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Experimental trials in organisms ranging from
yeast to humans have shown that various forms of
reducing food intake (caloric restriction) appear to
increase both overall and healthy lifespan, delaying
the onset of disease and slowing the progression of
biomarkers of aging. The gut microbiota is consid-
ered one of the key environmental factors strongly
contributing to the regulation of host health. Per-
turbations in the composition and activity of the
gut microbiome are thought to be involved in the
emergence of multiple diseases. Indeed, many
studies investigating gut microbiota have been
performed and have shown strong associations
between specific microorganisms and metabolic
diseases including overweight, obesity, and type
2 diabetes mellitus as well as specific gastroin-
testinal disorders, neurodegenerative diseases,
and even cancer. Dietary interventions known to
reduce inflammation and improve metabolic health

are potentiated by prior fasting. Inversely, birth
weight differential host oxidative phosphorylation
response to fasting implies epigenetic control of
some of its effector pathways. There is substan-
tial evidence for the efficacy of fasting in improving
insulin signaling and blood glucose control, and
in reducing inflammation, conditions for which,
additionally, the gut microbiota has been iden-
tified as a site of both risk and protective fac-
tors. Accordingly, human gut microbiota, both in
symbiont and pathobiont roles, have been pro-
posed to impact and mediate some health bene-
fits of fasting and could potentially affect many of
these diseases. While results from small-N studies
diverge, fasting consistently enriches widely rec-
ognized anti-inflammatory gut commensals such
as Faecalibacterium and other short-chain fatty
acid producers, which likely mediates some of its
health effects through immune system and barrier
function impact.
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Clinical indications for calorie restriction

The relevance of processes potentially impacted
through restricted feeding is major, as the exam-
ples mentioned in the literature—immune system,
metabolism, breakdown and repair, nervous
system signaling, proliferation, compensatory
processes—together comprise most core actors
in maintaining homeostasis, which, when lost,
results in broad and diverse (yet substantially
comorbid) gradual progression of chronic (with
acute escalation following various breakpoints)
diseases. This underlies indications for the util-
ity of restricted feeding under diverse indications

including hypertension [1–7], dyslipidemia [1, 4–8],
glycemic dysregulation and diabetes [1, 9–16], car-
diovascular diseases [1, 8, 17–20], liver disease [7,
21–25], as well as autoimmune and inflammatory
diseases [11, 26, 27] including rheumatoid arthri-
tis (RA) [28], endocrine disorders [29], even mood
and pain conditions [30], neurological diseases
[31–33], and possibly cancer [34–36] (Fig. 1). It is
fair to say that with a perfectly balanced and indi-
vidually tailored diet, most human deaths today
would take place at a later age than currently, with
the impact on a healthy lifespan being larger still.
Accordingly, the goal of refining, understanding,
and deploying dietary intervention and prevention
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Fig. 1 Clinical indication for calorie restrictions.

strategies, while always recognized as relevant,
is a key target for translational and personalized
omics-informed medicine.

In the wild, animal populations will increase to
the level set by limiting factors; frequently, those
result in food scarcity within habitats. It can be
expected that before various human technologies
of civilization, food production, and storage, our
evolutionary history will have included recurring
periods of food scarcity or even starvation, includ-
ing during cold or dry seasons, as a given [37].
Accordingly, we should expect animal biology to
be profoundly adapted to these pressures [17, 38,
39], and in some form, gene expression programs
for adjusting to changes in nutrient availability
are ubiquitous already in microbial life. A system
under external constraints can rely on those for
some of its regulation, meaning there is little fit-
ness gain from evolving or retaining costly internal
regulatory mechanisms, though high variability of
habitat conditions will again promote some regula-
tory sophistication. As such, to the extent recurring
starvation to a greater or lesser extent has been
a fact of a form of life, we should expect systems
to cope with it—functions for acquiring, consum-
ing, and storing nutrients in excess to weather
deprivation when it comes—to lack internal coun-
terbalances in the organism. An analogy can be
made to cancer—freed from those restrictions

imposed to impede proliferation in the uninjured
adult, uncontrolled growth will result (and accord-
ingly, restricted diets are an active area of research
and discussion in cancer treatment [34, 40, 41]).

Calorie restriction as controlled starvation

The discovery nearly a century ago that var-
ious animals kept at substantially restricted
caloric intake experienced extended lifespans and
improved health spurred further inquiry into
potential mechanisms [21, 42–46]. Many follow
the same principle—the more metabolic turnover,
the more molecular and tissue-level wear and tear
an organism experiences, including through reac-
tive oxygen species and other potentially toxic side
products of its metabolism, driving the accumu-
lation of damage at different scales underlying
both disease risk and more general processes of
aging, with protective mechanisms in turn acti-
vated under functioning homeostasis [1, 38, 47].
Even where damage is repaired, such reparation
in turn involves increased metabolic turnover and
ultimately contributes to the same process, as do
compensatory phenomena where some processes
escalate to account for deficits in others. It has
been further suggested that calorie restriction (CR)
induces a more efficient use of limited resources
in homeostasis maintenance through molecular-
level adaptations and conservation of stem cell
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reserves [48]. While true CR has been difficult to
leverage in the same way in the human setting,
it has informed dietary advice and offers an arena
for understanding downstream mechanistic bases
for health consequences of varying metabolic activ-
ity directly or indirectly [18, 38]. Some trials have
been undertaken on human CR and have revealed
improvement in aging-related biomarkers [49], and
observed typically long-lived human populations
have also been documented as maintaining low-
calorie diets [50]. Studies comparing very old and
less old adults revealed a complex pattern of gut
microbiome differences, where the very old har-
bor, for example, more Akkermansia bacteria, but
with inconsistent results for short-chain fatty acid
(SCFA) producers [51]. Interpreting these studies
faces the complexity that signatures of healthy
aging will load onto a survivor bias difficult to dis-
entangle from anymicrobiome derailment with age,
with both factors likely playing parts.

