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Abstract Complex structural variants (CSVs) are genomic alterations that have more than two

breakpoints and are considered as the simultaneous occurrence of simple structural variants. How-

ever, detecting the compounded mutational signals of CSVs is challenging through a commonly

used model-match strategy. As a result, there has been limited progress for CSV discovery com-

pared with simple structural variants. Here, we systematically analyzed the multi-breakpoint con-

nection feature of CSVs, and proposed Mako, utilizing a bottom-up guided model-free strategy,
ion and
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to detect CSVs from paired-end short-read sequencing. Specifically, we implemented a graph-based

pattern growth approach, where the graph depicts potential breakpoint connections, and pattern

growth enables CSV detection without pre-defined models. Comprehensive evaluations on both

simulated and real datasets revealed that Mako outperformed other algorithms. Notably, validation

rates of CSVs on real data based on experimental and computational validations as well as manual

inspections are around 70%, where the medians of experimental and computational breakpoint

shift are 13 bp and 26 bp, respectively. Moreover, the Mako CSV subgraph effectively characterized

the breakpoint connections of a CSV event and uncovered a total of 15 CSV types, including two

novel types of adjacent segment swap and tandem dispersed duplication. Further analysis of these

CSVs also revealed the impact of sequence homology on the formation of CSVs. Mako is publicly

available at https://github.com/xjtu-omics/Mako.
Introduction

Computational methods based on next-generation sequencing

(NGS) have provided an increasingly comprehensive discovery
and catalog of simple structure variants (SVs) that usually
have two breakpoints, such as deletions (Dels) and inversions

(Invs) [1–7]. In general, these approaches follow a model-
match strategy, where a specific SV model and its correspond-
ing mutational signal model are proposed. Afterward, the

mutational signal model is used to match observed signals
for the detection (Figure 1A). This model-match strategy has
been proved effective for detecting simple SVs, providing us
with prominent opportunities to study and understand genome

evaluation and disease progression [8–11]. However, recent
research has revealed that some rearrangements have multiple,
compounded mutational signals and usually cannot fit into the

simple SV models [8,12–16] (Figure 1B). For example, in 2015,
Sudmant et al. [8] systematically categorized 5 types of com-
plex structural variants (CSVs) and found that a remarkable

80% of 229 Inv sites were complex events. Collins et al. [17]
used long-insert size whole-genome sequencing (liWGS) on
complex SV alignment models de

their corresponding abnormal r

two types of signatures that can b

, reference; Dup, duplication; In
autism spectrum disease (ASD) and successfully resolved 16
classes of 9666 CSVs from 686 patients. In 2019, Lee
et al. [16] revealed that 74% of known fusion oncogenes of

lung adenocarcinomas were caused by complex genomic
rearrangements, including EML4-ALK and CD74-ROS1.
Though less frequently reported, compared with simple SVs,

these multiple breakpoint rearrangements were considered as
punctuated events, leading to severe genome alterations at
once [10,18–21]. This dramatic change of genome provided dis-

tinctive evidence to study formation mechanisms of rearrange-
ment and to understand cancer genome evolution [13,14,17–
19,21–24].

However, due to the lack of effective CSV detection algo-

rithms, most CSV-related studies screen these events from
the ‘‘sea” of simple SVs through computational expensive con-
tig assembly and realignment, clustering of incomplete break-

points, or even targeted manual inspection [8,12,16]. In fact,
many CSVs have already been neglected or misclassified in this
‘‘sea” because of the incompatibility between complicated

mutational signals and existing SV models. Although the
importance and challenge for CSV detection have been
rived from abnormal read-pairs

ead-pair alignments on the reference genome. B. The alignment

e matched by a simple SV alignment model. SV, structural variant;

v, inversion; Del, deletion.
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recognized, only a few dedicated algorithms have been pro-
posed for CSV discovery, and they follow two major
approaches guided by the model-match strategy. TARDIS

and SVelter utilize the top-down approach, where they attempt
to model all the mutational signals of a CSV event instead of
modeling specific parts of signals. In particular, TARDIS

[25] proposes sophisticated abnormal alignment models to
depict the mutational signals reflected by dispersed duplication
(Disdup) and inverted duplication (Invdup). The pre-defined

models are then used to fit observed signals from alignments
for the detection of the two specific CSV types. Indeed, this
is complicated and greatly limited by the diverse types of
CSVs. To solve this, SVelter [26] replaces the modeling process

for specific CSVs with a randomly created virtual rearrange-
ment. And CSVs are detected by minimizing the difference
between the virtual rearrangement and the observed signals.

