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Large epidemiological studies such as the UK Biobank (UKBB) or German National Cohort (NAKO) 
provide unprecedented health‑related data of the general population aiming to better understand 
determinants of health and disease. As part of these studies, Magnetic Resonance Imaging (MRI) 
is performed in a subset of participants allowing for phenotypical and functional characterization 
of different organ systems. Due to the large amount of imaging data, automated image analysis 
is required, which can be performed using deep learning methods, e. g. for automated organ 
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segmentation. In this paper we describe a computational pipeline for automated segmentation of 
abdominal organs on MRI data from 20,000 participants of UKBB and NAKO and provide results of the 
quality control process. We found that approx. 90% of data sets showed no relevant segmentation 
errors while relevant errors occurred in a varying proportion of data sets depending on the organ 
of interest. Image‑derived features based on automated organ segmentations showed relevant 
deviations of varying degree in the presence of segmentation errors. These results show that large‑
scale, deep learning‑based abdominal organ segmentation on MRI data is feasible with overall high 
accuracy, but visual quality control remains an important step ensuring the validity of down‑stream 
analyses in large epidemiological imaging studies.

Imaging data collected as part of large-scale epidemiological studies have the potential to provide unique insights 
into physiological and pathophysiological processes and determinants of health and disease in the general popula-
tion. As part the UK Biobank Study (UKBB)1 and the German National Cohort (NAKO)2—two of the worldwide 
largest ongoing epidemiological studies with imaging data—comprehensive Magnetic Resonance Imaging (MRI) 
data are acquired to study anatomical and functional phenotypes of the entire body and of different organ sys-
tems including the central nervous system, the cardiovascular system, musculoskeletal system and the digestive 
system. In combination with a large amount of collected non-imaging parameters assessed through a plethora of 
standardized examinations in dedicated study centers, as well as results obtained from laboratory tests and linkage 
with secondary data sources, these data allow for comprehensive phenotyping of study participants. While most 
non-imaging data in these cohorts are easily accessible in the form of structured data formats, the extraction of 
useful phenotypic information from imaging data requires complex processing steps. Due to the overwhelming 
amount of data, image processing needs to be automated and tailored to specific scientific  questions3.

Detection and segmentation of anatomical structures and organs is one of the most important steps of the 
image processing pipeline. Benefiting from substantial advances in deep learning techniques for medical image 
analysis, automated organ segmentation on MRI data has become feasible with satisfactory results in numer-
ous  applications4. Thus, deep learning-based organ segmentation has also become the method of choice for 
the analysis of large-scale imaging datasets. Several methodological studies have demonstrated the feasibility 
and performance of deep learning organ segmentation on UKBB and NAKO MRI data for different anatomic 
structures including the brain, the heart, the aorta, adipose tissue and abdominal  organs5–9. While these studies 
report good overall results on small samples of larger cohorts with available ground truth, the deployment of 
automated organ segmentation on entire cohorts consisting of tens of thousands of participants without available 
ground truth is associated with substantial additional challenges regarding assessment of algorithm performance 
and quality assurance. Addressing these challenges is a prerequisite for the generation of valid scientific data for 
subsequent analyses and to avoid systematic errors or algorithm-induced bias, e. g. resulting from heterogeneous 
algorithm performance across sub-cohorts.

As of now, only few studies have addressed the deployment of automated organ segmentation on larger 
cohort study data and associated  challenges10,11. In most population studies quality control of organ automated 
segmentations was either not performed at all or only algorithmic/automated segmentation quality ratings 
without any large-scale expert-based visual assessment was conducted. This limited approach to quality control 
is due to the massive effort and the limited availability of software tools that could accelerate this procedure. A 
recent study on automated organ segmentation using UKBB data employed automated fat–water swap detection 
and reported spot checks on few hundred subjects and obvious  outliers12. To the best of our knowledge, only 
few studies in this context reported systematic visual quality control of image processing results by an expert in 
a major cohort  study13,14.