Fasting as a human historical practice

Many human cultures practice some form of a
fasting tradition, often serving functions of rit-
ual purification or ordeal, and considered within
their system to promote the health of the body
and mind [30, 52–54]. Passed down, these prac-
tices have inspired complementary or alternative
health approaches that have gained more public
awareness in modernity, with widespread belief
in their utility for a variety of aspects of well-
being [9, 52], a progression they also share with
practices stemming from ancient food preser-
vation such as fermentation where microbes or
microbial metabolic products play a role. An
exciting task of modern molecular medicine is
to evaluate what effects this may have on the
commensal gut microbiome, where so far little
research has been done. However, a recent study
showed increased gut community diversity and
enrichment in taxa, including from the Roseburia,
Lachnospira, Ruminococcus, Streptococcus, and
Faecalibacterium genera, under a fermented food
intervention [55].

Fasting in context of host and microbiome
multicellularity

Reflecting an evolutionary strategy of increasing
sophistication, specialization, and regulation, com-
plex multicellular life forms can be thought of
as (largely clonal within a body) ecosystems of
independent, yet interdependent cells differenti-
ated into tissues and organs. From this perspective

of organisms as communities, the integral pres-
ence and role of diverse mobile cells in this sys-
tem are unsurprising. Circulating blood and/or
immune cells form distinct and branching subpop-
ulations moving around the human body, espe-
cially inhabiting interface surfaces, and frequently
perform intracommunity functions such as defense
against foreign or rogue cells. To allow selective
uptake through such surfaces, mucosal barriers
involve a concerted expression of proteins and
polysaccharides by adjacent cells forming these
tissues and maintaining the integrity of this bar-
rier while still permitting necessary transport, thus
requiring careful gene regulation reactive to a vari-
ety of signals. Both microbial metabolites and
microbial surface components activate a variety
of signaling pathways that can either strengthen
or weaken this barrier [56] alongside the impact
on host cell proliferation [57] and through bac-
terial degradation of the mucin layer above the
epithelium. While the long-standing claim that
host-associated bacteria by far outnumber host-
derived cells has been updated to be roughly 1:1,
that still makes for around 30 trillion bacterial
cells in each of us [58]. Far from being ster-
ile, our skin as well as all external and inter-
nal mucosal surfaces are home to a diverse com-
munity of bacteria and other microbes, acquired
and accumulated from birth (and before) and in
a constant state of compositional flux reflecting
processes of motility, translocation, introduction,
competition, extinction, and differential capacity in
making use of available nutrients [59, 60]. Work
to date on the impact of fasting and fasting-like
[61, 62] interventions broadly point to a scenario
where nutrient restriction initially drives a shift
from adaptive to innate immune reliance [2, 63].
Immune cell populations shrink in the gut and
other secondary lymphoid organs but expand, also
through migration, in the bone marrow [64–66]
while also shifting transcriptional programs. This
process has been described as optimization and
reorganization for greater sustainability [64] of
the adaptive immune repertoire and forms a
credible mechanism for observed improvements
in autoimmune diseases such as both RA and
multiple sclerosis (MS) by CR, ketogenic diet,
or intermittent fasting (IF; in MS); by periodic
fasting (RA); and by fasting-mimicking diets (RA
and MS alike). [62] Refeeding again allows an
expansion of the cellular immune arsenal, revert-
ing many of the changes to this repertoire as
different subpopulations grow more numerous
again [2].
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Box 1 Some forms of fasting and related practices

• Periodic fasting: Food intake is low or zero
(water fast) for a period of several consecutive
(commonly 5–14) days. The Buchinger proto-
col and certain forms of religious fasting are
examples of this and may be undertaken at
an interval from monthly to one or a few times
yearly.

• Intermittent fasting: Maintaining an ongoing
fasting pattern at all times, including:

◦ Weekly fasting (e.g., 5:2 or alternate-day
fasting): Periodic fasting for a shorter inter-
val, restricting to at most ∼500 calories for
2 days per week with unrestricted eating
otherwise (5:2), with similar restrictions on
every other day (alternate), and so on.

◦ Time-restricted fasting (e.g., 16:8 or
Ramadan fasting): Limiting food intake
within each day to a shorter interval (e.g.,
8 out of 16 hours, or from sundown to
sunup).