However, GRIDSS [27] represents the assembly-based
approach, which detects CSVs through extra breakpoints dis-
covered from contig-assembly and realignment. Although the

assembly-based approach is sensitive for breakpoint detection,
it lacks certain regulations to constrain or classify these break-
points and leaves them as independent events. As a result,
Figure 2 Overview of Mako

Mako first builds a signal graph by collecting abnormally aligned read

alignment and split alignment. Afterward, Mako utilizes the pattern gro

In the example output, the maximal subgraph G contains nodes A, B

existing edge (dashed line). The CSV is derived from this subgraph

subgraph contains four different nodes, one Eae edge of type Inv, and
these model-match-guided approaches would substantially
break up or misinterpret the CSVs because of partially
matched signals (Figure 1B). Moreover, the graph is another

approach that has been widely used for simple [2,28] and com-
plex [19,29] SV detection. Notably, ARC-SV [29] uses clustered
discordant read-pairs to construct an adjacency graph and

adopts a maximum likelihood model to detect CSVs, showing
the great potential of using the graph to detect CSVs. Accord-
ingly, there is an urgent demand for a new strategy, enabling

CSV detection without pre-defined models as well as maintain-
ing the completeness of a CSV event.

In this study, we proposed a bottom-up guided model-free
strategy, implemented as Mako, to effectively discover CSVs

all at once based on short-read sequencing. Specifically, Mako
uses a graph to build connections of mutational signals derived
from abnormal alignment, providing the potential breakpoint

connections of CSVs. Meanwhile, Mako replaces model fitting
with the detection of maximal subgraphs through a pattern
growth approach. Pattern growth is a bottom-up approach,

which captures the natural features of data without sophisti-
cated model generation, allowing CSV detection without pre-
defined models. We benchmarked Mako against five widely
s as nodes, and their edge connections are provided by paired-end

wth approach to find a maximal subgraph as a potential CSV site.

, C, and D, whereas F is not able to be appended because of no

with estimated breakpoints and CXS, where the discovered CSV

two Epe edges of type Del. CXS, complexity score.
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used tools on a series of simulated and real data. The results
show that Mako is an effective and efficient algorithm for
CSV discovery, which will provide more opportunities to study

genome evolution and disease progression from large cohorts.
Remarkably, the analysis of subgraphs detected by Mako
highlights the unique strength of Mako, where Mako is able

to effectively characterize the CSV breakpoint connections,
confirming the completeness of a CSV event. Moreover, we
systematically analyzed the CSVs detected by Mako on three

healthy samples, revealing a novel role of sequence homology
in CSV formation.

Method

Overview of Mako

Given that a CSV is a single event with multiple breakpoint
connections, the breakpoints in the current CSV shall not con-

nect with false-positive breakpoints or those from unrelated
events. Thus, we formulate the discovery of CSVs as maximal
subgraph pattern detection in a signal graph. Accordingly,

Mako detects CSVs with NGS data in two major steps, i.e.,
signal graph creation and subgraph detection (Figure 2).
Firstly, Mako collects and clusters abnormally aligned reads
as signal nodes and defines two types of edges to build the sig-

nal graph G ¼ ðV;EÞ, with V ¼ fv1; v2; :::; vng and
E ¼ fEpe;Eaeg. Each signal node v 2 V is represented as

v ¼ ðtype; pos;weightÞ, where type, pos, and weight denote the
abnormal alignment type, node position, and the number of

supporting abnormal reads, respectively. For the edge set, each
edge in Epe and Eae is represented as epe ¼ ðvi; vj; rpÞ and

eae ¼ ðvi; vj; distÞ, respectively, where vi; vj 2 V. Specifically,

Epe represents paired edges from a certain number of support-

ing paired-reads or split-reads (sr). Eae indicates the adjacent

edges induced from the reference genome, connecting two
adjacent signal nodes of distance (dist). Secondly, Mako
applies a pattern growth approach to detect the maximal sub-

graphs as potential CSVs at the whole-genome scale. Mean-
while, the attributes of the subgraph are used to measure the
complexity, and CSV types are determined by the edge connec-

