
RESEARCH ARTICLE

Prior optic neuritis detection on peripapillary ring scans
using deep learning
Seyedamirhosein Motamedi1 , Sunil Kumar Yadav1,2, Rachel C. Kenney3,4, Ting-Yi Lin1,
Josef Kauer-Bonin1,2, Hanna G. Zimmermann1 , Steven L. Galetta4, Laura J. Balcer4,
Friedemann Paul1,5 & Alexander U. Brandt1,6

1Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz
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Abstract

Background: The diagnosis of multiple sclerosis (MS) requires demyelinating

events that are disseminated in time and space. Peripapillary retinal nerve fiber

layer (pRNFL) thickness as measured by optical coherence tomography (OCT)

distinguishes eyes with a prior history of acute optic neuritis (ON) and may

provide evidence to support a demyelinating attack. Objective: To investigate

whether a deep learning (DL)-based network can distinguish between eyes with

prior ON and healthy control (HC) eyes using peripapillary ring scans. Meth-

ods: We included 1033 OCT scans from 415 healthy eyes (213 HC subjects)

and 510 peripapillary ring scans from 164 eyes with prior acute ON (140

patients with MS). Data were split into 70% training, 15% validation, and 15%

test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61

scans from 40 ON eyes (31 MS patients) from an independent second center.

Receiver operating characteristic curve analyses with area under the curve

(AUC) were used to investigate performance. Results: We used a dilated resid-

ual convolutional neural network for the classification. The final network had

an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of

0.77 in recognizing ON eyes. Using data from a second center, the network

achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which

had an AUC of 0.84. Interpretation: DL-based disease classification of prior

ON is feasible and has the potential to outperform thickness-based classification

of eyes with and without history of prior ON.

Introduction

Multiple sclerosis (MS) is the most common chronic

autoimmune demyelinating disorder of the central ner-

vous system.1 In the absence of a pathological biomarker,

diagnosing clinically definite MS (CDMS) requires dis-

semination of demyelination and neurological symptoms

in time and space.2 The McDonald criteria allow the

diagnosis of MS at the time of a clinically isolated syn-

drome (CIS) by utilizing biomarkers that primarily

include T2-weighted lesions on brain magnetic resonance

imaging (MRI) to establish paraclinical evidence of dis-

semination in time and space.3 While the McDonald cri-

teria are ubiquitously used in clinical care, their

sensitivity and specificity for clinically definite MS are

only moderate4 causing delays in diagnosis5 and
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diagnostic certainty.6 Furthermore, longitudinal studies