• Calorie restriction: General term for a nutri-
tionally complete but calorically restricted
diet. “Grazing” eating patterns of frequent
but small meals would not trigger fasting
responses but may still constitute CR.

At least following the introduction of solid food,
these microbiomes show stability over time [67],
with communities from the same sample donor
being more similar over time than those from
other donors, in both of which bacterial taxa
are represented and in their relative abundances
[60]. This stability should be seen in context to
substantial variability between individuals [68],
with large-scale community structure falling
within certain broad patterns each seen in samples
from donors from different cultures [69], and also
substantial variability within the gut. For the latter,
different taxa tend to dominate the lumen of the
small intestines (e.g., Lactobacillaceae and Enter-
obacteriaceae species) versus the colon (e.g., Bac-
teroidaceae and Prevotellaceae species), whereas
relatively few species can colonize the mucosa and
the epithelial structures [70, 71]. Stool, while often
the only accessible sample matrix, thus integrates
and flattens this spatial (and temporal, reflecting
intestinal transit time) organization of the gut

microbiome, providing a simplified and sometimes
biased view [72]. The origin of microbiome stability
over time is not completely known but will reflect
the action of the host by way of individual patterns
of immune tolerance versus vigilance. Animals
born and raised truly sterile reveal immune abnor-
malities (partly reverted by subsequent coloniza-
tion by microbiota) reflecting underdevelopment of
gut-associated lymphoid tissue and morphological
differences compared to control animals, result-
ing in impaired antibody production and both
innate and adaptive immune response to later
bacterial infection being compromised [73–75].
This thus reflects a process of immune training
in wildtype development where the presence of
bacteria as (controlled or uncontrolled) foreign
guests and invaders primes the immune system
cells to respond to their recognition by specific
increased or decreased inflammation, with partic-
ular developmental windows where this learning
process most easily occurs. In this manner, host
immune and microbial cell populations interact
bidirectionally [70, 76–80], with these patterns of
favored coexistence versus antagonism also seen
within the microbial part of the resulting ecosys-
tem alone. Among interesting patterns seen are
recurring anticorrelation between, on one hand, a
module of anti-inflammatory commensals like Fae-
calibacterium prausnitzii and Eubacterium rectale,
and on the other hand inflammation-associated
bacteria like Ruminococcus gnavus, further sup-
porting the role of microbial immunomodulation
in the formation of these networks [68]. Bacteria
coordinate, especially when forming biofilms as
is the case also in the gut [81], forming trophic
webs where metabolic capacities are distributed
between cohabiting species to form complete path-
ways; signal to each other through metabolite
secretion; and use specialized peptides and small
molecules to fight each other, exerting lethality or
imposing growth disadvantage on their rivals while
their allies are protected through resistance gene
systems [82, 83]. Finally, to a great extent, the
microbiome is affected by host-external influences
where the nutrients supplied to our internal soil
gardens reflect the changing diet of the host [84–
86], as well as any medications, whether antibiotic
or otherwise [87], that the host is taking.

Microbial metabolites as potential fasting mediators

The totality of host and microbial cells has been
termed a holo-organism or holobiont [88–90]. With
microbes especially in the intestines performing
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many functions of nutrient processing into bet-
ter host-accessible forms, this symbiosis, which
is seen in the internal (micro-)environment, medi-
ates, modulates, and moderates influences of the
external (macro-)environment, for example where
a dietary factor such as insoluble fiber is differ-
entially produced into SCFAs (primarily acetate,
butyrate, and propionate), which in turn has pro-
tective effects on the mucosal barrier. The gene
functional capacities of the microbiome, reflective
of collective gene repertoire and reactivity, vary
substantially between individuals, meaning the
resulting nutrient availability to the host will differ
from person to person under the same diet, lead-
ing to individual dietary responses (including, e.g.,
post-prandial glucose in circulation [91, 92]), sug-
gesting the potential for personalized dietary inter-
ventions reflecting gut microbiome composition.
Several central products of bacterial metabolism
in the gut not only respond to host diet but also
to the ability of a particular microbiome to mediate
that response and have a complex impact on the
host. Particular attention has been paid to SCFAs
acting as preferred nutrients for particular host
cell types, activating (usually anti-inflammatory)
immune gene programs (e.g., in macrophages [93]),
triggering a variety of host signaling cascades (sev-
eral passing through chromatin modification and
so acting through epigenetic effects) or affecting
the permeability of mucosal membranes to reduce
the degree to which bacteria may enter the sys-
temic circulation and end up within remote tissues,
where they can cause further (including low-grade
and chronic) inflammation, which in turn trig-
gers further responses from the host. One impor-
tant mechanism possibly enabling further feed-
back loops is that SCFAs can induce the produc-
tion of antimicrobial peptides including various
C-lectins, defensins, and cathelicidins in cells in
the intestinal lining [94].

