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Abstract

Broadly neutralizing antibody (bnAb) induction is a high priority for effective HIV-1 vaccina-

tion. VRC01-class bnAbs that target the CD4 binding site (CD4bs) of trimeric HIV-1 envelope

(Env) glycoprotein spikes are particularly attractive to elicit because of their extraordinary

breadth and potency of neutralization in vitro and their ability to protect against infection in

animal models. Glycans bordering the CD4bs impede the binding of germline-reverted forms

of VRC01-class bnAbs and therefore constitute a barrier to early events in initiating the cor-

rect antibody lineages. Deleting a subset of these glycans permits Env antigen binding but

not virus neutralization, suggesting that additional barriers impede germline-reverted

VRC01-class antibody binding to functional Env trimers. We investigated the requirements

for functional Env trimer engagement of VRC01-class naïve B cell receptors by using virus

neutralization and germline-reverted antibodies as surrogates for the interaction. Targeted

deletion of a subset of N-glycans bordering the CD4bs, combined with Man5 enrichment of

remaining N-linked glycans that are otherwise processed into larger complex-type glycans,

rendered HIV-1 426c Env-pseudotyped virus (subtype C, transmitted/founder) highly suscep-

tible to neutralization by near germline forms of VRC01-class bnAbs. Neither glycan modifica-

tion alone rendered the virus susceptible to neutralization. The potency of neutralization in

some cases rivaled the potency of mature VRC01 against wildtype viruses. Neutralization by

the germline-reverted antibodies was abrogated by the known VRC01 resistance mutation,

D279K. These findings improve our understanding of the restrictions imposed by glycans in

eliciting VRC01-class bnAbs and enable a neutralization-based strategy to monitor vaccine-

elicited early precursors of this class of bnAbs.
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Author summary

Activation of appropriate naïve B cells is a critical initial step in the elicitation of broadly

neutralizing antibodies (bnAbs) by HIV-1 vaccines. Germline-reverted forms of bnAbs

partially mimic naïve B cell receptors, making them useful for designing and identifying

immunogens that can initiate early stages of bnAb development. Here we identify a com-

bination of glycan-modifications on the HIV-1 envelope glycoproteins that preserve

native structure and facilitate interactions with germline-reverted forms of the VRC01-

class of bnAbs. These modifications included the complete removal of certain N-glycans,

combined with Man5-enrichment of remaining N-glycans that otherwise are processed

into larger complex-type glycans. HIV-1 Env-pseudotyped viruses modified in this way

were highly susceptible to neutralization by germline-reverted forms of several VRC01-

class bnAbs, and this neutralization could be blocked by a known VRC01 resistance muta-

tion. These findings provide new insights for the design and testing of novel immunogens

that aim to elicit VRC01-like bnAbs.

Introduction

The CD4-binding site (CD4bs) of HIV-1 envelope glycoproteins (Env) is essential for virus

entry [1] and is susceptible to some of the most potent broadly neutralizing antibodies (bnAbs)

described to date, neutralizing up to 98% of circulating strains [2–10]. These bnAbs also prevent

SHIV infection in nonhuman primates [11–16] and produce transient reductions in plasma

viremia in infected humans [17, 18] and macaques [19, 20]. Such features make CD4bs bnAbs

highly attractive for vaccine development. Unfortunately, although the human immune system

is clearly capable of making these antibodies in the setting of chronic HIV-1 infection, all efforts

to elicit them with vaccines in non-human primates and humans have failed [21].