Our contributions in this study are (1) the deployment of deep learning-based abdominal organ segmentation 
on 20,000 whole body MRI datasets from UKBB (1.5 Tesla MR) and NAKO (3 Tesla MRI), (2) large-scale visual 
expert quality control (QC) of these segmentations, (3) analysis of factors that impact segmentation quality rat-
ings including epidemiological factors and image properties and (4) assessment of image-derived phenotypes 
based on segmentation quality.

Results
A pictorial summary of the data processing pipeline consisting of preprocessing, automated organ segmenta-
tion, visual quality control and feature extraction is depicted in Fig. 1. A detailed description is provided in the 
Methods section.

Cohort characteristics. The cohorts from UKBB and NAKO had comparable characteristics regarding sex 
distribution, body weight and body height (Table 1). Average age was markedly lower in the NAKO sub-cohort 
compared to the UKBB sub-cohort (51.9 vs. 63.1 years) due to different inclusion criteria as described in the 
methods section.

Frequency of automated segmentation errors. During the visual QC process, we classified errors of 
automated organ segmentation into largest connected component (LCC)- correctable errors (i.e., the LCC of the 
segmentation mask corresponds to an error-free segmentation) and not LCC-correctable errors (see Methods 
section). This distinction is relevant as it directly relates to the possibility of automatically correcting errors 
through post processing by selecting the largest connected component of the segmentation mask in case of 
multiple components.
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On a single-organ level most errors were observed for liver segmentation (8.4%/14.6% of datasets) and pan-
creas segmentation (14.8%, 6.1% of datasets) on UKBB / NAKO data respectively. When considering only not 
LCC-correctable errors, these percentages decreased to 3.6%/3.4% for liver segmentation and 7.2%/3.1% for 
pancreas segmentation on UKBB and NAKO data respectively (Fig. 2). Error rates were lowest for left and right 
kidney segmentation (below 2% in UKBB and NAKO, Fig. 2).

On a subject level, considering all organs, no errors or only LCC-correctable errors across all organs were 
observed in the majority of the data sets of both, UKBB and NAKO (92.3% / 88.5% respectively, Fig. 2). In other 
words, after appropriate error correction, approximately 9 in 10 datasets could be considered error-free in both, 
UKBB and NAKO.

Association of automated segmentation errors with demographic and imaging factors. Sta-
tistical analysis revealed that the occurrence of composing artifacts between adjacent MRI acquisition blocks 
and the data source (UKBB vs. NAKO) were the main factors affecting the occurrence of segmentation errors. 
Composing artifacts were strongly associated with segmentation errors of liver and spleen (odds ratios of 136.5 
and 18.8, respectively). UKBB data were markedly more likely to show erroneous pancreas segmentation while 
NAKO data sets were—to a lesser extent—more likely to show errors in segmentation of liver, spleen, and kid-
neys (Table 2).

Regarding the impact of epidemiological factors sex, age and BMI, we observed statistically significant effects 
to a far lesser extent compared to the impact of artifacts and data source. Notably, we observed a trend towards 
more frequent segmentation errors with increasing BMI for liver, spleen and kidneys.

Impact of automated segmentation errors on image‑derived features. To assess the impact of 
segmentation errors on potential downstream tasks we compared the distributions of shape features between 

Figure 1.  Summary of the data processing pipeline. In a first step (upper middle panel, black), image data from 
UKBB and NAKO were preprocessed by composing single MR acquisition stations and conversion to the NIfTI 
format. Subsequently (right upper panel, green) organs were automatically segmented on preprocessed image 
data. In a third step (lower right panel, blue), quality control of automated segmentations was performed visually 
and segmentation errors were categorized. Finally (lower left panel, yellow), shape features were extracted from 
image data based on organ segmentations. LCC = largest connected component.

Table 1.  Demographic characteristics of subjects.