As noted in the systematic overview of findings
below, both fasting and refeeding are linked to
the expansion of different species known to pro-
duce SCFAs and we have reported the same being
seen for propionate on the level of direct read-
outs of gene functions integrated across species
[2]. Another relevant potential mechanism, sup-
ported by animal studies [95–97] but as yet rel-
atively unexplored in human studies, is for fast-
ing to impact host health and homeostasis (e.g.,
with regard to blood pressure [96] or diabetic
sequelae [95]) through altering the pool of sec-
ondary bile acids produced by the gut microbiota

in the course of enterohepatic circulation [98–
102]. Increased permeability of the gut will release
a heterogeneous class of compounds into circu-
lation that, among other functions, activates an
immune response, termed alarmins in this capac-
ity, with some being directly antimicrobial and
several useful as gut permeability markers [103].
While such a release may serve to raise vigilance
against extraintestinal infection through concor-
dantly translocated bacteria, the resulting state
of low-grade inflammation appears to form a con-
tributing risk factor for a diverse set of health con-
ditions [104–108], representing a body in a state
of chronically elevated alertness to the perceived
foreign threat. A Mediterranean diet (which sub-
stantially overlaps with the Dietary Approaches to
Stop Hypertension diet) has been linked to reduced
inflammation and improved metabolic health com-
pared to a Western diet [109–112], also in our
work [2]. Several nutrient categories, including
host-indigestible fibers, form good substrates for
SCFA production by a capable gut microbiome,
and they are accordingly central to prebiotic prac-
tices [113], where dietary supplements of particu-
lar nutrients aim to increase levels of their bacterial
metabolism products. Together with probiotic [114]
supplementation of live bacteria and the postbi-
otic [115] supplementation of products of external
microbial fermentation, such biotic functional food
approaches (found, as noted above, often as a con-
sequence of premodern food storage techniques)
can be contrasted with the antibiotics that revolu-
tionized 20th-century medicine, in that while the
latter seem to induce a microbiome pattern also
associated with low-grade inflammation [87], the
former seem in various regards able to prevent or
reverse such changes.

Other fasting targets in the human host

Aside from microbiome-mediated modes of action,
forms of fasting have several other possible ways
to exert systemic impact alone or in interaction
with the former. CR tends to involve a shift towards
ketone metabolism [116, 117], which in turn trig-
gers complex changes in gene expression and epi-
genetic modifications [21, 118]. Several forms of
epigenetic modification, including DNA methyla-
tion, histone methylation, and histone acetylation,
have been demonstrated to follow from forms of
CR in human or animal models across a range
of tissues, including but not limited to the liver,
pancreas, and adipose tissue. Epigenetic mark-
ers of metabolic disease within these tissues are
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known and linked to genes where expression is
normalized upon CR but large-scale data are as
yet sparse on how often epigenetic normalization
also drives this change, though with substan-
tial indications, for example, for the sirtuin fam-
ily of histone deacetylases [119, 120] and also in
human impacts through DNA methylation on lep-
tin and adiponectin expression [121] and down-
regulation of genes involved in oxidative phos-
phorylation [122], though in a manner complexly
depending on birth weight still in the adult. Epi-
genetic signatures of aging have been increasingly
identified and refined, and animal studies on CR
have shown a slower accumulation of age-related
epigenetic markers [123]. With nutrient gathering
being perhaps the most central activity required
to stay alive, it has been conducive to fitness to
build and maintain ways by which hungry ani-
mals will seek out food and will be effective in
doing so. The intestines as a site of digestion are
the site to sense fullness or conclude hunger, and
by that complex set of pathways comprising the
gut–brain axis [124–126], involving direct nervous
connections as well as immune, endocrine, and
circulating metabolite signaling, activity elsewhere
in the body will shift at all levels. Accordingly,
we expect and observe sweeping and wide-ranging
effects of reduced nutrition, and as an emergency
signal of sorts, for these pathways to have been
less optimized for carefully avoiding off-target or
secondary effects on the organism. Mood strongly
reflects eating and hunger, directly and profoundly
involving central nervous system reward mecha-
nisms and triggering instinctive behaviors. These
mechanisms in turn can drive a feedback loop
over time and dominate habitual behaviors, with
these processes likely underpinning some of the
anecdotal utility of fasting as a psychological tool.
Fasting has been shown to reduce levels of leptin, a
satiety signal, beyond its regulation from adiposity
itself [127–129], and there are indications that pro-
longed CR may revert resistance to leptin, which
has been linked to overeating [130]. Slightly weaker
evidence supports CR increasing adiponectin levels
[128]. At least one trial showed increases in hunger
suppressing GLP-1 and peptide YY levels follow-
ing seasonal fasting [131]. Further studies into the
impact of different forms of fasting on these signal-
ing systems are needed.

Another mechanism that should not be underes-
timated either on shorter or longer time scales is
the turnover of tissue-bound energy storage. As
circulating blood glucose is essential to maintain

at all times for the processes required for even
vegetative survival, a calorie deficit must swiftly
and decisively be countered by catabolic processes,
recycling especially adipose and muscle tissue for
energy. If the body cannot eat elsewhere, it must
eat itself; analogous to how excess in turn is stored
through anabolic processes gradually increasing
the mass of those same tissues in different pro-
portions. The autophagic process eventually takes
place [38, 53, 132], releasing various compounds
into circulation as anatomy begins to reshape.
The steps needed for this to occur may serve the
purposes of recycling and clearing out damaged
cellular components or misfolded proteins [133],
and as such, affect a broad range of processes
across many tissues and cell types. It is further
important to consider the context wherein fast-
ing and catabolism are often followed by refeeding
and anabolism, which in turn involve activation of
regulatory programs and compensatory processes
throughout the organism.