A major roadblock is the high level of somatic hypermutation required to bind an epitope

that is conformationally masked and sterically occluded by surrounding glycans [7, 9, 10, 22,

23]. Mature CD4bs bnAbs resemble CD4 in their mode of binding and contact the CD4-bind-

ing loop while avoiding or accommodating potential clashes with loop D and the fifth variable

(V5) regions of gp120, often contacting both of these latter regions [2, 8, 22, 24]. Few immuno-

globulin gene families appear to give rise to CD4bs bnAbs, most notably VH1-2 and the closely

related VH1-46, both of which are utilized by the most potent CD4bs bnAbs (e.g., VRC01,

3BNC117, N6, CH235.12). Binding of these bnAbs is mediated by the heavy and light chains

and is dominated by the heavy-chain second complementarity determining region (CDRH2)

when either VH1-2 or VH1-46 are utilized [2, 5, 10]. Other CD4bs bnAbs (e.g., CH103,

VRC13, VRC16 and HJ16) make use of multiple additional VH gene families, and their bind-

ing involves a CDRH3-dominated mode of recognition [6, 10].

Most current immunogens fail to bind germline-reverted forms of CD4bs bnAbs [7, 9, 22,

25–29] and therefore are unlikely to engage cognate naïve B cell receptors (BCRs). Weak germ-

line binding has been detected against autologous Envs but it is not clear that this weak bind-

ing will provide an adequate stimulus to initiate bnAb development [30, 31]. Relationships

between antibody structure and function are serving as a basis to reverse-engineer improved

germline-targeting immunogens for the VRC01 class of CD4bs bnAbs. Notably, germline-

reverted forms of these bnAbs are less positively charged [32] and their CDRH3 might play a

more dominant role [33] than the mature bnAbs; both of these features could potentially influ-

ence interactions with complex-type glycans.
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Germline binding has been detected by introducing Env mutations that selectively remove

glycans in the vicinity of the CD4bs that are predicted to clash with germline forms of the

bnAbs. Targeted removal of three glycans from clade C strain 426c gp140, one at N276 in loop

D that contacts the light chains of VRC01 and NIH45-46 [22, 34], and two at N460 and N463

in V5 that modulate VRC01 sensitivity [35], permit nanomolar avid binding of germline-

reverted forms of VRC01 and NIH45-46 [27]. These mutations also permit activation of B cells

expressing germline-reverted BCRs of VRC01 and NIH45-46 in vitro [27]. Further modifica-

tions to the 426c Env, including the removal of the first, second and third variable regions,

conferred binding to additional germline-reverted VRC01 class Abs and activation of germ-

line-reverted BCR of 3BNC60 in transgenic mice following immunization [36, 37]. Deletion of

glycan N276 is also one central design feature of engineered outer domain, germline-targeting

(eOD-GT) immunogens that bind germline forms of the VRC01 class of bnAbs and activate

germline-reverted BCR in knock-in mice [26, 36, 38, 39].

HIV-1 Env is heavily glycosylated, with a glycan content that accounts for approximately

50% of its molecular mass [40]. The majority of these glycans exist as under-processed, high

mannose (Man5-9GlcNac2) glycoforms owing to steric constrains imposed by the dense clus-

tering of glycans and the trimerization of gp120-gp41 heterodimers that impede the actions of

α-mannosidases required for complex glycan formation [41–44]. A predominance of high

mannose glycans is seen with multiple forms of Env produced in different cell types [45–52],

where a higher abundance of Man5GlcNac2 is present on virions and membrane associated

Env than on recombinant gp120 and gp140 proteins [41, 45, 48]. The smaller proportion of

fully processed glycans exists mainly as sialylated bi-, tri- and tetra-antennary complex-type

glycans [4, 48, 53, 54], a portion of which surround the CD4bs [4, 55].

Complex-type glycans are arrested at Man5GlcNac2 in the absence of the enzyme N-acetyl-

glucosaminyltransferase (GnT1) [56], which is responsible for attachment of GlcNAc to Man5-

GlcNAc2 in the medial-Golgi as a requisite step for complete processing. There are reports of

improved neutralization potency of mature CD4bs bnAbs against HIV-1 produced in GnT1-

cells [27, 57, 58]. Some strains of HIV-1 produced in GnT1- cells are also sensitive to neutrali-

zation by germline-reverted forms of V2 apex bnAbs [58]. Here we demonstrate that a combi-

nation of Man5-enrichment and targeted glycan deletion reduces steric barriers to germline-

reverted VRC01-class bnAbs without disrupting functional Env conformation, enabling

potent virus neutralization. We describe the implications of these findings for immunogen

design and vaccine immune monitoring.