have shown earlier treatment of ON with MS-disease

modifying therapies improves visual and physical disabil-

ity over time, rendering earlier diagnosis of MS by adding

ON as a lesion site important.7

The optic nerve is a key site of disease in MS.8 Post-

mortem studies reveal significant retinal ganglion cell loss

in more than 70% of MS patient eyes.9,10 While acute

optic neuritis (ON) represents the initial manifestation of

MS in up to 25% of patients, and approximately 50% of

MS patients experience acute ON at some point in their

disease, demyelinating plaques in the optic nerve are

found in up to 99% of MS patients at post mortem.11,12

Recognizing optic nerve pathology, that is signs of prior

ON, could thus serve as an additional criterion supple-

menting the current McDonald criteria.13 During the last

revision of the criteria this potential was recognized, but

optic nerve assessment was ultimately not included in the

revised criteria because of a lack of supporting data,

which were mainly derived from MR imaging studies that

may or may not have included dedicated orbital images

or of the optic nerve with fat-saturation and contrast.14

Optical coherence tomography (OCT) obtains high-

resolution structural measurements of retinal thickness

that reflect the integrity of the optic nerve. These mea-

surements have been suggested as diagnostic biomarkers

in MS that not only reflect structural but also functional

visual outcomes in MS.15–17 As such, the peripapillary

retinal nerve fiber layer thickness (pRNFL) is reduced

within weeks to months after ON, and increased magni-

tudes of thickness reduction are associated with worsen-

ing degrees of visual function loss.18 However, the large

individual ranges of normal OCT measurements render

absolute thickness measurements of pRNFL alone less

useful for detecting prior ON.19,20

Artificial intelligence, using deep learning and convolu-

tional neural networks, allow image classification based

on raw imaging data.21 Deep learning-based methods are

trained directly on imaging data, and resulting networks

have shown remarkable success in recognizing retinal

pathologies in primary eye disorders.22 Recently, we have

shown that deep learning can be used for automatic qual-

ity control of OCT images.23 We and others have further

shown that deep learning-based image segmentation out-

performs classical intra-retinal layer segmentation on

OCT images.24

We hypothesized in this study that deep learning-based

recognition of prior ON by peripapillary ring scans is fea-

sible and outperforms thickness-based classification using

absolute pRNFL values. To investigate this, we trained a

deep neural network on a carefully-curated data set of

pRNFL scans from healthy subjects and eyes with history

of acute ON of patients with MS. We then evaluated

network performance for recognizing prior ON under

several conditions, including independent validation data.

Methods

Study population

In this study, we retrospectively included data from

relapsing–remitting MS (RRMS) and CIS patients with a

history of ON from two longitudinal observational studies

at the Experimental and Clinical Research Center (ECRC)

of Charité—Universitätsmedizin Berlin. Data were

acquired between April 2011 and September 2021. Inclu-

sion criteria were minimum age of 18 years and a diagno-

sis of RRMS or CIS according to the 2017 revised

McDonald criteria.3 Exclusion criteria were acute ON

within 90 days before OCT examinations and any other

neurological or eye disorder known to affect the retina

(e.g., glaucoma, diabetes, and refractive error of >6 diop-

ters). We only included eyes with a documented history

of ON; this was based on providers’ notes in medical

records and patient attack history. Additionally, age- and

sex-matched data from healthy controls (HC) with no

history of neurological or eye disorder from the ECRC’s

database were included in this study. Repeated measure-

ments during follow-up were allowed in this study.

Table 1 shows an overview of the study cohort.

A confirmatory cohort, consisting of 61 OCT scans

from 40 eyes of 31 patients with RRMS with a history of

ON (65% women, age at baseline: 41 � 12 years) and

102 OCT scans from 80 eyes of 40 healthy controls (53%

women, age at baseline: 29 � 10 years) from a longitudi-

nal observational cohort study at the Department of

Table 1. Demographic description of HC and ON cohorts of the

exploratory (Berlin) data.

HC ON

No. of subjects [N] 213 140

No. of eyes [N] 415 164

No. of OCT scans [N] 1033 510

Age at baseline [years]1 36 � 12 37 � 10

Sex (female) [N (%)]2 142 (67) 93 (66)

Time since onset at baseline

(median [range]) [years]

– 1.12 [0.26–43.08]

Time since last ON (median

[range]) [years]

– 3.02 [0.25–44.83]

Diagnosis at baseline – 108 RRMS 32 CIS

CIS, clinically isolated syndrome; HC, healthy controls; OCT, optical

coherence tomography; ON, optic neuritis; RRMS, relapsing–remitting

multiple sclerosis.
1Age match: p = 0.12.
2Sex match: p = 1.
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Neurology, New York University Grossman School of

Medicine, New York, NY, was included in this study by

incorporating the same inclusion and exclusion criteria.

RRMS and HC groups were well matched in the confir-

matory cohort by sex (p value: 0.43) but not by age (p

value: <0.001). The mean time from disease onset for the

RRMS group was 10.02 years with minimum of 0.25 and

maximum of 23 years. This cohort had a more diverse

racial/ethnic origin, in HC (ethnicity: Not Hispanic or

Latino = 34, Hispanic or Latino = 4, 2 missing; race:

Caucasian = 27, African-American = 1, Asian or Pacific

Islander = 7, Other = 4, and 1 missing) and patient data

(ethnicity: Not Hispanic or Latino = 19, Hispanic or

Latino = 3, 9 missing; race: Caucasian = 16, African-

American = 3, Asian or Pacific Islander = 1, Other = 1,

10 missing).

Optical coherence tomography

All OCT scans of both exploratory and confirmatory

cohorts were performed using Spectralis spectral-domain

OCT (Heidelberg Engineering, Heidelberg, Germany), with

automatic real-time (ART) averaging and activated eye

tracking. Measurements were performed in a dimly lit

room without pupil dilation unless required. Peripapillary

ring scans were obtained either as single 2D OCT B scans

(12°, 1536 A scans per B scan, 496 pixels per A scan,

16 ≤ ART ≤ 100) or extracted from the optic nerve head

radial and circular (ONH_RC) protocol taken with ana-

tomic positioning system (APS) (inner ring scan with con-

stant circle diameter of 3.5 mm, 768 A scans per B scan,

496 pixels per A scan, 16 ≤ ART ≤ 100). All scans were

quality controlled according to the OSCAR-IB criteria25 by

an experienced grader. Seven OCT scans from the explora-

tory cohort and one OCT scan from the confirmatory

cohort were excluded from the study because of inadequate

OCT scan quality or inaccurate intraretinal segmentation.