UKBB NAKO

Number of subjects 10,000 10,000

Sex (F/M) 51.7% / 48.3% 49% / 51%

Age (SD) [years] 63.1 (7.5) 51.9 (11.4)

Weight (SD) [kg] 76.3 (15.2) 79.3 (16.4)

Height (SD) [cm] 169.1 (9.4) 171.7 (9.5)

BMI (SD) [kg/m2] 26.6 (4.4) 26.8 (4.8)
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organ segmentations with and without errors, in the latter category before and after error correction (by choos-
ing the largest connected component of the segmentation mask).

Overall, we observed that shape features drawn from liver segmentations were least affected by the presence 
of errors while the effect of errors was more pronounced for kidneys and pancreas segmentations (Fig. 3).

For the features “volume” and “surface area”, only slight feature deviations compared to the error-free case were 
observed on data with LCC-correctable errors while pronounced deviations were observed on data with not LCC-
correctable errors. For illustration, the mean pancreatic volume on error-free segmentations was 90.2 ml/88.8 ml 
on UKBB/NAKO respectively and 84.4 ml/84.5 ml on data with LCC-correctable errors and 62 ml/66.8 ml on 
data with not LCC-correctable errors (Fig. 3).

LCC error correction (by choosing the largest connected component of the segmentation mask) had only 
minor effects on the shape features “volume” and “surface area” for LCC-correctable errors—implying that incor-
rect connected segmentation components were of small quantitative significance in this regard. In contrast, 
performing LCC correction on not LCC-correctable segmentation error resulted in a further deviation of shape 
features compared to error-free data—implying that LCC correction is even harmful in these error cases. For 
illustration, after LCC error correction, the mean pancreatic volume was 81.3 ml/82.5 ml on data with LCC cor-
rectable errors and 47.1 ml/58.5 ml on data with not LCC-correctable errors (for UKBB and NAKO respectively).

The feature “maximum 3D diameter” was markedly more susceptible to the presence of errors and showed the 
highest deviation between error-free and erroneous segmentation masks in both data sets (Fig. 3). For this feature, 
error correction resulted in alignment of feature distributions to the error-free case in case of LCC-correctable 
errors and to a lesser extent for not LCC-correctable errors (Fig. 3).

Discussion
In this study, we applied a deep learning-based organ segmentation model to 20,000 whole body MRI datasets 
from the UKBB and NAKO cohorts and performed standardized visual quality analysis of segmentation results.

We found that overall segmentation accuracy was high in both cohorts, at 1.5 and 3 Tesla, while segmenta-
tion errors were observed in a small but non-negligible proportion of datasets. When considering only not 
LCC-correctable errors, these occurred in only a small fraction of datasets in both cohorts: After correction of 
LCC-correctable errors about 90% of all datasets were error-free for all organs on UKBB (88.5%) and NAKO 
(92.3%) data.

Detailed analysis revealed that liver and pancreas were most susceptible to segmentation errors. The occur-
rence of composing artifacts was mainly associated with liver segmentation errors and pancreas segmentation 

Figure 2.  Frequency of segmentation error categories and severe acquisition errors (%) per organ for UKBB 
(left) and NAKO (right). LCC = largest connected component.

Table 2.  Association of epidemiological/imaging factors with segmentation errors (odds ratio (p values), 
statistically significant p values are in bold).

Liver Spleen l-Kidney r-Kidney Pancreas

Age
(SD: 11.16)

0.91
(0.001) 1.28 (< 0.001) 1.19

(0.027) 1.39 (0.001) 1.29 (< 0.001)

Sex
(F: 0 / M: 1)

1.07
(0.21)

1.19
(0.07) 1.94 (< 0.001) 1.19

(0.29) 0.58 (< 0.001)

BMI
(SD: 4.56) 1.21 (< 0.001) 1.29 (< 0.001) 1.71 (< 0.001) 1.35 (< 0.001) 0.84 (< 0.001)

Cohort
(UKBB: 0 / NAKO: 1) 2.45 (< 0.001) 3.53 (< 0.001) 5.26 (< 0.001) 3.32 (< 0.001) 0.51 (< 0.001)

