body in prac-
tice, which is one of the major drawbacks of UHF body
MRI in clinical applications.

In recent works, deep learning (DL) techniques have
shown promising results in reducing the RF pulse calcu-
lation times.23–25 Vinding et al.23 proposed a DL-based RF
pulse design for high-FA 2D RF pulses at 7T with a pulse
prediction time of under 10 milliseconds. Furthermore,
different neural networks have been suggested to approxi-
mate channel-combined or channel-wise B+1 -distributions
in various application scenarios.25–29 Abbasi-Rad et al.28

reduced the specific absorption rate (SAR) in T2-FLAIR
imaging at UHF in the human head by determining a
scaling factor for adiabatic RF pulses from a predicted
channel-combined B+1 -magnitude. Plumley et al.29 pre-
sented a system of conditional generative adversarial net-
works to predict how rigid motion changes complex,
channel-wise B+1 -distributions in the head. This frame-
work is highly suited for real-time pTx pulse re-design,
but requires the initial channel-wise B+1 -maps. Eberhardt
et al.25 used B+1 -maps of only some of the 16 Tx chan-
nels of a 7T head coil and applied image-to-image trans-
lation networks to augment the data to a complete set
of channel-wise B+1 -maps in the head. This approach
achieved comparable FA homogenization results to those
obtained from a full calibration data set if half of the
Tx-channel-wise B+1 -maps were acquired.25 Nevertheless,
the need to substantially reduce the calibration time in
the human body at 7T to a duration comparable to typical
adjustment times of clinical scans of a few seconds remains
unanswered. Yet, all recent DL techniques focused on the
human brain or still needed a significant amount of input
information.

In this proof-of-concept study, we reduce the time to
obtain subject-specific B+1 -maps for subject-tailored car-
diac pTx at 7T to a minimum. This is achieved by deriv-
ing complex, relative, channel-wise 2D B+1 -maps of 8
Tx channels from a single gradient-echo (GRE) localizer
scan obtained in a combined 1-Tx mode with 32 receive
(Rx) channels using DL. Because such localizer scans are
acquired anyway for planning at the beginning of the
session, this approach does not add any additional scan
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time for B+1 -mapping. B+1 -phase shimming vectors are cal-
culated based on the estimated B+1 -maps for a region of
interest (ROI) covering the heart, and the predicted (PR)
channel-wise B+1 -maps and resulting shimmed B+1 -fields
are tested against the ground truth (GT). Finally, the feasi-
bility of this approach is demonstrated in vivo.

2 METHODS

The proposed method of this work is to replace the
B+1 -mapping step for subject-tailored pTx at 7T by a DL
estimation approach. The neural network was trained on
acquired localizer data serving as input and the corre-
sponding B+1 -maps as GT. The performance of the network
was assessed by calculating B+1 -phase shimming vectors
based on the PR data and by an in-vivo application.

2.1 Hardware and setups

All data were acquired on a 7T whole-body MRI scan-
ner (Magnetom 7T, Siemens, Erlangen, Germany) with
an 8-channel transmit array and a whole-body gradient
system using a commercial 32-element (8 dipoles and 24
loops) body coil array (MRI.TOOLS, Berlin, Germany).
The coil comprised of two halves, a posterior and an ante-
rior, each containing 16 elements. In the transmit case,
the 32 elements were driven in an 8 Tx mode, in which
four elements (1 dipole and 3 loops arranged along the
dipole) were combined with hardware-fixed RF phases. In
the receive case, all 32 elements operated independently
using the 32 Rx channels of the system. The subjects
were scanned in a supine position with the heart in the
isocenter.

Reconstruction of the complex localizer data, manual
selection of 2D heart and thorax ROIs, and static pulse
design was carried out on a separate workstation (12 cores
with 2.1 GHz, 128 GB RAM) using a custom-built toolbox
written in MATLAB (Version 2020a, The MathWorks, Nat-
ick, MA, USA). The prediction of the relative B+1 -maps
using the suggested neural network was executed within
the Google Colab environment (Google LLC, Mountain
View, CA, USA).

2.2 Data acquisition and processing

For the proposed neural network, 2 libraries containing
complex localizers as input and channel-wise B+1 -maps
as GT (Figure 1A) of healthy subjects were included in
this study following approval of an internal review board
and after written and informed consent. A performance
library used for cross-validation comprised of 44 subjects
(age: 34± 11 years, max/min: 66/21 years; body mass index

(BMI): 23.79 kg/m2 ± 3.10 kg/m2, max/min: 34/19 kg/m2,
skewness: 0.96; male/female: 27/17), whereas an applica-
tion library was used for in-vivo application.