tion types of the corresponding subgraphs (Figure 2).
Building signal graph

To create the signal graph, Mako collects abnormally aligned

reads that satisfy one of the following criteria from the align-
ment file: 1) clipped portion with minimum 10% size fraction
of the overall read length; 2) split reads with high mapping

quality; 3) discordant read-pairs. As a result, one group of sig-
nal nodes is created by clustering clipped-reads or split-reads at
the same position on the genome, which is filtered by weight
and the ratio between weight and the coverage at pos. Another

group of signal nodes is derived from clusters of discordant
read-pairs, where the clustering distance is the estimated aver-
age insert size minus two-fold read length. It should be noted

that a discordant alignment produces two nodes, and Mako
separately clusters discordant alignments with multiple abnor-
mally aligned types, such as abnormal insert size and incorrect
mapping orientation. We adopt the procedure introduced by
Chen [4] to avoid using randomly occurred discordant
alignment (File S1). Additionally, edges are created alone with

the signal nodes, where multiple types of edges might co-exist
between two nodes.
Detecting CSVs with pattern growth

Pattern growth has been widely used in many areas [30–35],
such as insertion/deletion (Indel) detection in DNA sequences
[1,23]. For CSV detection, the subgraph pattern starts at a sin-

gle node and grows by adding one node each time until it can-
not find a proper one (Algorithm I). Specifically, the subgraph
is allowed to grow according to the increasing order of pos

value for each node, and backtracking is only allowed for
nodes involved in the current subgraph. Of note, pattern
growth via adjacent edges is conditional to the distance con-

strain (minDist) because these edges are derived from the refer-
ence genome instead of alternatives. For example, Mako
detects the maximal subgraph ACBD by visiting nodes A, C,

B, and D, while the edge between D and E is constrained
because of the larger distance (Figure 2).

Given that the signal graph contains millions of nodes at
the whole-genome scale, we adopt the ‘‘seed-and-extension”

[36,37] strategy to accelerate subgraph detection. Moreover,
the discovered subgraphs not only differ in edge connections
but also in node type of the subgraph. Therefore, we propose

an algorithm that starts at multiple signal nodes of the same
type at the whole-genome scale, while extends locally for sub-
graph detection (Algorithm II). The parameter minFreq is used

to measure the frequency of detected subgraphs, and Mako
uses minFreq = 1 to avoid missing subgraphs of rare CSVs
or incomplete ones. The detected CSV subgraph provides the
connections between multiple breakpoints of a CSV, and the

attributes of the subgraph are used to measure the complexity
of CSVs. Accordingly, Mako defines the boundary of CSVs
using the leftmost and rightmost pos values of the nodes and

utilizes the number of identical node types multiplied by the
number of Epe edges as a complexity measurement score

(CXS). For example, the discovered CSV subgraph ACBD
has a CXS of 8 due to 4 different node types, i.e., A, C, B,
and D, and two paired edges (Figure 2). A toy example of

excuting the algorithm is shown in Figure S1.

Algorithm I: Detect maximal subgraphs

Input: Signal graph G ¼ ðV;EÞ, parameters minFreq; minDist

Output: A set of CSV subgraphs O ¼ fg1; g2; � � � ; gng, with freq gið Þ �
minFreq

1: procedure findMaximalSubgraphðG;minFreq;minDistÞ
2: Initialize freq types equals to type frequency of node in V;

3: Build index-projection Gj£ of G;

4: for a in freq types do:

5: Build index-projection Gja;
6: gi ¼ a;
7: if freq gið Þ > minFreq then

8: multiLocPatternGrowthðO; gi;Gja;minFreq;minDistÞ;
9: end if

10: end for

11: end procedure
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Algorithm II: Multi-location subgraph growth

1: procedure multiLocPatternGrowthðO; g;Gjg;minFreq;minDistÞ
2: Initialize adj list with adjacent node direct after g through E;

3: for node in adj list do:

4: if nodeInRangeðg; nodeÞ then
5: g

0 ¼ gþ node;

6: O:appendðg0 Þ;
7: multiLocPatternGrowthðO; g0;Gjg0 ;minFreq;minDistÞ;
8: end if

9: end for

10: end procedure

11: procedure nodeInRangeðg; vÞ
12: Set the nodes in g with respect increasing order of pos value:

v0; v1; � � � vn;
13: Set v

0 ¼ vn;

14: if freqðvÞ > minFreq then

15: if distðv0; vÞ < minDist then

16: return True

17: else:

18: for i ¼ n to 0 do

19: if 9epe between v and vi then

20: return True

21: end if

22: end if

23: return False

24: end procedure
Performance evaluation

Since CSVs contain multiple breakpoints, we propose two tiers
of stringency for their evaluation, i.e., unique-interval match
and all-breakpoint match. For a unique-interval match, the

correct predicted breakpoints shall be within 500-bp distance
to the leftmost and rightmost breakpoints of a benchmark
CSV. For the all-breakpoint match initially proposed by Snif-

fles [38], a benchmark CSV is divided into separate subcompo-
nents, and each of them should be correctly detected. For a
CSV with an Inv flanked by two Dels containing three compo-

nents, the correct prediction of all breakpoints for the three
components is considered as an all-breakpoint match. Mean-
while, if only one prediction is close to the leftmost and right-

most breakpoints of the CSV, this prediction is considered as a
unique-interval match. For simulated CSVs, true positives
(TPs) are defined as predictions satisfying either match crite-
rion, while predictions not in the benchmark are false positives

(FPs). False negatives (FNs) are events in the benchmark set
that are not matched by predictions. Whereas it is usually chal-
lenging to measure the FPs for real data due to the lack of a

curated CSV set, we only consider the number of correct dis-
coveries (File S1).

Preparing CSV benchmarks for performance evaluation

In this study, we use both simulated and real CSVs to bench-
mark the performance of different callers. We follow the work-

flow introduced by the Sniffles [38] to create simulated CSVs
(Figure S2). Firstly, VISOR [39] is used to create Del, Inv,
Invdup, tandem duplication (Tandup), and Disdup. These
events, termed as basic operations, are implanted and marked

on the reference genome GRCh38 to generate an alternative
genome. Secondly, CSVs are created by randomly adding basic
operations to those marked operations, leading to a new
genome harboring CSVs (CSV genome). Meanwhile, the

purity parameter of VISOR is used to produce homozygous
and heterozygous CSVs. Afterward, VISOR generates simu-
lated paired-end reads based on the CSV genome with wgsim

(https://github.com/lh3/wgsim) and aligns them to the refer-
ence genome with BWA-MEM [37]. According to the above-
generalized simulation procedures, we create reported CSV

types published by previous studies [8,17] and randomized
CSV types (File S1).

In terms of the real data, we are not aware of any public
CSV benchmarks due to the breakpoint complexity and

underdeveloped methods [8,12,26,40,41]. Fortunately, Pacific
Biosciences (PacBio) reads could span multiple breakpoints
of CSVs, providing direct evidence to validate CSVs through

sequence Dotplot [42]. Thus, we curate the CSV benchmark
from a simple SV callset by breakpoint clustering and manual
inspection. For SV clustering, each of them is considered as an

interval, and hierarchical clustering with the average method is
used to find interval clusters (Figures S3 and S4). We then use
the threshold that could produce the most clusters for merging

clusters, which could potentially reduce the number of missed
CSVs (Figures S5 and S6; Table S1). Given these simple SV
clusters, we apply Gepard to create Dotplots based on PacBio
high-fidelity (HiFi) reads and manually investigate each Dot-

plot. Since CSVs are rare and might appear at the minor allele,
we create Dotplot for each long read that spans the corre-
sponding region.

Orthogonal validation of Mako-detected CSVs

To fully characterize Mako’s performance on real data, we use

experimental and computational validations as well as manual
inspections of CSVs from HG00733. The raw CSV calls from
HG00733 are obtained by selecting events with more than one

link type observed in the subgraph. For the experimental val-
idation, Primer3 (https://github.com/primer3-org/primer3) is
used to design PCR primers, where primers are selected within
the extended distance but 200 bp outside of the boundaries of

the breakpoints defined by Mako (Figure S7). BLAT (https://
users.soe.ucsc.edu/~kent/) search is performed at the same
time to ensure all primer candidates have only one hit in the

human genome. Afterward, we select amplification products
with the expected product size and bright electrophoretic
bands for Sanger sequencing (Figure S8). The obtained Sanger

sequences are aligned against the reference allele of the CSV
site and visualized with Gepard for breakpoint inspection (File
S1).