OCT data are reported in accordance with the Advised Pro-

tocol for OCT Study Terminology and Elements (APOS-

TEL) recommendations.26 This study was conducted in

accordance to the artificial intelligence extension of the

OSCAR-IB criteria (OSCAR-AI),27 with the exception that

the criterion of Openness could not be fulfilled because of

data protection constraints on data-sharing.

Artificial Neural Network

Training test and validation data sets

The OCT scans included in this study were randomly

allocated to the training, validation and test data sets. We

allocated 70% of the data for model training, 15% for

model validation during the training and 15% for model

testing after the training. Data allocation of repeated mea-

sures of an individual subject required that all measure-

ments of this individual only appeared in one data set.

Random allocation was repeated until having around

70% of patients and eyes in the training data set and 15%

of them in each of the validation and test data sets. This

process was necessary in order to ensure the homogeneity

of all data sets with regard to the number of patients and

eyes in addition to the number of OCT scans. In the end,

we allocated 728 OCT scans from 290 eyes of 149 HC

and 352 OCT scans from 115 eyes of 98 patients to the

training data set, 152 OCT scans from 32 HC (63 eyes)

and 79 OCT scans from 21 patients (25 eyes) to the vali-

dation data set, and 153 OCT scans from 32 HC (62 eyes)

and 79 OCT scans from 21 patients (24 eyes) to the test

data set.

Preprocessing

Figure 1 summarizes all preprocessing steps. All OCT

scans went through intraretinal segmentation of inner

limiting membrane (ILM), lower boundary of retinal

nerve fiber layer, and Bruch’s membrane (BM) using

Nocturne ONE software (Nocturne GmbH, Berlin, Ger-

many). All segmentation results were manually quality

controlled as described above. Based on the segmentation,

a label image was created for each OCT scan with four

different classes: (1) The area above the ILM, (2) pRNFL,

(3) the area between the lower boundary of RNFL and

BM, and (4) the area below BM. After segmentation, both

OCT and label images were flattened using the BM as ref-

erence. Scans were then resized to a fixed size of

512 × 512 pixel using bi-linear interpolation. Finally, the

intensity of pixels located between ILM and BM (fore-

ground) was linearly normalized for each individual scan,

and the intensity of the pixels above ILM and below BM

(background) was set to zero (black background).

Data augmentation

To increase data size, diversity, translation invariance,

classification accuracy and possibly reduce over-fitting, we

performed model training additionally on synthetically

modified data created using data augmentation. Augmen-

tation was performed by applying random horizontal and

vertical circular shift of up to 20 pixels to all OCT images

of the training data set. To test if data augmentation

results in improvements, the model was trained on five

different training data sets with these scenarios: (1) No

data augmentation (510 ON OCT images, 1033 HC OCT

images), (2) ON data augmentation by a factor of 2 using

random vertical shift (1020 ON OCT images, 1033 HC

OCT images), (3) ON data augmentation by a factor of 2
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using random vertical and horizontal shift (1020 ON

OCT images, 1033 HC OCT images), (4) ON data aug-

mentation by a factor of 4 and HC data augmentation by

a factor of 2 using random vertical shift (2040 ON OCT

images, 2066 HC OCT images), and (5) ON data aug-

mentation by a factor of 4 and HC data augmentation by

a factor of 2 using random vertical and horizontal shift

(2040 ON OCT images, 2066 HC OCT images). The

main reason to augment more on ON data was that

repeated OCT measurements at follow ups are more simi-

lar to each other in healthy controls than ON patients

who have a possibility of having disease worsening and

repeated acute ON episodes between the measurements.

Another reason behind performing more data augmenta-

tion on ON was to compensate for the imbalance between

the size of the HC and ON data. The reason behind

applying mainly vertical shift was that OCT ring scans

have more positioning similarity in the horizontal direc-

tion than the vertical direction.