For the input of the neural network, a GRE localizer
was acquired with all Tx channels transmitting with the
default phase setting (i.e., an RF phase optimized by the
vendor based on electromagnetic simulations for the heart
and aorta). However, the performance of this default set-
ting depends on the size and shape of the human body
and may yield destructive interferences in the heart.6 The
parameters for this protocol were as follows: nominal FA =
15◦, TE = 2.87ms, TR = 5.17ms, TA = 496.32ms, FOV =
(384 × 384)mm2, resolution = (4 × 4)mm2, slice thickness
= 4mm, slice distances= 20mm, flow compensation along
slice/readout direction, no parallel imaging, no partial
Fourier applied.

Subsequently, the same acquisition was repeated eight
times using identical parameters with only a single Tx
channel active per measurement. The active channel was
incremented across scans. Following the approach by van
de Moortele et al.,19,30 channel-wise, relative 2D B+1 -maps
(i.e., an absolute scaling factor of the maps was unknown)
were calculated using these eight measurements. These
maps served as the neural network’s GT. Although this
fast technique provides only relative B+1 -maps, it has been
demonstrated to be highly suited for multiple body appli-
cations in UHF imaging, including static7 and dynamic
pTx for cardiac MRI.6,31,32 Unlike in previous works,6,32,33

the phase distributions were not calculated relative to one
channel, but instead relative to the phase of the super-
imposed complex data of transmit channels 2, 3, and 4,
which are located posterior and anterior to the subject.
This resulted in a sufficient B+1 -magnitude in the heart
for the reference signal, ensuring smooth, complex-valued
data. The nine GRE acquisitions (one localizer and eight
for B+1 -mapping) were obtained transversal in all subjects
for 3 slice locations with 20 mm distance. In some sub-
jects, the top or bottom slice contained only a small section
of the apex or atria. For four subjects, one affected slice
was not included in the final data set. Only one slice was
available in one case. As a result, the performance library
for cross-validation of the neural network comprised 126
slices, including the complex, 2D localizer data from 32 Rx
channels and relative, channel-wise, 2D B+1 -maps from 8
Tx channels (Figure 1A).

The data were pre-processed as follows: real and imag-
inary parts of the 32 Rx-channel-wise localizers and 8
calculated Tx-channel-wise B+1 -maps were separated. Nor-
malization by the maximum absolute value of the com-
plex localizer for the input and the maximum absolute
value of the complex B+1 -distribution for the GT was con-
ducted to ensure a comparable dynamic range in the com-
plex data across different subjects between 0 and 1. The
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F I G U R E 1 (A) Data structure for the
input and output of the proposed neural
network. The recieve (Rx) -channel-wise
localizer data is split up into real and
imaginary part, and the corresponding
localizer magnitude image is used as the
input. This results in an overall input size of
96× 96× 65. Similarly, the ground truth
transmit (Tx) -channel-wise B+1 -maps are
split up into real and imaginary data and
arranged to a size of 96× 96× 16. (B) The
architectural structure of the proposed deep
convolutional neural network. Each stage in
the encoder consists of a max pool layer, two
3× 3 convolutions with a batchnorm (BN),
and a LeakyReLU activation function. The
decoder is split into eight decoder pipelines
for each Tx channel of the B+1 -output. The
decoder pipelines are similar to the encoder,
the max pool is replaced by a 2× 2 up
convolution. Skip connections and dropouts
are included.

(A)

(B)

32 Rx-channel-wise localizer slices in the image domain
were used as input for the network leading to an overall
input size of 96× 96× 65, i.e., the 32 real, 32 imaginary
Rx-channel-wise localizers, and one magnitude image
using the root-sum-of-squares across all Rx channels.

Correspondingly, the 8 Tx-channel-wise B+1 -maps
resulted in a size of 96× 96× 16 serving as GT. The
sum-of-magnitudes (SOM) of the B+1 -maps were used to
manually select a binary mask (ROI1) covering the thorax
for every slice and subject. This mask was then multiplied
pixel-wise with the input and output data to suppress the
noise signal outside the thorax. This step was repeated for
another mask (ROI2) covering the heart to be used for
static pulse design and quantitative evaluation.

2.3 Network architecture and model
evaluation

The proposed neural network was based on a modi-
fied version of the established 2D UNet architecture34,35

to predict complex, Tx-channel-wise, 2D B+1 -maps from
complex, Rx-channel-wise 2D localizer data (Figure 1B).
This architecture is suitable for a plethora of applica-
tions, for example, image reconstruction,36,37 quantita-
tive parameter mapping,38,39 and artifact correction.37,40

The chosen architecture comprised four encoding stages,

each including a 2× 2 max pooling layer (downsampling)
and 2 repetitions of 3× 3 convolutions, batch normaliza-
tions, and LeakyReLU activation functions. For decoding,
the structure was split into eight parallel pipelines, with
one output B+1 -map for each Tx channel connecting the
32-Rx-channel localizer input data with an overall input
size of 96× 96× 65 with the corresponding 8 Tx channel
B+1 -maps with an overall size of 96× 96× 16. Each decoder
stage included a 2× 2 up convolution layer (upsampling),
2 repetitions of 3× 3 convolutions, batch normalizations,
and LeakyReLU activation functions. The number of out-
put filters was set to 32 in the first and last layer and was
doubled/halved per encoding/decoding stage, up to a max-
imum of 512 filters. The network used skip connections
between corresponding stages to reduce spatial resolution
losses and avoid vanishing gradients.41 To minimize over-
fitting, dropout layers were used for regularization with an
increasing dropout rate per stage.