As for the computational validation, two orthogonal data

obtained from Human Genome Structural Variant Consor-
tium (HGSVC) are used, i.e., Oxford Nanopore Technologies
(ONT) sequencing and HiFi contigs. We first apply VaPoR

[43] on the ONT reads to validate CSVs, referring as ONT val-
idation. Additionally, we apply a K-mer-based breakpoint
examination based on haplotype-aware HiFi contigs, from

which we calculate the difference between the K-mer break-
points and predicted breakpoints (Figure S9; File S1).

Furthermore, we manually curate detected CSVs via Dot-

plots created by Gepard (Figure S10), which is similar to the
procedure of creating the benchmark CSVs for real data

https://github.com/lh3/wgsim
https://github.com/primer3-org/primer3
https://users.soe.ucsc.edu/%7ekent/
https://users.soe.ucsc.edu/%7ekent/


Figure 3 Performance comparison on simulated CSVs with different match criteria

A. The sensitivity of detecting breakpoints of heterozygous CSVs. B. The sensitivity of detecting breakpoints of homozygous CSVs. C.

Evaluation of reported heterozygous CSV simulation. D. Evaluation of reported homozygous CSV simulation. E. Evaluation of

randomized heterozygous CSV simulation. F. Evaluation of randomized homozygous CSV simulation. The performances of selected tools

for detecting simulated CSVs are evaluated according to the all-breakpoint match (A and B) and unique-interval match (C–F) criteria. In

(C–F), the performance is evaluated by recall (y-axis), precision (x-axis), and F1-score (dotted lines). The right top corner of the plot

indicates better performance. The c5–c30 indicates coverage, e.g., c5 indicates 5� coverage.

210 Genomics Proteomics Bioinformatics 20 (2022) 205–218



Lee C et al / Graph-based Complex Structural Variant Detection 211
(File S1). For CSVs at highly repetitive regions, we further val-
idate them according to specific patterns (Figures S11–S13).
Results

Mako effectively characterizes multiple breakpoints of CSVs

The most important feature for a CSV is the presence of multiple

breakpoints in a single event. Thus, we first examined the perfor-
mances of Mako, Lumpy, Manta, SVelter, TARDIS, and
GRIDSS for detecting multiple breakpoints. The results were
evaluated according to the all-breakpoint match criterion on

both reported and randomized CSV-type simulations. Overall,
for the heterozygous (Figure 3A) and homozygous (Figure 3B)
simulations, Mako was comparable to GRIDSS, and these two

methods outperformed other algorithms. For example,
GRIDSS, Mako, and Lumpy detected 50%, 51%, and 46% of
reported heterozygous CSV breakpoints, while they reported

53%, 54%, and 44% of randomized ones. Because the graph
encoded both multiple breakpoints and their substantial connec-
tions for each CSV, Mako achieved better performance on ran-

domized events, which included more subcomponents than the
reported ones. Indeed, by comparing reported and randomized
simulations, the breakpoint detection sensitivity (Figure 3A
and B) of Mako for randomized simulation increased, while that

of other algorithms dropped except for GRIDSS. Although the
assembly-based method, GRIDSS, is as effective as Mako for
breakpoint detection, it lacks a proper procedure to resolve the

connections among breakpoints.

Mako precisely discovers CSV unique-interval

CSV is considered as a single event consisting of connected break-
points, and we have demonstrated that Mako is able to detect
CSV breakpoints effectively. However, the breakpoint detection
evaluation only assesses the discovery of basic components for a

CSV and lacks examination for CSV completeness. We then
investigated whether Mako could precisely capture the entire
CSV interval even with missing breakpoints. According to the

unique-interval match criterion, Mako consistently outperformed
other algorithms for both reported and randomly created CSVs,
while SVelter and GRIDSS ranked second and third, respectively.

For the reported CSVs at 30� coverage (Figure 3C and D), the
recalls of Mako were 92% and 94% for reported heterozygous
and homozygous CSVs, respectively, which were significantly

higher than those of SVelter (57% for reported heterozygous
CSVs and 49% for reported homozygous CSVs). Due to the ran-
domized top-down approach, SVelter was able to discover some
complete CSV events, but it may not explore all possibilities.

Remarkably, we noted that Mako’s sensitivity was even better
for randomized simulation (Figure 3E and F), which was
consistent with our previous observation (Figure 3A and B). In

particular, at 30� coverage, Mako detected 203% more heterozy-
gous CSVs than that of SVelter (Figure 3E), probably due to the
complementary graph edges for accurate CSV site discovery.