Composing Artifacts (False: 0 / True: 1) 136.52 (< 0.001) 18.82 (< 0.001) 2.91 (< 0.001) 4.86 (< 0.001) 1.02
(0.86)
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Figure 3.  Impact of segmentation errors on extracted features (Top: UKBB, Bottom: NAKO). Comparison of 
segmentation mask categories (from left to right within each subplot: without error (yellow), corrected largest 
connected component (LCC)-correctable error (dark blue), uncorrected LCC-correctable error (light blue), 
corrected not LCC-correctable error (dark red), uncorrected not LCC-correctable error (light red) across organs 
(subplots from left to right: liver, spleen, left kidney, right kidney, pancreas) and across shape features (subplots 
from top to bottom: volume, surface area, maximum 3D diameter).
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errors occurred more frequently in the UKBB cohort. The effect of composing artifacts on liver segmentation 
can be explained by the anatomic position of the liver below the diaphragm and its longitudinal extent which 
can results in relative displacement of adjacent MR acquisition stations in different respiratory states. The higher 
frequency of pancreas segmentation errors on UKBB data is probably partly a result of the lower native image 
resolution in the UKBB imaging protocol. A slight observed trend for increasing artifact frequency with higher 
BMI is not clearly explainable as one might expect an easier segmentation task with increasing adipose tissue 
content surrounding organs. However, other factors, most notably relative underrepresentation of subjects with 
high BMI in the training data may potentially explain this result.

Importantly, we observed that the occurrence of segmentation errors resulted on marked distribution shift of 
shape features extracted from organ segmentations. This effect was most pronounced for kidneys and pancreas. 
This result suggests that thorough quality control of automated segmentation results is necessary when it comes 
to ensuring the validity of downstream analysis.

Interestingly, feature distributions of segmentations with LCC-correctable errors were noticeably closer to the 
error-free category compared to segmentations with not LCC-correctable errors. This implies that LCC-correctable 
errors are also less severe compared to not LCC-correctable errors. Also, as to be expected, automated error 
correction by choosing the largest connected component of segmentation masks was only effective for LCC-
correctable errors. This result underlines that automated error correction through post-processing still requires 
steps of visual quality control.

Our results are in line with previous studies reporting higher frequencies of segmentation errors especially 
of the pancreas compared to other major abdominal  organs5. Previous studies reported the small organ size 
and complex anatomical background as the main factors making pancreas segmentation challenging. Thus, in 
accordance with our observation, higher image resolution is beneficial for accurate pancreas segmentation. In 
the context of UKBB, the use of an additional, high resolution MR acquisition focused on the pancreas has been 
reported to improve accuracy of automated pancreas  segmentation15.

In this study, quality analysis was performed visually by an experienced imaging expert; smaller segmenta-
tion errors along organ borders may have easily be missed. It is conceivable that methodological developments 
may allow for more accurate, automated quality analysis of organ segmentation in the future. First studies have 
shown the feasibility of automated quality control in UKBB, though they are hardly a replacement for visual 
quality analysis as the scope of their assessment remains  limited6,16. We aim to explore this avenue with further 
methods, e.g. using model uncertainty as a surrogate for segmentation quality, in future studies. As a future 
strategy, it may additionally be useful to focus on the occurrence of specific image artifacts, such as composing 
artifacts, to pre-filter data sets with that require additional visual inspection.

The results of this study show that—despite high overall accuracy of deep learning organ segmentation—a 
substantial number of automated segmentation errors can occur that cannot be eliminated by simple post pro-
cessing. Particularly in the context of epidemiological studies—where segmentation results will likely be used in 
multiple follow-up studies by different research groups—this demands visual quality control of all segmentation 
masks. Methodological improvements regarding robustness of deep learning methods may lessen this necessity 
in the future.

We conclude that large-scale, deep learning-based automated abdominal organ segmentation on MRI data 
is feasible with overall high accuracy, but visual quality control remains an important step ensuring the validity 
of down-stream analyses in large epidemiological imaging studies.