The neural network was implemented in Python 3.8.3
using Tensorflow 2.2.042 and trained on a 24 GB NVIDIA
Titan RTX on-premise. Encoder-decoder models typically
rely on minimizing an L1- or L2-loss between PR and
GT image, which introduces an asymmetry in the loss
function regarding magnitude and phase. In contrast, the
proposed model relies on a symmetric loss to achieve bet-
ter performance for the training process.43 This ⊥− loss is
defined as:

 15222594, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29510 by M

ax-D
elbrueck-C

entrum
, W

iley O
nline L

ibrary on [27/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1006 KRUEGER et al.

⊥(x, y) = P(x, y) + L1(|x|, |y|), (1)

with P(x, y) = |Re(x)Im(y)−Im(x)Re(y)|
|y|

for two vectors x and y.
The minimization was conducted using the ADAM

optimizer. For better convergence, a decaying learning
rate44 was used: LR𝑗 = 1 × 10−4e−0.99944(𝑗−1) for the j-th
epoch to achieve a decrease in the learning rate of one
magnitude after 4000 epochs. The model was trained for
4000 epochs with a batch size of 2, leading to a training
time of approximately 240 min. The code for implement-
ing the neural network, the network weights, the data
libraries, and pulse design and analysis algorithms can
be downloaded from https://github.com/felixkrueger90/
DeepB1.

The quality of the PR B+1 -maps (i.e., its resemblance to
the GT) was evaluated via image quality metrics assessed
through the root-mean-squared error (RMSE) and struc-
tural similarity index measure (SSIM) performed on the
ROI1-masked thorax data. A 5-fold cross-validation was
carried out on the entirety of the performance library
(Figure 2A) to evaluate the model’s generalization per-
formance on all thorax geometries. First, all data were
randomly shuffled at the subject level and split into 5 sub-
sets containing 8/9 subjects each. Therefore, every subject
is included in only one of the subsets. One subset is kept
as unseen test data, and the other 4 are used for network
training. This process was repeated five times, with each
subset being the test data once. For every data split, approx-
imately 20% of all 44 subjects (8/9 subjects) were used for
testing and 80% (35/36 subjects) for training.

2.4 Pulse design and analysis

To assess the suitability of the network for calculating
optimized excitations in the body at 7T, B+1 -phase shim-
ming was carried out based on the DL predicted maps.
Shimming was performed by determining a shim vector
bTx =

(
ei𝜑1 , · · · , ei𝜑8

)T that is applied to the individual PR
B+1 -maps with 𝜑i being the transmit offset phase for chan-
nel i. The optimization was executed regarding three cost
functions based on the Tx-channel-wise B+1 -maps, super-
imposed by ROI2 covering the heart. The cost functions
were optimized using the fmincon constraint optimization
function in MATLAB with the constraint that the ampli-
tudes of b equal 1. The first cost function was based on the
coefficient of variation (CV),6 which is a surrogate for the
spatial homogeneity of the combined B+1 -field:

CV =
SD

(
|
|
|

∑NTx
Tx=1B̂+1,TxbTx

|
|
|

)

mean
(
|
|
|

∑NTx
Tx=1B̂+1,TxbTx

|
|
|

)

|
|
|
|
|
|
|ROI

, (2)

where SD is the spatial standard deviation and NTx is the
number of independent Tx channels (i.e., 8 for our case).
When minimizing the CV, the resulting homogeneous B+1
-shim vector is denoted by bHom. The second cost function
aimed to maximize the mean transmit efficiency η 6,7,19 to
obtain the phase shim setting bEff with highly constructive
interference:

η = mean
⎛
⎜
⎜
⎝

|
|
|

∑NTx
Tx=1B̂+1,TxbTx

|
|
|

∑NTx
Tx=1

|
|
|
B̂+1,Tx

|
|
|

⎞
⎟
⎟
⎠

|
|
|
|
|
|
|ROI

. (3)

In some cases, maximizing the transmit efficiency yielded
highly localized signal dropouts, particularly when the
ROI was large. A modified cost function was used to over-
come this effect that aimed to fix the mean efficiency
within the ROI to a user-defined target value ηtar :