Implementation

The model was fully developed in Python version 3.7 using

Keras with TensorFlow backend. Early stopping regulariza-

tion was used to avoid over-fitting during training by stop-

ping the training process after the convergence of training

and validation accuracy. Model training was performed on

an on-premise Linux workstation with two Intel Xeon Gold

6144 (Intel Corporation, Santa Clara, CA) CPUs and four

NVIDIA GeForce GTX 1080 Ti (NVIDIA Corporation,

Santa Clara, CA) GPUs. Model testing was performed on a

Windows desktop with an Intel Core i9 11980HK CPU and

a NVIDIA GeForce RTX 3080 GPU.

Statistical analysis

The convenience sample size in this pilot study was not

based on an a priori sample size estimation. To confirm

group matching, sex differences between groups were

tested using χ2 test and age differences were tested using

2-sample Wilcoxon test. Classification performance was

evaluated using area under the curve (AUC) from receiver

operating characteristic (ROC) curves. The optimal cutoff

for the classifier was estimated based on the intersection

of a 45° tangent line and the ROC curve, which is equiva-

lent to the maximum of the summation of the sensitivity

and specificity. F1 score, a measure of accuracy, was cal-

culated as: True positive
True positiveþ1=2 False positiveþFalse negativeð Þ, with ON as

the positive class and HC as the negative. p < 0.05 were

considered significant. All statistical analysis were per-

formed in R version 3.5.28

Ethics statement

The study was approved by the local ethics committee at

Charité—Universitätsmedizin Berlin (EA1/182/10 and

EA1/163/12). Independent validation data from NYU

were collected under IRB approval at NYU. The study

was conducted according to the Declaration of Helsinki

in its currently applicable version and the applicable Ger-

man and European laws. All participants gave written

informed consent.

Results

Network architecture

The proposed convolutional neural network (CNN) for

the classification of eyes with a history of ON vs HC eyes

is shown in Figure 2. The designed CNN accepts two-

channel inputs consisting of the OCT scans (Channel 1)

as well as their segmentation map (Channel 2), both with

dimensions of 512 × 512 pixels. Our proposed model

uses dilated convolution, which results in exponential

expansion of the receptive field by linearly increasing the

dilation factor, without increasing the kernel size.29 The

ILM, RNFL, 
and BM 

segmentation

Flattening
based on 

BM
Resizing

Flattening 
based on 

BM

Linear 
Normalization

Label 
image 

formation

Resizing

Pre-processing Pipeline

Figure 1. The pipeline for the pre-processing step. BM, Bruch’s membrane; ILM, inner limiting membrane; RNFL, retinal nerve fiber layer.
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model also employs residual learning using skip connec-

tions, which helps it to avoid the vanishing gradients

problem.30 The network has five dilated residual blocks,

each consists of two convolutional layers with kernel size

of 3 × 3 and different dilation factors, followed by con-

catenation of the feature maps created by each convolu-

tional layer, a max-pooling layer of size 2 × 2 and stride

of two, and a dropout layer with dropout rate of 0.4.

After the dilated residual blocks, the model has another

3 × 3 dilated convolutional layer with a dilation factor of

32, followed by max-pooling and dropout layers with the

same features as the previous layers. Each convolutional

layer is followed by a rectified linear unit (ReLU) activa-

tion function. In order to make the final prediction, the

output of the last layer is flattened and then fed to a

dense layer, followed by a sigmoid activation function.

For the training, binary cross entropy (BCE) loss

was used as � 1
N ∑

N

i¼1

yi:log p yi
� �� �þ 1�yi

� �
:log 1�p yi

� �� �
,

where y is the classification label (1 for ON and 0 for

HC) and p yð Þ is the output of the model which is the

predicted probability of an input image being from an

eye with a history of ON. Adaptive moment estimation

(Adam) algorithm was used to optimize the model during

the training with a fixed learning rate of 0.0001.

Model validation with data augmentation

The proposed model was trained on training data sets

with different data augmentation scenarios. Table 2 sum-

marizes the performance of the model on the validation

data set. As shown in the table, the models trained on the

training data sets with only ON data augmentation have

better overall performance in identification of eyes with

prior ON from healthy controls, and therefore these mod-

els and the model trained on the training data set without

any augmentation were selected to be tested on the test

data set.