Materials and methods
Image data. Data in this study were acquired from the UK Biobank study (UKBB) in the United Kingdom 
and from the German National Cohort study (NAKO) in Germany, which obtained written informed consents 
from all subjects and approved our data analysis. Research involving human participants was performed in 
accordance with the Declaration of Helsinki in both studies. The analysis of anonymized data from these studies 
was approved by the ethics committee of the Medical Faculty of the University in Tübingen.

Cohort characteristics and imaging protocols differ between these two large-scale population studies. The 
UKBB study aims to image 100,000 healthy UK participants between 40 and 69 years of ages; MRI are performed 
on 1.5 T clinical MRI scanners (Magnetom Aera, Siemens Healthineers, Erlangen, Germany). The NAKO study 
enrolled 30,000 participants between 20 and 69 years of age from the general German population for the MRI 
part of the study; 3 T clinical MRI scanners (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany) are 
used in the NAKO.

In both studies, as part of an extensive imaging protocol, whole-body T1-weighted dual echo gradient echo 
(GRE) sequences are acquired with the following parameters (UKBB: pixel size  [mm2], 2.23 × 2.23; slice thick-
ness [mm], 3–4.5; echo times [ms], 2.39 / 4.77; repetition time [ms], 6.69; flip angle [°], 10; NAKO: pixel size 
 [mm2], 1.2 × 1.2; slice thickness [mm], 3; echo times [ms], 1.23 / 2.46; repetition time [ms], 4.36; flip angle [°], 
9). Further protocol details have been reported  in2  and17. Based on these sequences, four MRI contrasts (Dixon 
contrasts), namely water, fat, in-phase (IP) and out-of-phase (OP) are made available in both studies. A total 
of 20,000 participants (10,000 subjects from each study) were available in our analysis. Notably, spatial resolu-
tion is markedly higher in NAKO, mainly due to the higher magnetic field strength of deployed MRI scanners.

Data pre‑processing and automated organ segmentation. The source data for this study consisted 
of whole-body T1-weighted images from 6 acquisition stations for the UKBB (neck-to-knee) and 4 acquisition 
stations for the NAKO (neck to upper thigh) stored in the DICOM format. Following the approach described  in5 
these images were converted into four 3D image files per subject, each of which corresponds to one of the four 
Dixon contrast, and stored in the NIfTI format. As part of this process, a composing step stitching together the 
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single MRI acquisition blocks was performed on UKBB data using publicly available in-house software (https:// 
github. com/ biome dia- mira/ stitc hing)18, whereas NAKO data were available as pre-composed whole-body data 
sets. For automated segmentation of the liver, the spleen, the left and right kidneys as well as the pancreas, pub-
licly available, pre-trained deep learning-based models for abdominal organ segmentation described  in5 were 
used for this study (code: https:// github. com/ BioMe dIA/ UKBB- GNC- Abdom inal- Segme ntati on, trained mod-
els: https:// gitlab. com/ turka ykart/ ukbb- gnc- abdom inal- segme ntati on). These models, based on a standardized 
U-Net architecture (nnU-Net) detailed  in4, were previously trained on UKBB and the NAKO training data based 
on 400 manually labeled image volumes and were extensively validated in a previous  study5. All four Dixon 
image contrasts were given as model inputs. The UKBB model was deployed on a GPU workstation equipped 
with 2 Titan RTX GPUs (NVIDIA, Santa Clara, USA) whereas the NAKO model was deployed on a dedicated 
GPU server using two Tesla V100 GPUs (NVIDIA, Santa Clara, USA).

The first 10,000 complete data sets on which the data processing chain was technically successful (i.e. loading 
and algorithmic processing of data was computationally possible) were drawn from each, the UKBB and NAKO 
data pool for this study.