ηfix = mean
⎛
⎜
⎜
⎝

|
|
|
|
|
|
|

|
|
|

∑NTx
Tx=1B̂+1,TxbTx

|
|
|

∑NTx
Tx=1

|
|
|
B̂+1,Tx

|
|
|

− ηtar

|
|
|
|
|
|
|

⎞
⎟
⎟
⎠

|
|
|
|
|
|
|ROI

. (4)

This strategy yielded a trade-off between a homogeneous
and an efficient B+1 -field, typically avoiding dropouts.
According to our experience, it is beneficial for car-
diac MRI applications. Therefore, as a third optimization
problem, the shim setting bEnf was applied with ηtar = 0.5 .

To access the quality of the PR B+1 -maps and the fea-
sibility of the approach in context of a subject-specific
calibration, the B+1 -shim vectors bHom, bEff, and bEnf were
calculated based on the PR B+1 -maps. The shim vectors
were then applied to both the PR and GT B+1 -maps to gen-
erate the combined B+1 -map when all Tx channels transmit
together. These combined maps based on the GT and PR
were quantitatively compared for all three settings and
the default shim bDef in terms of CV and mean efficiency
optimized for ROI2 covering the heart.

2.5 Experimental application

The application library was acquired for in-vivo appli-
cation of the proposed approach. The library con-
tained three subjects (1 female/ 2 male, 28/32/40 years,
19/23/26 kg/m2) who underwent the same protocol as the
volunteers of the performance library. For B+1 -prediction,
a separate neural network was trained on all thorax
geometries from all subjects of the performance library.
Therefore, a second 5-fold cross-validation was performed
(Figure 2B), where the 126 slices from all 44 subjects were
split randomly into 5 subsets at the slice level. In contrast to
the first cross-validation, not all slices from a single subject
were contained in one subset. Therefore, the same subject
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F I G U R E 2 Workflow of the 5-fold
cross-validation. Here, the initial data sample
consists of 15 subjects (S1-S15) with three slices
each. Slices from the same subject are tagged
with the same color, whereas the central slice
within one subject is marked with one and the
upper slice with two dots. (A) For performance
evaluation, the data is randomly shuffled at the
subject level. The shuffled data is partitioned into
five equal subsets. For each data split, one subset
is used as the test data, whereas the remaining
subsets are used for training the model. This is
repeated five times leading to five different
neural networks (NN). (B) For the in-vivo
application, the process is adapted. The shuffling
is carried out at the slice level, meaning slices
from one subject can simultaneously be used for
testing and training. This ensures that the
network is trained on all thorax geometries.

(A)

(B)

(but different slices) may be used for testing and training
simultaneously. This approach ensured that the result-
ing networks were always trained on all thorax geome-
tries, except for the subject, which contained only 1 slice.
Subsequently, the network leading to the highest SSIM
when evaluating the corresponding test data is applied to
the three subjects of the application library. In addition,
B+1 -shimming was performed based on the PR B+1 -maps
using the same optimization functions described above.

3 RESULTS

This section demonstrates the prediction of channel-wise
2D B+1 -maps from an initial localizer for the heart at 7T
using DL. The process takes under 1 second to derive the
PR maps. The cross-validation results for unseen test cases
are provided. The validity of the approach is exemplified
by different phase-only B+1 -shim vectors calculated for the
PR and successive in-vivo acquisition using the introduced
calibration pipeline.

3.1 Model evaluation and selection

Table 1 contains the quantitative differences between
the PR and the GT channel-wise B+1 -maps. Five neural

networks were assessed for the corresponding subsets of
the 5-fold cross-validation concerning the RMSE, SSIM,
and symmetric loss. For example, the PR maps for unseen
test subset 2 generated by network 2 yield a mean symmet-
ric loss value of 0.0172, a mean RMSE value of 0.0438%,
and a mean SSIM value of 0.7638 (Table 1). Similar results
are observed for all five networks of the cross-validation.
Network 2 yields the lowest mean value in the symmet-
ric loss, the second lowest mean value in the RMSE, and
the highest in the SSIM. Therefore, network 2 is selected
for the performance analysis. The boxplot in Figure 3
depicts the performance of network 2 on all unseen slices
from subset 2 regarding the RMSE (Figure 3A) and SSIM
(Figure 3B). The performance of the network varies among
slices ranging from 0.0314% to 0.0615% for the RMSE and
from 0.7024 to 0.8195 for the SSIM. As representative
examples, three of the 26 unseen test cases are visualized
in the following with a high SSIM value of 0.7825 (example
1), a medium value of 0.7552 (example 2), and a low value
of 0.7218 (example 3).

3.2 Evaluation of image quality

Figure 4 shows the channel-wise PR compared to the GT
B+1 -maps for unseen example 1. The results for exam-
ples 2 and 3 are provided in the Supporting Information
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1008 KRUEGER et al.