Recognizing signs of optic neuritis in MS
eyes

Table 3 summarizes the performance of the selected mod-

els on the test data. The optimal cutoff for each classifier

based on its performance on the test data was calculated

and used to report the metrics in Table 3. As shown, the

model trained on the training data set with only ON data

augmentation with vertical shift had the best overall per-

formance and thus was selected. The model was used with

the classification cutoff calculated based on the test data

in this study. ROC curve analysis for the selected classifier
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Figure 2. The architecture of the proposed model. Conv2D, 2D convolution layer; DF, dilation factor; HC, healthy controls; ON, optic neuritis;

ReLU, rectified linear activation function.

Table 2. Model performance with data augmentation on validation data set.

Aug. Type TP FN FP TN Acc. Sen. Spec. F1

None – 44 35 6 146 0.82 0.56 0.96 0.68

2 × ON Vert. 44 35 5 147 0.83 0.56 0.97 0.69

2 × ON Vert. – Horiz. 42 37 2 150 0.83 0.53 0.99 0.68

4 × ON – 2 × HC Vert. 45 34 11 141 0.81 0.57 0.93 0.67

4 × ON – 2 × HC Vert. – Horiz. 43 36 5 147 0.82 0.54 0.97 0.68

The best result for each evaluation metric is highlighted in bold. Acc., accuracy; F1, F1 score; FN, false negative; FP, false positive; HC, healthy

controls—negative class; Horiz., horizontal shift; ON, optic neuritis—positive class; Sen., sensitivity; Spec., specificity; TP, true positive; TN, true

negative; Vert., vertical shift.
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is shown in Figure 3A, next to ROC curve for pRNFL for

comparison. Figure 4A shows pRNFL for both eyes with a

history of ON and HC eyes, separated by the classification

result.

To account for correlation between repeated measure-

ments per eye, the performance of the model was tested on

a data set with only one OCT image per eye, randomly

selected from the test data set. The model had an accuracy

of 0.83 with the sensitivity of 0.67, specificity of 0.89, and

F1 score of 0.68 for the classification of eyes with a history

of ON and HC on the sub data set of the test data.

Model confirmation

We tested our proposed model on an independent cohort

of MS patients with a history of ON and HC, to investigate

whether the results from the exploratory data could be con-

firmed on independent data. Our model had an accuracy of

0.77 with sensitivity of 0.89, specificity of 0.71, and F1 score

of 0.74 (true positive: 54, false negative: 7, false positive: 30,

true negative: 72). ROC curve analysis of the model on the

confirmatory cohort as well as using pRNFL thickness to

discriminate between ON and HC is shown in Figure 3B.

Figure 4B shows the pRNFL values for this cohort against

the classification result.

Similar to the exploratory data, we tested the perfor-

mance of our model on a subset of the confirmatory

cohort with only one OCT scan per eye, to account for

the effect of repeated measurements per eye. Here, the

model had an accuracy of 0.72 with sensitivity of 0.85,

specificity of 0.65, and F1 score of 0.67.

Discussion

In this study we show that deep-learning based classifica-

tion of prior ON on peripapillary ring scans is feasible

Table 3. Model performance with data augmentation on test data set.

Aug. Type Cut. TP FN FP TN Acc. Sen. Spec. F1

None – 0.493 50 29 8 145 0.84 0.63 0.95 0.73

2 × ON Vert. 0.469 58 21 14 139 0.85 0.73 0.91 0.77

2 × ON Vert. – Horiz. 0.467 53 26 9 144 0.85 0.67 0.94 0.75

The best result for each evaluation metric is highlighted in bold. Acc., accuracy; Cut., optimal cutoff; F1, F1 score; FN, false negative; FP, false

positive; HC, healthy controls—negative class; Horiz., horizontal shift; ON, optic neuritis—positive class; Sen., sensitivity; Spec., specificity; TP, true

positive; TN, true negative; Vert., vertical shift.
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Figure 3. ROC curves for the proposed model and pRNFL identifying eyes with prior ON and HC in (A) exploratory and (B) confirmatory data.

AUC, area under ROC curve; HC, healthy control; ON, optic neuritis; pRNFL, peripapillary retinal nerve fiber layer thickness; ROC, receiver

operating characteristic.
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and outperforms pRNFL thickness-based classification in

our initial cohort and a second independent data set. The

good model performance in an independent cohort con-

firms the generalizability of our approach.

OCT is a simple, fast, and readily available method to

query retina and optic nerve for neuroaxonal damage.