Visual quality control (QC). For visual quality control, a QC tool with an interactive graphical user inter-
face (GUI), called SegQC, was developed in Python (code available at: https:// github. com/ BioMe dIA/ UKBB- 
GNC- QC- Tool). It enables visual assessment of segmentation quality by an expert in an efficient and scalable 
setup, specifically designed for population imaging studies with flexible caching and indexing to simplify the 
QC process (Fig. 4). Similar assistive tools aiming for expediating assessments and reproducibility have already 
shown the benefits of such interactive quality control in  neuroimaging19–21.

SegQC’s graphical user interface was created with an open-source application programming interface (API) 
Streamlit (https:// github. com/ strea mlit/ strea mlit), which enables the development of a web app accessible 
through a web browser. In addition to working with large datasets, SegQC offers various features such as differ-
ent viewing orientations (coronal, sagittal and axial), overlay of segmentation masks and generation of maximum 
intensity projections (MIP) as well as storage of quality ratings as a csv file. The tool allows one to assess organ 
segmentation quality slice by slice in different views and/or visualize different organ segmentations all in one 
screen using MIPs. In addition, the user can adjust the granularity of QC rating options through a configuration 
file. Furthermore, one can navigate subjects consecutively, select subjects based on IDs as well as flag interesting 
subjects for later re-assessment.

Using SegQC, visual segmentation quality analysis of all 20,000 data sets was performed by an expert radi-
ologist (SG—11 years of experience). The overall aim of this process was to identify data sets with relevant 
segmentation errors and to assess to which extent these errors were correctable.

Organ segmentations were defined as “without error” (“error-free”, “no error”) in case no segmentation error 
was visually perceivable on coronal, axial or sagittal MIP images and segmentation masks consisted of a single 
connected component (examples given in Fig. 5).

Accordingly, automated segmentations for each organ were defined as “erroneous” or “with error” if segmen-
tation errors were visually perceivable on coronal, axial or sagittal MIP images (as only partly segmented organ 
or as segmentation mask exceeding organ boundaries) or if the segmentation mask consisted of more than one 
connected component for a single organ (Fig. 6).

Figure 4.  Quality analysis tool (SegQC). It enables visual assessment of segmentation quality by an expert in 
an efficient and scalable setup, specifically designed for population imaging studies with flexible caching and 
indexing to simplify the QC process.

https://github.com/biomedia-mira/stitching
https://github.com/biomedia-mira/stitching
https://github.com/BioMedIA/UKBB-GNC-Abdominal-Segmentation
https://gitlab.com/turkaykart/ukbb-gnc-abdominal-segmentation
https://github.com/BioMedIA/UKBB-GNC-QC-Tool
https://github.com/BioMedIA/UKBB-GNC-QC-Tool
https://github.com/streamlit/streamlit
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Relevant segmentation errors due to multiple connected components were categorized as “largest-connected-
component (LCC)-correctable” in case the largest connected component (LCC) of the segmentation mask corre-
sponded to the target organ and showed no relevant error (Fig. 6). By this definition, an LCC-correctable erroneous 
organ segmentation can be corrected by discarding smaller connected components and retaining the largest. 
Erroneous segmentations that were not LCC-correctable were categorized as not LCC-correctable.

Figure 5.  Axial (left), coronal (middle) and sagittal (right) maximum intensity projections of error-free 
automated segmentation results (green = liver, blue = spleen, turquoise = left kidney, pink = right kidney, 
orange = pancreas) of UKBB (top) and NAKO (bottom).

Figure 6.  Examples for errors (left: UKBB, right: NAKO). Top: Example images of not largest connected 
component (LCC)-correctable segmentation errors caused by respiratory misalignment and resulting composing 
artifact of the liver and spleen (left) and the liver (right). Bottom: LCC-correctable segmentation error of the liver 
due to a composing artifact (left) and not LCC-correctable error of the liver due to cystic liver disease (right).
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In addition, the existence of composing artifacts between adjacent MRI acquisition stations was visually 
assessed and recorded. As whole-body MRI data were acquired in several acquisition blocks with subsequent 
composing to a single 3D image block (see above), spatial inconsistencies between adjacent blocks can cause 
image artifacts. Composing artifacts were defined as inconsistencies between two adjacent MRI acquisition sta-
tions that resulted in missing or duplicated anatomical structures (e.g., due to different respiratory states along the 
diaphragm). In case target organs were partially missing or duplicated due to composing artifacts, segmentations 
were considered erroneous even if they technically correctly corresponded to the respective organs since these 
segmentations did not correctly describe the actual organ anatomy (Fig. 6).