T A B L E 1 RMSE, SSIM, and symmetric loss values obtained from the evaluation of the five NN applied to the corresponding five test
subsets when performing a 5-fold cross-validation. The BMI distribution is given for every test set and the corresponding training data.
Network 2 evaluated on subset 2 (highlighted in bold) is used for further assessment because it results in the highest mean SSIM.

NN

Training BMI
mean± SD
(kg/m2) Tested on

Test BMI
mean± SD
(kg/m2)

RMSE
mean± SD (%)

SSIM
mean± SD

Symmetric loss
mean ± SD

1 23.57± 3.19 Subset 1 23.99± 2.60 0.0440± 0.0064 0.729± 0.049 0.019± 0.003

2 24.06± 3.11 Subset 2 22.12± 2.43 0.0438± 0.0067 0.764± 0.033 0.017± 0.002

3 23.42± 2.72 Subset 3 24.53± 4.08 0.0435± 0.0096 0.727± 0.051 0.019± 0.004

4 23.48± 3.21 Subset 4 24.37± 2.43 0.0449± 0.0063 0.734± 0.030 0.019± 0.002

5 23.76± 3.10 Subset 5 23.15± 3.01 0.0518± 0.0084 0.728± 0.030 0.020± 0.004

Abbreviations: BMI, body mass index; NN, neural network, RMSE, root-mean-square error; SD, standard deviation; SSIM, structural similarity index measure.

(A) (B) F I G U R E 3 Boxplots summarizing the
root-mean-squared error (RMSE) (A) and
the structural similarity index measure
(SSIM) (B) for all unseen test cases of subset
2 predicted by network 2. Three
representative examples with a high SSIM
value of 0.7825 (example 1), a medium value
of 0.7552 (example 2) and a low value of
0.7218 (example 3) are marked separately
and used for further assessment.

(Figure S1 and Figure S2). Qualitatively, the channel-wise
PR matches the GT data not only for the magnitude,
but especially for the phase distributions, which is a key
requirement for subsequent pTx applications. A more
detailed inspection of the magnitude difference ΔB+1 (last
columns in Figure 4) reveals larger differences in the chest
region closer to the coil at Tx channels 1 and 8 compared to
the other channels. This observation is consistent among
subjects. A similar observation is not made with elements
closer to the spine.

The observed match is further supported in Figure 5,
showing a detailed view (Figure 5A) and a quantitative
comparison (Figure 5B,C) between the PR and GT data
for the third and fourth Tx channel for example 1. Line
plots for cross-sections through the heart for magnitude
and phase of the DL predicted (black) and measured
(red) B+1 -maps are displayed. Although the magnitude
and phase of the PR distributions follow the GT, sud-
den changes or edges (e.g., in the phase) are reflected
less accurately by the prediction. This is not unexpected
because neural networks minimizing distance metrics
tend to smooth the data.45 The mean error for the magni-
tude (nRMSE, definition Plumley et al.29 ± SD) averaged
over the cross-section amounts to 5.90%± 8.87% for Tx

channel 3 and 0.41%± 1.01% for Tx channel 4, whereas
the mean phase differences are 0.37 rad± 0.38 rad for Tx
channel 3 and 0.43 rad± 0.50 rad for Tx channel 4.

Similar results can be observed when the eight
B1

+-maps are combined for the three unseen test cases
(Figures 6 and Supporting Information Figure S3). The
network yields a prediction for example 1 with a mean
error for the SOM over the heart of 0.69%, for the mag-
nitude of the complex sum (MOS) of 3.86%, and with a
mean difference in the phase of the complex sum (POS) of
0.015 rad. The pattern, i.e., the local signal dropouts and
the corresponding phase wraps in the heart are approxi-
mated accordingly (see yellow arrows).

3.3 B1
+-shimming performance

Figure 7 depicts the B+1 -shimming results for the three
unseen test cases (examples 1–3) after calculating three
B+1 -shim vectors based on the PR B+1 -maps that are applied
to the PR and GT B+1 -maps. The results are shown for
the default shim setting bDef (Figure 6), homogenous shim
bHom, efficiency setting bEff, and the shim setting bEnf,
when enforcing the mean efficiency to 50%.
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KRUEGER et al. 1009

F I G U R E 4 B+1 -magnitude and phase maps for the prediction
of the neural network B+1 PR compared to the GT B+1 GT for the unseen
example 1 with a high structural similarity index measure value. The
absolute error ΔB1

+ between the prediction and ground truth shows
a higher residual error for the first transmit (Tx) channel and the
eighth channel as compared to channels 2–7. Overall, the prediction
qualitatively matches the GT for both the magnitude and the phase.