OCT-derived measures, including pRNFL, have been

suggested as imaging biomarkers for MS diagnosis.13

Signs of prior ON have been estimated using inter-

ocular differences (IOD) of retinal layers on the assump-

tion that a typically unilateral ON would lead to neu-

roaxonal damage in one eye but not the other.31,32

Percentage rather than absolute IOD may be superior

over absolute IOD in detecting subtle changes.33 Clini-

cally meaningful cut-off values may be defined in com-

parison to healthy controls20 or based on large reference

studies with MS-derived OCT measures.32,34 Machine

learning based classification of eyes with ON history uti-

lizing standard OCT parameters has been promising.35

However, not all ON lead to measurable neuroaxonal

damage, and in a previous study about 15% of patients

do not suffer relevant damage during an ON episode.36

This limits the value of methods relying on absolute

OCT parameter thickness or inter-eye differences.

Indeed, the proposed method recognized scans with nor-

mal pRNFL thickness correctly as ON, suggesting the

DL-based classification may rely on other differences

than only average thickness.

Other methods may provide alternative or comple-

mentary information regarding optic nerve pathology in

MS. A conversion equation recently developed on an

international cohort can provide a useful way to convert

between two different OCT devices clinically and in

research studies (Kenney et al. in press). Alternatively,

that is, optic nerve MRI37 or visual evoked potentials

(VEP)38 may provide valuable biomarkers to determine

dissemination in time and space criteria and for diag-

nosing MS.

Our choice for the convolutional neural network was a

dilated residual network. Residual networks enhances the

overall training with reduced training loss by applying

residual skip connections to mainly avoid vanishing gra-

dient problems.30 Convolutional networks reduce the

receptive field in deeper layers and make decisions based

on small limited feature maps, leading to the loss of spa-

tial information.29 This problem can be avoided by either

increasing the kernel size of convolutional layers or using

the concept of dilated convolution. The latter option is

preferable because it does not add more model parame-

ters while increasing the receptive field, which is essential

in our classification task, as the network needs to preserve

spatial resolution to capture the structural relationship

between different anatomical regions on peripapillary ring

scans.

Our pilot study has notable weaknesses. Our network

was trained on data from one device in one clinical
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Figure 4. pRNFL stratified by classification result for (A) exploratory and (B) confirmatory data. HC, healthy control; FN, false negative; FP, false

positive; ON, optic neuritis; pRNFL, peripapillary retinal nerve fiber layer thickness; TN, true negative; TP, true positive.
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center, whereas we were able to confirm model perfor-

mance using additional data from a second, indepen-

dent center. Thus, our study serves as a proof-of-

principle, but the approach would need to be developed

further to including multi-center, multi-device, multi-

national and multi-racial/ethnic data to be clinically

applicable. The model in this study was trained, tested,

and validated on Spectralis data. The segmentation

method we used may have effects on the pRNFL thick-

ness reference data. However, all scans were thoroughly

quality controlled, including segmentation, which should

lead to similar pRNFL values regardless of the underly-

ing segmentation method. Regarding deep learning-

based classification, biggest hurdle for applying our

method to data from devices other than Spectralis is

the data format. To design a method that would work

on different devices’ raw data, an interim step for data

harmonization and transforming data into the same

feature space would be required, which was beyond the

scope of this study. Race and ethnicity need to be rep-

resentative in the training data to avoid cultural bias.

The training data of this study was reflective of the

German population (predominantly Caucasian), which

makes its applicability in racial/ethnic more diverse

populations questionable. For example, African Ameri-

can MS patients display more severe neuroretinal dam-

age, which may impair classification in both DL- and

thickness-based diagnosis.39 The good performance in

the confirmatory cohort, which was more diverse in

race/ethnicity somewhat mitigates this effect, but the

cohorts were too small to conclusively investigate a

potential of cultural bias. Comorbid diseases may affect

retinal OCT scans and thickness measurements, and

should also be considered,34 which was not possible in

this study. Furthermore, the sample size for comparing

performance against pRNFL is small, and confirmation

in a larger and more diverse sample is necessary. Lastly,

ON diagnosis was based on clinical records, which may

have led to misclassification of some training data, if

records were erroneous.

In summary we show that deep learning-based recogni-

tion of ON on peripapillary ring scans is feasible. While

our study’s results are promising, further methodological

improvements both regarding network architecture, used

data modalities and training data variability are war-

ranted.
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