In a small number of datasets (92/10,000 UKBB data sets and 12/10,000 NAKO data sets), severe image 
acquisition errors were observed (such as fat/water swaps and MR signal alterations) resulting in severely altered 
image properties and relevant segmentation errors in all organs. These data sets were discarded from further 
statistical analysis.

Segmentation error correction. As described above, by definition, an LCC-correctable error occurred in 
case automated organ segmentation masks consisted of multiple connected components and the largest of these 
components corresponded to an error-free segmentation of the target organ. For such organ segmentations with 
LCC-correctable errors correction was possible by choosing only the largest connected component (LCC correc-
tion), generating the final segmentation map. This ensured that LCC-corrected segmentation masks of organs 
with LCC-correctable errors did not have relevant errors in contrast to simply applying this post-processing step 
without previous qualitative visual assessment. For not LCC-correctable errors this is in general not the case. 
In order to investigate to what extent blind application of LCC correction (without prior identification of not 
LCC-correctable errors) can lead to quantification errors, we investigated the effect of LCC correction on organ 
features without and with LCC correction.

Extraction of organ phenotypes. Three image-derived features were extracted from the composed 
images and their corresponding segmentation maps per organ and subject: organ volume, organ surface area and 
maximum 3D organ diameter. Feature extraction was implemented in Python using the  PyRadiomics22 package.

Statistical analysis of QC results. Statistical analysis consisted of several stages. We first extracted the 
epidemiological parameters, namely age, sex, weight and height from the UKBB and NAKO meta-data for all 
20,000 subjects. For the UKBB cohort, age was calculated from the MRI examination date (data field ID 53), 
year of birth (data field ID 34) and month of birth (data field ID 52). Sex, weight, and height were acquired from 
the data field IDs 31, 21,002 (if missing 12,143), 50 (if missing 12,144), respectively. For the NAKO cohort, age 
was drawn from the field df100_age, sex was drawn from the field df100_sex, size from the field anthro_groe, 
anthro_groe_eigen or anthro_groe_man (in this order depending on data availability) and weight from anthro_
gew, anthro_gew_eigen or anthro_gew_man (in this order depending on data availability).

For further analysis, we first calculated the frequency of segmentation errors per participant and organ for 
each cohort. To identify associations between segmentation quality ratings and epidemiological and imaging 
factors, multivariable logistic regression was performed. Regression analysis was performed for each organ indi-
vidually. In this analysis, the binary dependent variable was the presence of segmentation errors (yes / no) per 
organ and independent variables were age, sex, BMI, data source (UKBB / NAKO) and the presence of compos-
ing artifacts (yes / no). With multivariable logistic regression, we calculated odd ratios per organ error category 
and associated p values. The odd ratios for continuous variables (age and BMI) were scaled using the standard 
deviation (SD) to reflect the odds per SD change in that variable. p Values < 0.01 were considered statistically 
significant, accounting for multiple (five-fold) testing.

In addition, we compared the distributions of extracted shape features (volume, surface area, maximum 3D 
diameter) of segmentation masks with and without errors. In the latter case we compared feature distributions 
before and after LCC correction (by choosing the largest connected component).

Statistical analyses were performed using the Statsmodel  library23 in Python.

Data availability
The data that support the findings of this study were provided from UK Biobank (www. ukbio bank. ac. uk) and 
NAKO (www. nako. de) but restrictions apply to the availability of these data, which were used under license for 
the current study, and so are not publicly available. Applications for NAKO data can be directed to the transfer 
unit at https:// trans fer. nako. de/.
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