The default setting bDef (left column of Figure 7) cal-
culated based on electromagnetic simulations yields dif-
ferent magnitude distributions among subjects, demon-
strating the need for optimized pTx excitations. How-
ever, both PR and GT B+1 -maps show visually consistent
results for all three subjects. Although bHom, tends to
improve the homogeneity to the cost of lower magnitude
values, the efficiency shim bEff leads to higher ampli-
tudes but at the expense of stronger spatial B+1 -variation.
In contrast, the enforced shim bEnf causes lower mean
efficiency but also less pronounced dropouts, as seen
in the bEff results. Importantly, all such features are
always reflected by both the GT and PR maps. This
high level of visual agreement among PR and GT maps
is observed independently of the example and applied
shim.

To investigate this agreement in more detail, a quanti-
tative evaluation for the settings bHom and bEff are shown
in Figure 8 for all 26 test cases of subset 2. When calculat-
ing a homogenous shim based on the PR maps (Figure 8A)
the mean CV decreases from 43.5% (range = 18.7%–55.9%)
to a value of 17.2% (range = 7.4%–29.0%). The mean
decreases from 39.6% (range = 25.0%–54.6%) to 34.2%
(range = 24.9%–54.6%) when applying bHom to the GT.
Those CV values are overall higher for the GT com-
pared to the PR case, but the CV values after shimming
for both are lower than compared to bDef. For the effi-
cient shim bEff, the mean efficiency increases from a
mean value of 47.1% (range = 37.9%–57.2%) to a value
of 68.3% (range = 63.0%–88.4%) for the PR maps. When
applying the same vector to the GT, the mean efficiency
increases from 46.4% (range = 37.2%–53.3%) to 62.5%
(range = 48.3%–78.6%), leading to similar results for the
GT and PR data.

3.4 Performance of the neural network
in unseen test cases

Figure 9 illustrates the FA prediction for the measured
channel-combined B+1 -maps, the reconstructed 2D GRE
image, and cardiac 2D cine GRE for the unseen test case
1 acquired with the corresponding pulses designed on the
PR B+1 -maps. Qualitatively, a close match between FA pre-
dictions, the 2D GRE images, and cardiac cine images is
observed, demonstrating the feasibility of the DL-based
calibration approach. Similar results are obtained for
two other subjects, illustrated in Supporting Information
Figure S4. The results of the 5-fold cross-validation using
all thorax geometries are provided in Supporting Informa-
tion Table S1.

4 DISCUSSION

This work presents a novel, fast DL-based approach for
obtaining relative B+1 -maps in the human heart at 7T,
addressing the urgent need for reducing B+1 -calibration
times in UHF body imaging. The data-driven approach
predicts the 2D B+1 -maps in 0.2 seconds per slice from 2D
localizer images typically acquired at the beginning of the
session for planning. Therefore, this approach could make
an additional B+1 -mapping scan obsolete. Although this
proof-of-principle is applied to estimate B+1 only in a 2D
slice, it may be extended toward multi-slice application
and potentially to 3D. Thereby, it may save several minutes
of calibration time and potentially several breath-holds.

Some related DL approaches in UHF imaging have
been recently reported for subject-specific calibration of
the transmit B+1 -fields.25–29 Abbasi-Rad et al.28 predicted
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F I G U R E 5 (A) Magnitude and phase
for the predicted (B+1 PR) and the ground truth
(B+1 GT) relative B+1 -maps for transmission
(Tx) channel 3 (anterior channel) and 4
(posterior channel) of example 1. The two
channels have been chosen because of their
high combined magnitude within the heart.
Vertical (dotted) and horizontal (solid)
profiles of the phase and magnitude for the
deep learning predicted (black) and ground
truth (red) 2D B+1 -maps are provided for Tx 3
(B) and Tx 4 (C).

channel-combined B+1 -magnitudes from a standard local-
izer to determine a FA scaling factor for adiabatic RF
pulses. Plumley et al.29 used DL to predict the complex,
channel-wise B+1 -maps of an 8 Tx channel head coil after
motion based on an initially acquired set of B+1 -maps. Eber-
hardt et al.25 used a 2-to-16-fold under-sampled set of
B+1 -maps for a 16 Tx channel head coil and used neural net-
works to augment a full set of 16 complex, channel-wise
B+1 -maps. The presented work, in contrast, derives a com-
plete set of complex, channel-wise B+1 -maps of an 8 Tx
channel body coil from an initial localizer image and
applies the technique to the human body at 7T.