Performance on real data

We further compared Mako with SVelter, GRIDSS, and

TARDIS on the whole-genome sequencing data of NA19240
and SKBR3. Firstly, we compared the callsets of different
callers (Figures S14 and S15), and found that Mako shared
most calls with GRIDSS (Figure 4A and B), which was consis-

tent with our observation in simulated data (Figure 3). Fur-
thermore, we examined the discovery completeness of 59
(NA19240) and 21 (SKBR3) benchmark CSVs (Table 1,

Table S2; File S2). Because Manta and Lumpy contributed
to the CSV benchmark sets, they were excluded from the com-
parison. The results showed that Mako performed the best for

the two benchmark sets with different CXS thresholds, while
TARDIS ranked second (Figure 4C). Given that Invdup and
Disdup dominated the two benchmark sets (Table 1) and that
TARDIS has designed specific models for these two types,

TARDIS detected more events of these two duplication types
than SVelter and GRIDSS. SVelter only detected three bench-
mark CSVs for SKBR3 because the randomized approach may

not explore all combinations of CSVs. Based on the aforemen-
tioned observation, we concluded that the graph-based model-
free strategy of Mako performed better than either randomized

model (SVelter) or specific model (TARDIS) with few compu-
tational resources (Figure S16).
CSV subgraph illustrates breakpoint connections

Having demonstrated the performance of Mako on simulated
and real data, we surveyed the landscape of CSVs from three
individual genomes. Specifically, CSVs from autosomes were

selected from Mako’s callset with more than one edge connec-
tion type observed in the subgraph, leading to 403, 609, and
556 events for HG00514, HG00733, and NA19240, respec-

tively (Figure S17; Table S3). We systemically evaluated all
CSV events in HG00733 via experimental and computational
validations as well as manual inspections (File S3). For exper-

imental validation, we successfully designed primers for 107
CSVs (Table S4), where 15 out of 21 (71%) CSVs were success-
fully amplified and validated by Sanger sequencing (Table 2,

Tables S5 and S6; File S4). The computational validation showed
up to 87% accuracy (Figure S4; Table 3, Tables S5, S7 and S8),
indicating that a combination of methods and external data is
necessary for comprehensive CSV validation. Further analysis

showed that the medians of experimental and computational
breakpoint shift were 13 bp and 26 bp, respectively
(Figure S18). We observed that approximately 54% of CSVs

were found in either short tandem repeat (STR) or variable
number tandem repeat (VNTR) regions, contributing to 75%
of all events inside the repetitive regions (Figure S17). For

the connection types, more than half of the events contain
Dup and Ins edges in the graph (Figure S17), indicating
duplication-involved sequence insertion. Moreover, around
40% of the events contain Del edges (Figure S17), showing

connections of two distant segments derived from either Dup
or Inv events. We further examined whether the CSV subgraph
depicts the connections for each CSV via discordant read-

pairs. Interestingly, we observed two representative events with
four breakpoints at chr6:128,961,308–128,962,212 and chr5:
151,511,018–151,516,780 from NA19240 and SKBR3, respec-

tively (Figure 5). Both events were correctly detected by Mako,
but missed by SVelter and reported more than once by
GRIDSS and TARDIS (Table S9). In particular, the CSV at

chr6:128,961,308–128,962,212 that consists of two deletions
and an inverted spacer (DelSpaDel) was reported twice and



Figure 4 Overview of performance of Mako, GRIDSS, SVelter, and TARDIS on NA19240 and SKBR3

A. Venn diagram of callsets detected from NA19240 by four selected tools. B. Venn diagram of callsets detected from SKBR3 by four

selected tools as well as MergedSet. The Venn diagrams are created by 50% reciprocal overlap via a publicly available tool Intervene with

‘‘–bedtools-options” enabled. The MergedSet is obtained from the original publication. C. The percentages of completely and uniquely

discovered CSVs from the NA19240 and SKBR3 data, respectively. The results of Mako are shown according to different CXS thresholds.
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five times by GRIDSS and TARDIS. The event at chr5:
151,511,018–151,516,780 that consists of Del and Disdup
was reported four and three times by GRDISS and TARDIS.