Fasting in the context of modern life

Given the way human bodies reflect adaptations
to a (diverse, rather than monolithic) premod-
ern past of recurring food scarcity, the changed
conditions beginning with settled agricultural or
pastoral lifestyles and proceeding to life in the
industrialized modern world, at least in the global
north, results in a major homeostatic challenge.
For many people alive today, high-fat, high-salt,
high-carbohydrate food, if monotonous, is avail-
able ad libitum. With bodies evolved to recognize
conditions of plenty as an opportunity to build up
energy stores for the inevitable winter, dry sea-
son, or period of poor fortune, overeating and the
resulting weight gain are epidemic and resistant to
most interventions [37, 38, 53]. Many modern pro-
cessed foods are lower in pre- and postbiotic com-
ponents than traditional fare, hampering the abil-
ity of microbiota to exert beneficial aspects, with
this state also possibly linked, alongside changes
in hygiene and sterility of our habitats, to a loss
of co-evolved commensal microbiota, further com-
pounding increased susceptibility to slowly pro-
gressing systemic loss of homeostasis and to dis-
ease. Comparisons of affluent populations from the
global north to some remaining indigenous pop-
ulations maintaining premodern practices, while
heavily confounded by many other factors, indicate
an accordingly elevated risk of many diseases in
the former. As social and economic transitions take
place in the developing world, changes in diet and
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lifestyle accompany them. For this process, predic-
tions were made and epidemiologically confirmed
of a gradual increase in the same diseases, which
can be projected onto a global shift in sources of
mortality over the upcoming decades [134, 135].
Yet another intriguing mechanism for the potential
impact of restricted feeding (especially IF) on home-
ostasis occurs through circadian rhythms. Most
life is adapted to a day–night cycle and a review
of available literature [136, 137] reveals evidence
that time-restricted feeding can amplify fluctua-
tions over that cycle in the composition and activity
of the gut microbiome, interacting with host intesti-
nal sensors, in turn driving signal cascades. Essen-
tially, adaptations for within-day cyclicity may
exist similar to seasonal adaptations, such that
maintaining homeostasis is more challenging in its
absence, and possible to further through its induc-
tion. Disruptions of the circadian rhythms exhib-
ited and also mediated by the microbiota [138] and
the immune system [10] are associated with an
increased risk of cardiovascular and metabolic ill-
ness as well as cancer [138]. Microbial SCFA pro-
duction plays a role in maintaining this homeosta-
sis, forming another mechanism by which fasting
may reduce disease risks. Moreover, especially IF
may help strengthen or stabilize impaired cyclicity
so that beneficial processes active during the non-
feeding phase become more prevalent again [139],
also with time-restricted feeding such that endoge-
nous cyclicity is optimally aligned with nutrient
availability from food intake [140]. Genes con-
nected with the circadian clock also affect the reg-
ulation of production of insulin, thyroid hormones,
and glucocorticoid, among others, with varying
degrees of support for an impact of restricted feed-
ing (for insulin, summarized below), but with as
yet more research needed to establish under which
circumstances these effects are beneficial [141];
but this again suggests a mechanism by way of
which restricted feeding contributes to increased
longevity [140].

Open questions: Locating the site of fasting action

One important largely unresolved question is to
what extent the spatial heterogeneity of both
host gene expression and microbiome composi-
tion/activity along the gastrointestinal tract [70–
72] are relevant for mechanisms of fasting. Avail-
able restricted diet trial data in humans are largely
always based on stool samples representing a
rough summary of the gut as a whole, making spa-
tially resolved changes upon dietary intervention

thus far largely the domain of a very small num-
ber of animal studies, though with the expecta-
tion of substantial differences between responses
in proximal and distal gut. Fourteen days of CR in
a mouse model did show differentiated activation of
host genes as well as differential microbial metabo-
lite responses along the gut [142]. Novel sam-
pling approaches for the human setting may here
eventually complement what otherwise becomes a
reliance on animal models with concomitant limi-
tations.

Fasting and impact on the gut microbiota

With the above context in mind, the present review
aims to summarize the main trends of the state
of the art of fasting specifically (broadly defined
as restricted feeding, see Box 1 for an overview
of common forms and Fig. 2 for an overview of
fasting mechanisms) as a tool for health improve-
ment, with a particular focus on its interlocking
impact on the human gut microbiome and immune
cell populations, and with a particular focus on
high-throughput (“-omics”) studies that can sup-
port computational systems analysis. A sum-
mary of key findings (aiming primarily to identify
recurring patterns as indicators of phenomena
robust enough to be reproduced) is given, along-
side some discussion of clinical relevance, trans-
lational potential, and remaining major knowledge
gaps.