The proposed network is based on a standard UNet
architecture and translates complex, 32 Rx-channel-wise
localizers (B–

1) as input into complex, relative 8
Tx-channel-wise B+1 -maps. Early results of this study
showed that the magnitude data could be retrieved with
reasonable accuracy from the localizer. All features of
the magnitude B+1 -maps were approximated accordingly.
Only localized deviations were visible. The maps appear
smoothed, likely introduced by the loss function during
network training. The effect seems not to affect results or
hinder shimming applications because the spatial varia-
tion of B+1 is smooth. Estimating the Tx phase turned out
to be more difficult, which was also reported by Plumley
et al.,29 and particularly the loss function and reference RF

phase impacted the result. Although in a few cases very
localized residual phase prediction errors are still observed
at locations with rapidly changing phases or at singulari-
ties, an overall high similarity is observed between PR and
GT phase patterns. This property is a prerequisite for any
static and dynamic pTx applications.

The DL models were all trained on a considerably
larger set of maps from 44 healthy subjects compared to
previous work for the brain25,28,29 to account for stronger
inter-subject variations of the thorax geometry.12 How-
ever, a shift in the training data regarding different
property distributions (BMI, age, and gender) can lead to
a bias in the performance of the network. For example,
the performance was higher for subjects with smaller
BMI due to a skewed distribution of BMIs in the train-
ing library toward lower values. Because the BMI dis-
tribution in Germany is shifted toward higher values
(26.85 ± 4.95 kg/m2),46 simply increasing the data may
further amplify the bias. A selection from a more repre-
sentative sample of the general population is needed for
the training data. Furthermore, maps from patients may
need to be included to account for anomalies in the thorax
geometry.

When evaluating the pulse design with a phase-only
B+1 -shim setting optimized on the PR, all features in the
magnitude and phase match when applying the shim
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F I G U R E 6 Combined B+1 -maps for the unseen test case
example 1. The predicted (B+1 PR) and the ground truth (B+1 GT) data
are shown for the sum of magnitudes (SOM) over the 8 transmit
(Tx) channel, the magnitude of sum (MOS), and the phase of the
summed-up data (POS). When evaluating the region of interest over
the heart the average error is 0.69% regarding the SOM, 3.86% for
the MOS, as well as a mean difference for the POS of 0.015 rad. The
absolute error ΔB1

+ between the prediction and the ground truth is
presented. The signal dropouts and associated phase-wraps are
marked by the yellow arrows.

vectors. For the homogeneity shim setting bHom, the CV
on the GT is higher compared to the optimized PR for all
test cases, which is likely because of the smoothing effect
on the magnitude data for the PR. Nevertheless, the result-
ing CV values for the GT are lower for bHom than for the
default setting bDef. For some test cases (Figure 7, example
1), optimizing the homogeneity still leads to localized sig-
nal dropouts in the heart. This observation, however, is
consistent with our experience with previous studies that
apply B+1 phase shimming to the human heart. The same
observation is made in this work when relying on GT data
used for calibration. If comparing the channel-combined
PR and GT B+1 -maps after applying bEff or bHom, the match
was higher for the efficient than for the homogeneous
shim. The mean values for examples 1–3 regarding the
SSIM, when applying bHom, were lower (0.7412) than com-
pared to bEff (0.7569). Small phase deviations may explain
this because an error in the phase is expected to impact a
homogeneous shim more than an efficient shim.

Although this study successfully demonstrates the fea-
sibility of deriving complex multi-Tx-channel B+1 -maps
from localizer scans, the work is still subject to a few lim-
itations. In this proof-of-concept study, only a single RF
coil, a commercial body array coil with 32 elements (8
dipoles and 24 loop elements), has been used because this
is the only available multi-Tx-channel coil at our center
that can be applied in vivo. The same 32 elements are
used for transmission and reception when operating this

F I G U R E 7 Different B+1 -shimming
results for the three unseen test cases. The
default shim setting bDef, the homogeneous
shim bHom, the efficiency shim bEff, and the
enforced shim bEnf applied to the predicted
(B+1 PR) and the ground truth (B+1 GT) data are
shown for the magnitude of the complex
sum (MOS), and the phase of the complex
sum (POS). Dropouts using the default shim
are highlighted with yellow arrows.
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1012 KRUEGER et al.

F I G U R E 8 (A) Coefficient of variation
(CV) in the heart region of interest (ROI) for
the default shim setting bDef and the
homogenous shim setting bHom, optimized
on the generated B+1 -maps and applied to
the predicted (B+1 PR) and the ground truth
(B+1 GT) data. (B) Boxplot summarizing the
mean transmit efficiency in the ROI for the
default shim setting bDef and the
homogenous shim setting bEff, optimized on
the generated B+1 -maps and applied to the
predicted and the ground truth data.