Results

Enhanced neutralization potency of mature CD4bs bnAbs against Envs

produced in GnT1- cells

Multiple bnAbs were assessed for neutralizing activity against Env-pseudotyped viruses (EPV)

produced in either 293T or 293S GnT1- cells. The latter cells were used to generate Man5-

enriched EPV, with the rationale that relatively small Man5 would replace larger complex-type

glycans, thereby improving access to the CD4bs. Initially, three mature CD4bs bnAbs (VRC01,

3BNC117 and VRC-CH31) were assayed against EPV expressing Envs from HIV-1 strains

CE1176 and WITO. Greater potency (often >10-fold) was seen against GnT1- EPV for all

three bnAbs (Table 1).

A third EPV, TRO.11, was assayed with a wider range of mature bnAbs covering multiple

epitopes (Table 2). With the exception of HJ16 and IgG1b12, the mature CD4bs bnAbs again

showed enhanced potency against GnT1- EPV. HJ16 was 32-fold less potent against GnT1-

EPV, while IgG1b12 was non-neutralizing. HJ16 requires gp120 glycan N276 [59] and might
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Table 1. GnT1- production enhances the susceptibility of HIV-1 to neutralization by CD4bs bnAbs.

IC50 (μg/ml)a

EPVb bnAb 293T virus GnT1- virus Fold Change

CE1176 VRC01 10.00 0.37 27.0

WITO VRC01 0.62 0.14 4.4

CE1176 3BNC117 0.63 0.04 15.8

WITO 3BNC117 0.12 0.01 10.9

CE1176 VRC-CH31 3.7 0.30 12.3

WITO VRC-CH31 0.60 0.01 54.6

aNeutralization assays were performed with Env-pseudotyped viruses in TZM-bl cells as described in Materials and Methods.
bEnv-pseudotyped viruses (EPV) were produced in either HEK 293T or HEK 293s GnT1- cells.

https://doi.org/10.1371/journal.ppat.1007431.t001

Table 2. Enhanced susceptibility of GnT1- virus is relatively specific for CD4bs bnAbs.

IC50 (μg/ml)a

mAb Epitope TRO.11/293Tb TRO.11/GnT1-b Fold changec

2G12 Glycan 0.38 0.26 1.5

2F5 MPER >50 >50 NA

4E10 MPER 0.46 0.51 -1.1

10E8 MPER 0.12 0.06 2.0

DH511.2_K3 MPER 0.09 0.06 1.5

CH01 V2 apex >50 >50 NA

PG9 V2 apex >50 >50 NA

PG16 V2 apex 1.47 1.82 -1.2

PGDM1400 V2 apex 0.51 0.44 1.2

PGT121 V3 glycan 0.04 0.09 -2.3

PGT128 V3 glycan 0.02 0.01 2.0

10–1074 V3 glycan 0.01 0.02 -2.0

PGT151 Interface >50 >50 NA

VRC34.1 Interface >50 >50 NA

8ANC195 Interface 0.32 0.55 -1.7

IgG1b12 CD4bs >50 >50 NA

VRC01 CD4bs 0.58 0.07 8.3

3BNC117 CD4bs 0.02 0.01 2.0

VRC-CH31 CD4bs 0.22 0.03 7.3

CH103 CD4bs 6.40 0.40 16.0

CH235 CD4bs 12.20 0.09 135.6

3BNC60 CD4bs 0.06 0.02 3.0

HJ16 CD4bs 0.05 1.60 -32.0

sCD4 CD4bs >50 >50 NA

VRC01gl CD4bs >50 >50 NA

VRC-CH31 UCA CD4bs >50 >50 NA

CH103 UCA1 CD4bs >50 >50 NA

CH235 UCA2 CD4bs >50 >50 NA

3BNC60gl CD4bs >50 >50 NA

aNeutralization assays were performed with Env-pseudotyped viruses in TZM-bl cells as described in Materials and Methods. Positive values are shown in boldface type.
bTRO.11 Env-pseudotyped virus was produced in either HEK 293T or HEK 293s GnT1- cells as indicated.
cChanges that are�3-fold are shown in boldface type. NA, not applicable (no neutralization detected).