We summarize here the state of the art of human
microbiome studies on the impact of fasting or CR
diets. For a description of inclusion criteria and
the comparison approach resulting in the articles
shown in Table 1 and the results shown in Table
S1 and Fig. 3, please see Supplementary Methods.

Overall, the literature on microbiome changes
under any kind of fasting diet skews towards rel-
atively small studies, and while most report sig-
nificant changes in host health and metabolism,
particularly weight loss, most are poorly pow-
ered to conclude specific changes robustly and
exhaustively in microbiome composition. In those
study designs where a fasting period is fol-
lowed by a maintenance or refeeding period, as
a rule, microbiome changes largely revert, sug-
gesting changes are transient. Studies with no
significant microbiome impact (Louis et al. [143],
Cignarella et al. [144], and Heinsen et al. [145])
under these criteria were omitted from further
discussion.
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Fig. 2 Schematic for fasting as an intervention in the context of an overview of fasting mechanisms.

Effect of periodic fasting

Lilja and coworkers [146] investigated the gut
microbiome and host gene expression before and
after a Buchinger fast using 16S sequencing,
revealing an overall change in microbiome struc-
ture yet with little that replicates in other available
studies.

Maifeld and coworkers [2] carried out Buchinger
fasting in metabolic syndrome patients followed
by 3-month refeeding on a Mediterranean diet,
assessed through shotgun and 16S sequenc-
ing of the gut microbiome, linking findings to
changes in immune cell subpopulation propor-
tions while, uniquely, adjusting the analysis for
changing medication in many subjects throughout
the follow-up period. Individuals in whom blood
pressure control either improved or was main-
tained at a reduced medication dose were con-
sidered responders and differed already at base-

line from nonresponders in immune profile and
some microbiome features, including propionate
production capacity. This deficit was normalized
during fasting itself, whereas a relative lack of other
SCFA-producing commensals, especially butyrate-
producing Faecalibacterium but also Coprococ-
cus and Roseburia, normalized during refeeding,
particularly in responders. No effects on alpha
diversity were seen, and most microbiome alter-
ations had reverted to baseline by 3 months
follow-up.

Mesnage and coworkers [147] assessed a
Buchinger fast and subsequent 3-month refeeding
in healthy volunteers, assessing the gut micro-
biome with 16S sequencing and additionally
investigating serum metabolite levels. In many
ways, changes during fasting resembled those
seen in responders in the work by Maifeld et al.,
with initial depletion of SCFA producers (e.g.,
Faecalibacterium, Coprococcus, Roseburia, as well
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Table 1. Primary literature on human fasting interventions impacting the gut microbiome

Title First author Journal Year Type
Number of
probands Duration

Microbiome
characterization

Caloric restriction
Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole
metagenome shotgun sequencing

Louis PloS One 2016 VLCD,
OPTIFAST,
800 kcal

16 (9F) 3 months,
2-year
follow-up

Shotgun

Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not
sustained during weight maintenance

Heinsen Obesity Facts 2017 VLCD, 800 kcal 18 (15F) 3 months,
3-month
mainte-
nance

16S

Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of
obese postmenopausal women

Alemán Journal of
Translational
Medicine

2019 VLCD, 800 kcal 10 (10F) Average 46
days

16S

A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in
obese type 2 diabetics: a pilot study

Frost PloS One 2020 VLCD, 800 kcal 12 (8F) 6 weeks,
15-week
follow-up

16S

Different weight loss intervention approaches reveal a lack of a common pattern of gut microbiota changes
Gutiérrez-
Repiso

Journal of
Personalized
Medicine

2021 VLCKD and
others

VLCKD 18
(10F)

2 months 16S

The gut microbiota during a behavioral weight loss intervention
Stanislawski Nutrients 2021 DCR, IMF DCR 25,

IMF 34
3 months 16S

Intermittent fasting
Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota

Cignarella Cell Metabolism 2019 IMF 8 (5F) 2 weeks Shotgun, 16S
Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients

Guo The Journal of
Clinical
Endocrinology
& Metabolism

2020 IMF 21 (11F) 8 weeks 16S

Structural changes in gut microbiome after Ramadan fasting: a pilot study
Ozkul Beneficial

Microbes
2021 Ramadan IMF 9 29 days 16S

Ramadan fasting leads to shifts in human gut microbiota structured by dietary composition
Ali Frontiers in

Microbiology
2021 Ramadan IMF 34 29 days 16S

(Continued)
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Table 1. (Continued)

Title First author Journal Year Type
Number of
probands Duration

Microbiome
characterization

Remodeling of the gut microbiome during Ramadan-associated intermittent fasting
Su The American

Journal of
Clinical
Nutrition

2021 Ramadan IMF 57 (17F) 29 days,
2-month
follow-up

16S

Periodic fasting
Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot
study

Remely Wiener
Klinische
Wochenschrift

2016 Buchinger 13 1 week,
6-week
follow-up

16S qPCR

Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger
fasting

Mesnage Journal of
Nutritional
Science

2020 Buchinger 15 (15M) 10 days 3
months

16S

Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients
Maifeld Nature Commu-

nication
2021 Buchinger 35 (23F) 1 week,

3-month
follow-up

Shotgun, 16S

Five days periodic fasting elevates levels of longevity related Christensenella and sirtuin expression in humans
Lilja International

Journal of
Molecular
Sciences

2021 Buchinger 20 (15F) 1 week 16S

Abbreviations: M, male participants; F, female participants; IMF, Intermittent Fasting; DCR, Daily Calorie Restriction;
VLCD, Very Low Calorie Diet; VLCKD, Very Low Calorie Ketogenic Diet.