F I G U R E 9 Flip angle (FA) prediction
for the measured channel-combined
B+1 -maps, the reconstructed 2D
gradient-echo (GRE) image, and cine GRE
for the unseen test case 1. The used parallel
transmission pulses for the default,
homogenous, and efficiency settings were
calculated on the deep learning-based
B+1 -maps. All test subjects were not part of
the cross-validation process.

coil. In the Tx case, four elements (1 dipole and 3 loops)
are combined with a fixed phase setting, whereas all ele-
ments acquire independently in the Rx case. This might
be beneficial for this type of application because the 8 Tx
B+1 -maps are derived from 32 Rx maps. Future investiga-
tions could also include other types of coils, for example,
pure 8 Tx/8 Rx transceiver body coil arrays. Furthermore,
the presented work investigates only 2D transversal slices,
but oblique slices are typically required for practical car-
diac applications. It is expected that changing the orienta-
tion will require new training data, and the performance
of the method in oblique slices may be different. However,
extending the method toward 3D coverage that allows FA
optimization over a 3D volume can be considered. Cover-
ing multiple slices of 2D transversal B1

+-maps is expected
to be feasible, for example, by relying on serial data pro-
cessing. The extension of this technique by estimating 3D

B+1 -maps from 3D localizer data may be more challenging
and requires further investigation.

As for other DL approaches, the performance of the
present technique depends on the type of training data
used. In the presented case, the GT B+1 -maps and, there-
fore, the PR were relative30 and biased by the square root
of the proton density.19 Despite this limitation, such maps
were chosen for this work because they have proven to per-
form well for various B+1 -shimming applications targeting
the human heart or body.7,31,32 Future work may include
the investigation of other B+1 -maps obtained by different
mapping techniques.

Although further investigations are needed to
investigate the full potential of this method, this
proof-of-principle study demonstrates the feasibility of
overcoming long calibration scans in a subject-specific
calibration pipeline using DL. Together with other DL
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KRUEGER et al. 1013

methods, this technique could serve as a plug-and-play
like calibration solution for UHF imaging.

5 CONCLUSION

This study successfully demonstrates that DL approaches
are highly suitable to predict 2D relative B+1 -maps from ini-
tial localizer scans in the human heart at 7T. The proposed
approach reduces the calibration time for subject-specific
pTx to less than a second. This work is expected to impact
the progress of UHF body applications, which are hin-
dered by stronger B+1 -variations compared to the brain
and by longer calibration times. Based on this approach,
a push-button in situ optimization embedded in the scan-
ner’s calibration routine may be feasible, potentially pro-
moting the clinical applicability of body imaging at UHF
in the future.
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FIGURE S1 B1
+-magnitude and phase maps for the pre-

diction of the neural network B1
+

PR compared to the
ground truth (GT) B1

+
GT for the unseen example 2 with

a medium SSIM value. The absolute error ΔB1
+ between

the prediction and GT shows a higher residual error for
the first transmission (Tx) channel and the eighth channel
as compared to channels 2–7. Overall, the prediction qual-
itatively matches the GT for both the magnitude and the
phase.
FIGURE S2 B1

+-magnitude and phase maps for the pre-
diction of the neural network B1

+
PR compared to the

ground truth (GT) B1
+

GT for the unseen example 3 with
a low SSIM value. The absolute error ΔB1

+ between the
prediction and GT shows a higher residual error for the
first transmission (Tx) channel and the eighth channel as

 15222594, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29510 by M

ax-D
elbrueck-C

entrum
, W

iley O
nline L

ibrary on [27/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KRUEGER et al. 1015

compared to channels 2–7. Overall, the prediction quali-
tatively matches the GT for both the magnitude and the
phase.
FIGURE S3 Combined B1

+ maps for the unseen test case
example 2 and example 3. The predicted (B1

+
PR) and the

ground truth (B1
+

GT) data are shown for the sum of mag-
nitudes (SOM) over the 8 Tx channels, the magnitude of
sum (MOS), and the phase of the summed-up data (POS).
When evaluating the ROI over the heart the average error
is 4.65% regarding the SOM for example 2 and 1.07% for 3,
4.81% for the MOS for example 2 and 1.92% for 3, as well
as a mean difference for the POS of 0.010 rad for example
2 and 0.0124 rad for 3. The absolute error ΔB1

+ between
the prediction and the ground truth, as well as local signal
dropouts marked by the yellow arrows, are presented.
FIGURE S4 FA prediction for the measured
channel-combined B1

+-maps, the reconstructed 2D GRE
image, and cine GRE for the unseen test cases 2 and 3.

The used B1
+-shims for the default, homogenous, and

efficiency settings were calculated on the PR B1
+-maps.

The 2D cine GRE images for unseen test case 2 have been
acquired with a higher FA.
Table S1 RMSE, SSIM and ⊥ loss values obtained from
the evaluation of the five networks applied to the cor-
responding five test subsets when performing a 5-fold
cross-validation using all thorax geometries. Network #5
evaluated on Subset #5 is used for the in vivo application
because it results in the highest mean SSIM.
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