These redundant predictions complicated and misled down-
stream functional annotations. On the contrary, Mako was
able to completely detect the aforementioned two CSV events
and also capable of revealing the breakpoint connections of

CSVs encoded in the subgraphs. The aforementioned observa-
tions suggest that Mako’s subgraph representation is inter-
pretable, from which we can characterize the breakpoint

connections for a given CSV event.
Contribution of homology sequence in CSV formation

Given 1568 detected CSVs from three genomes (HG00514,

HG00733, and NA19240), we further investigated the forma-
tion mechanisms of these CSVs. Ongoing studies have revealed
that inaccurate DNA repair and the 2–33 bp long microhomol-

ogy sequence at breakpoint junctions play an important role in
CSV formation [18,44–47]. To further characterize CSVs’ inter-
nal structure and examine the impact of homology sequence on

CSV formation, wemanually reconstructed 1052 high-confident



Figure 5 Two representative CSV subgraphs identified by Mako

A. and B. Top: IGV views of the two representative CSV events. The alignments are grouped by read-pair orientation. Bottom: subgraph

structures discovered by Mako. The colored circles and solid lines are nodes and edges in the subgraph. C. The alignment model of two

deletions with an inverted spacer. D. The alignment model of deletion associated with dispersed duplication. In (C) and (D), short arrows

are paired-end reads that span breakpoint junctions, and their alignments are shown on the Ref genome with the corresponding ID in the

circle. Noted that a single ID may have more than one corresponding abnormal alignment types on the Ref genome. IGV, Itegrative

Genomics Viewer.

Table 1 Summary of benchmark CSV

Type
Benchmark summary

Description
NA19240 SKBR3

Disdup 15 12 Dispersed duplication

Invdup 18 – Inverted duplication

DelInv 7 5 Deletion associated with inversion

DelDisdup 5 1 Deletion associated with dispersed duplication

DelInvdup 1 – Deletion associated with inverted duplication

DisdupInvdup 2 2 Dispersed duplication with inverted duplication

InsInv 1 – Insertion associated with inversion

Tantrans 1 – Adjacent segment swap

DelSpaDel 8 1 Two deletions with inverted or non-inverted spacer

TanDisdup 1 – Tandem dispersed duplication
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Table 3 Summary of experimental and computational validations as well as manual inspections for CSVs

Validation strategy Total Valid Invalid Inconclusive

Experimental (PCR succeeded) 21 15 (71%) 6 (29%) –

Computational ONT reads 609 256 (42%) – 353 (58%)

HiFi contigs 414 (68%) 195 (32%) –

ONT reads or HiFi contigs 533 (87%) 76 (13%) –

Manual HiFi reads 609 440 (72%) 169 (28%) –

Note: ONT, Oxford Nanopore Technologies; HiFi, Pacific Biosciences high-fidelity.

Table 2 Summary of experimentally validated CSVs

Chromosome Start End Mako type

Chr1 81,194,398 81,195,874 Del, Inv

Chr2 119,659,504 119,661,322 Del, Dup

Chr3 146,667,093 146,667,284 Del, Dup

Chr5 141,480,327 141,483,116 Del, Dup

Chr7 1,940,931 1,941,009 Dup, Ins

Chr9 29,591,409 29,593,057 Del, Inv

Chr10 14,568,488 14,568,677 Dup, Ins

Chr12 71,315,482 71,316,928 Del, Inv

Chr12 77,989,900 77,994,324 Del, Inv

Chr13 74,340,759 74,342,810 Del, Dup

Chr16 78,004,459 78,007,456 Del, Dup

Chr17 34,854,438 34,855,851 Del, Inv

Chr17 48,538,270 48,540,171 Del, Dup

Chr18 72,044,575 72,045,937 Del, Dup

Chr21 26,001,844 26,001,844 Del, Inv

Note: Del, deletion; Ins, insertion; Dup, duplication; Inv, inversion.
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CSV calls given by Mako (252/403 from HG00514, 440/609
from HG00733, and 360/556 from NA19240) via Dotplots cre-

ated by PacBio HiFi reads (Figure 6A, Figure S19; Table S10;
File S3). The percentage of successfully reconstructed events
was similar to the orthogonal validation rate, showing that