Fig. 3 Consensus gut microbiome taxonomic
composition changes under fasting interventions. The
direction of the reported significant change in gut
microbiome alpha diversity or genus abundance is
shown as marker hue and direction.
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as Oscillibacter) then reversed during refeeding;
and the opposite pattern was seen for poten-
tially opportunistic taxa (including Bacteroides,
Alistipes, Intestinimonas, and Anaerotruncus).

Remely and coworkers [148] report on a combined
small-sample pilot trial where subjects undergo
a Buchinger fast followed by refeeding with addi-
tional treatment with probiotics. Increased alpha
diversity (reflecting more different taxa present in
each ecosystem as opposed to bloom or monocul-
ture) and carriage of the probiotic genera involved
are the best-supported results on the microbiome
level. This study also reports an increase in SCFA-
producing mucus-associated Akkermansia, and
Faecalibacterium prausnitzii at the species but not
the genus level.

Effect of IF

Stanislawski et al. [149] report results of the
DRIFT2 trial, which is a 12-month weight loss
intervention in overweight subjects. Microbiome
analysis through 16S sequencing was done for the
first 3 months, with subjects randomized to CR
or 4:3 IF. Multivariate compositional change of
the gut microbiome is reported alongside increased
alpha diversity, though no specific microbiome
changes replicate in any other considered study.

Su and coworkers [150] followed an old and
a young cohort undergoing yearly Ramadan IF,
with an additional longer follow-up in the older
cohort, analyzing the microbiome through 16S
sequencing. Multivariate analysis revealed over-
all gut remodeling in both groups, with support
for increased alpha diversity only in the younger
group, and with an increase in Faecalibacterium
being the main signal shared by both.

Ali and coworkers [151] similarly assessed micro-
biome changes throughout Ramadan IF in two dif-
ferent cohorts from two different countries using
16S sequencing of stool samples. No effect on alpha
diversity was seen, and changes in other regards
under the fast differ substantially between the
subcohorts, with some signatures resembling that
seen in Buchinger fasting, and some resembling
refeeding.

Ozkul and coworkers [152] also investigated micro-
biome alterations in a small sample of volunteers
undergoing Ramadan fasting using 16S sequenc-
ing. A clear shift towards gut eubiosis as previously

described in the literature was seen, revealing ele-
vated alpha diversity as well as elevated levels of
SCFA producers including Faecalibacterium, Rose-
buria, Eubacterium, and Akkermansia. The best-
known species within the latter, A. muciniphila, is a
mucin degrader strongly associated with metabolic
health in a variety of studies [153].

Guo and coworkers [154] investigated gut micro-
biome changes after 8 weeks of IF using 16S
sequencing. Increases in SCFA producers includ-
ing Roseburia and Butyricoccus were seen, along-
side microbiome changes towards eubiosis on
other taxonomic levels as well. Butyricoccus was
depleted in inflammatory bowel disease patients
and demonstrated protection in a rat colitis model
[155], leading to suggestions for its probiotic use.

Effect of CRs

Alemán and coworkers [156] report from one of sev-
eral overall restricted daily calorie diets, assessing
gut microbiome composition through 16S sequenc-
ing under a weight loss intervention. The very lim-
ited sample number may underlie the largely neg-
ative findings in the microbiome space (while the
intervention as such was effective).

Frost and coworkers [157] placed a small number
of type 2 diabetic obese subjects on a low calo-
rie diet followed by a food reintroduction period,
investigating gut microbiome composition using
16S sequencing. From the reported results, alpha
diversity, as a marker of eubiosis, increased, along
with depletion of some pathobiont taxa. Most
microbiome changes had reverted by the time of
follow-up though sustained weight loss remained
visible.

Gutiérrez-Repiso and coworkers [158] in one study
compared bariatric surgery, the Mediterranean
diet, and a CR diet to understand the possible
scope of CR intervention in humans. While micro-
biome changes occurred in each study arm, sig-
natures largely did not overlap, indicating that
the mode of dietary intervention rather than the
weight loss itself is what is most salient in accom-
panying gut microbiome alterations. The ketogenic
CR arm is what most resembles other studies
included in this review and has some overlap with
taxa seen altered elsewhere (especially Roseburia,
Parabacteroides, and Alistipes) in either fasting
or refeeding stages, though the resulting hetero-
geneity suggests specifics of intervention and the
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starting point may represent different aspects of an
overall more complex process of nutrition-induced
microbiome change. All three diets lowered blood
sugar, though significance was achieved only in the
bariatric surgery arm, in line with improved insulin
sensitivity accompanying the microbiome changes.