CSVs detected by Mako were accurate, and the validation
method was effective. The high-confident CSV callset contains
816 insertion associated with duplication (InsDup) events with
both Ins and Dup edge connections. Further investigation

revealed that these events contain irregular repeat sequence
expansion,making themdifferent from simple Ins orDup events
(Figure S20). Besides, we found two novel types, named adja-

cent segment swap (Tantrans) and tandemdispersed duplication
(TanDisdup) (Figure 6B, Figures S21 and S22).We inferred that
homology sequence-mediated inaccuracy replication was the

major cause for these two types. Furthermore, we observed that
134 CSVs contain either Invdup or Disdup events (Table S10).
These Invdup/Disdup-involved CSVs were mainly caused by
microhomology-mediated break-induced replication (MMBIR)

according to previous studies [18,45,48]. It was known that dif-
ferent homology patterns caused distinct CSV types (Figure 6C
and D). Surprisingly, one particular homology pattern yielded

multiple CSV types (Figure 6E). In particular situations of the
three different homology patterns, DNA double-strand break
(DSB) occurred after replication of fragment c. According to

the MMBIR mechanism and template switch (TS) [22,45–47],
the pattern I (Figure 6C) and pattern II (Figure 6D) each yield
one output, but pattern III (Figure 6E) produced three different

outcomes. These results provide additional evidence for under-
standing the impact of sequence contents on DNA DSB repair,
leading to a better understanding of diversity variants produced
by CRISPR [49,50].
Discussion

Currently, short-read sequencing is significantly reduced in
cost and has been applied to clinical diagnostics and large

cohort studies [16,51,52]. However, CSVs from short-read data
are not fully explored due to the methodology limitations.
Although long-read sequencing technologies bring us promis-

ing opportunities to characterize CSVs [13,14,38], their appli-
cation is currently limited to small-scale projects, and the
methods for CSV discovery are also underdeveloped. As far

as we know, NGMLR combined with Sniffles is the only pipe-
line that utilizes the model-match strategy to discover two
specific forms of CSVs, namely DelInv and Invdup. Therefore,

there is a strong demand in the genomic community to develop
effective and efficient algorithms to detect CSVs using short-
read data. It should be noted that CSV breakpoints might
come from either single haplotype or different haplotypes,

where two simple SVs from different haplotypes lead to false
positives (Figure S23). This may increase the false discovery
rate due to a lack of haplotype information. Therefore, the

combination of short-read and long-read sequencing might
improve CSV discovery and characterization.

To sum up, we develop Mako, utilizing the graph-based

pattern growth approach, for CSV discovery with 70% accu-
racy and 20 bp median breakpoint shift. To the best of our
knowledge, Mako is the first algorithm that utilizes the

bottom-up guided model-free strategy for SV discovery, avoid-
ing the complicated model and match procedures. Given the
fact that CSVs are largely unexplored, Mako presents oppor-
tunities to broaden our knowledge of genome evolution and

disease progression.



Figure 6 Overview of Mako’s CSV discoveries from three healthy samples and proposed CSV formation mechanisms

A. Summary of discovered CSV types. These types are reconstructed by PacBio HiFi reads, where a type with less than 10 events is

summarized as RareType. B. Diagrams of two novel and rare CSV types discovered by Mako. In particular, Mako finds three Tantrans

events and only one TanDisdup event. C.–E. Different replication diagrams explaining the impact of homology pattern for MMBIR-

produced CSVs. In these diagrams, sequence abc has been replicated before the replication fork collapse (flash symbol). The single-strand

DNA at the DNA DSB starts searching for homology sequence (purple and green triangles) to repair. The a forementioned procedure is

explicitly explained as a replication graph, where nodes are homology sequences and edges keep track of TS (dotted arrow lines) as well as

the normal replication at different strands (red lines). If there are two red lines between two nodes, the sequence between these two nodes

will be replicate twice, as shown in (D). InsDup, insertion associated with duplication; Disdup, dispersed duplication; Invdup, inverted

duplication; DelInvdup, deletion associated with inverted duplication; InsInvdup, insertion associated with inverted duplication;

DelDisdup, deletion associated with dispersed duplication; DelInv, deletion associated with inversion; Tantrans, adjacent segment swap;

TanDisdup, tandem dispersed duplication; MMBIR, microhomology-mediated break-induced replication; DSB, double-strand break; TS,

template switch.
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Code availability

Mako is implemented in Java 1.8, and it is available at https://

github.com/xjtu-omics/Mako. It is free for non-commercial
use by academic, government, and non-profit/not-for-profit
institutions. A commercial version of the software is available
and licensed through Xi’an Jiaotong University. All scripts

used in this study are also included in the Github repository,
and a detailed description of using these scripts and other tools
is provided.

https://github.com/xjtu-omics/Mako
https://github.com/xjtu-omics/Mako
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