Consensus findings on fasting impact on the gut
microbiome

The most frequently found microbiome impact of
fasting interventions, whether periodic or inter-
mittent, is an enrichment of Faecalibacterium
(resolved further as F. prausnitzii), well known to
produce anti-inflammatory SCFA from dietary fiber
and for being protective against both metabolic
and inflammatory disease. Where the study design
allows distinguishing of a fasting phase from a
refeeding phase, this enrichment takes place dur-
ing refeeding, sometimes following an initial sup-
pression during fasting itself. Roseburia, Butyric-
occus, and Coprococcus, also genera populated
by core gut SCFA producers, display similar pat-
terns, with evidence for depletion during fasting
and enrichment during refeeding.

Several studies report increase in gut Alistipes
abundance either in fasting or refeeding state, with
a single counterexample of depletion-associated
refeeding in a cohort of healthy volunteers. All
in all, this suggests a taxon associated with the
health improvements of fasting but with more work
needed to clarify its specific role. Similar patterns
are seen for the Anaerotruncus and Intestinimonas
genera. Enrichment of Bifidobacterium, a common
probiotic, has also been seen across multiple stud-
ies with some ambiguity as to the role of fasting
and refeeding stages (and note also its direct use as
a probiotic in one of the included studies), and an
analogous case holds for Parabacteroides. It should
be noted that in one of two studies concluding
the increase of Bifidobacterium, this taxon is also
present as a probiotic, so less likely to represent
a fasting effect, though its support from another
study suggests a protective role.

Inversely, Bacteroides is seen enriched during fast-
ing itself in three studies, then depleted dur-
ing refeeding; its specific impact seems robust
nonetheless. As the central Bacteroidetes genus
it is core to the Bacteroidetes–Firmicutes phy-
lum ratio often proposed as a biomarker of gut
eubiosis and reflected in the high-level sum-
mary of gut microbiome composition patterns as

enterotypes. Several studies report depletion in the
Lachnospiraceae taxa. Eubacterium is enriched in
two but depleted in one intermittent (Ramadan)
fasting intervention. Other previously discussed
commensal and pathobiont associations reported,
such as fasting-associated depletion of Strepto-
coccus or Collinsella or increase in Akkermansia,
Eggerthella, or Lactobacillus, are seen to be repli-
cated but not consistently. Gut alpha diversity, well
recognized as a marker of health and homeostasis,
increases in several long-term moderate CR and IF
scenarios but is generally not seen altered during
intensive fasting. In particular, there is no indica-
tion of any loss of gut diversity from depriving the
gut microbiome of nutrition on a shorter time scale,
which might otherwise have been expected.

In summary, there is a good foundation for con-
cluding that a variety of fasting interventions result
in the enrichment of various anti-inflammatory
core commensals, especially SCFA producers, con-
sistently though with variability, which may reflect
a form of fasting, time of follow-up, or state at base-
line.

Conclusions

Fasting and refeeding, intermittent and ongoing
CR are associated with eventual shifts in the gut
ecosystem away from pathobionts and towards
major anti-inflammatory commensal taxa. Such
shifts seem transient, with the microbiome return-
ing to near baseline within months of cessation
of the intervention, but are frequently accompa-
nied by longer-lasting changes to the metabolism
and overall health induced when they are visible.
There clearly seem to be grounds to adapt fasting-
type diets in a variety of health indications, par-
ticularly components of the metabolic syndrome
and its sequelae, as well as other immune- and
inflammation-mediated diseases, especially com-
bined with other modalities such that it may com-
plement and strengthen homeostasis. Interven-
tions showing fasting-induced improvement to a
disease entity thus also indicate a potential gut
microbiome protective effect or pathological mech-
anism involvement and can guide the design of
further trials to test this. Such fasting-induced
microbiome shift typically involves enrichment of
bacteria such as F. prausnitzii that produce anti-
inflammatory SCFA. Indeed, the impact of high
fiber on immune homeostasis showed such effects,
suggesting possible ways to “prime” an individual
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to be more receptive to a wider scope of interven-
tions.

It is also clear that while there exists a broad trend
of interventions studied so far—Buchinger fasting,
restriction of daily calories to less than 800 (very
low calorie diets [159]), and intermittent (includ-
ing religious) fasting—the specifics of these matter
and any comparison of results from studies using
different interventions of this kind will diverge
reflecting factors of the interventions other than
the calories ingested. To what extent do healthy
versus metabolically ill individuals respond differ-
ently? And to what extent is this—as suggested
by our work also in line with other recent stud-
ies suggesting individually variable and predictable
glycemic responses to different diets—predictable
from microbiome baseline, so that it represents a
target for personalized nutrition? To address this, it
is motivated to run larger-scale harmonized inter-
ventions where the individual baseline varies suf-
ficiently within the cohorts.

Going forward, observing emerging standards for
systematic data collection [160] and accounting for
confounders [161], both in study design and anal-
ysis, are likely to further solidify our insights into
the potential microbiome-mediated health benefits
of fasting. This may guide it to a central role in
future interventions, as expected from its anchor-
ing within the scope of our human evolutionary
past.
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