https://doi.org/10.1371/journal.ppat.1007431.t002
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not tolerate Man5GlcNAc2 at this site. GnT1- had little or no impact on bnAbs whose epitopes

resided outside the CD4bs. Notably, no neutralization was detected with germline-reverted

forms of CD4bs bnAbs (Table 2).

Complementarity of Man5-enrichment and targeted glycan deletion for

neutralization by mature CD4bs bnAbs

We next combined GnT1- production and the targeted deletion of one or more glycans sur-

rounding the CD4bs. Mutants of the subtype C transmitted-founder 426c EPV were used

that lacked glycan N276 (SM), two glycans at N460 and N463 (DM), or all three glycans

(TM1) [27]. A fourth 426c mutant, TM4 (S278R.G471S.N460D.N463D), lacked all three

glycans except that glycan N276 was removed by introducing S278R [37]. TM4 also con-

tained a G471S mutation that improves germline VRC01 binding to both eOD-GT6 and

426c [26, 37].

Targeted glycan-deleted EPV, whether produced in 293T or GnT1- cells, maintained a tier

2 neutralization phenotype with HIV-1 sera and were mostly resistant to mAbs that preferen-

tially neutralize tier 1 Envs (non-neutralizing Abs) (Table 3). EPVs produced in GnT1- cells

were more sensitive to HIV-1 sera than their 293T-grown counterpart, especially TM1 and

TM4, but still within the tier 2 spectrum. These results agree with the tier 2 phenotype of other

EPV produced in GnT1- cells [58]. We note that the 293S GnT1- viruses often exhibited lower

infectivity than their 293T-grown counterparts. Adjustments were made in the virus inoculum

used in the assay to account for this lower infectivity.

As reported for NIH45-46 [27], mature CD4bs bnAbs were consistently more potent

against the 293T version of targeted glycan deleted 426c EPV than against the 293T version of

the parental EPV (Table 4). In particular, TM1 and TM4 were 10-1000-fold more susceptible

to VRC01 and 3BNC117 compared to parental 426c. DM, TM1 and TM4 were 6-11-fold more

sensitive to CH103. TM4 was 4-fold more susceptible to VRC-CH31, whereas no increased in

VRC-CH31 susceptibility was seen with DM, and resistance was seen with SM and TM1.

Parental and all glycan-deleted 426c EPV produced in 293T cells were resistant to CH235 but

were sensitive to CH235.12. Importantly, despite 100-fold and 1000-fold increased potencies

of mature VRC01 against the 293T versions of TM1 and TM4, respectively, these EPV were

not neutralized by germline-reverted VRC01.

GnT1- production increased the sensitivity of 426c by 8–12 fold when assayed with mature

VRC01, 3BNC117, VRC-CH31 and CH103, and this sensitivity increased further by targeted

glycan deletion, thereby demonstrating the complementary nature of GnT1- production and

targeted glycan deletion for enhanced neutralization by these mature bnAbs (Table 4). Nota-

bly, GnT1- increased the sensitivity of SM and DM to mature VRC01 by ~10-fold. A further

increase in sensitivity was seen against TM1 and TM4 but here GnT1- provided little or no

benefit (Table 4 and Fig 1), indicating that mature VRC01 does not require Man5-enrichment

for maximum neutralization of these triple glycan-deleted viruses. GnT1- increased the sensi-

tivity of all four 426c glycan mutants to neutralization by 3BNC117 and, to a lesser extent, by

VRC-CH31 (Table 4). In contrast, GnT1- rendered parental 426c, DM and TM4 less sensitive

to CH235.12. GnT1- had little impact on most other mature bnAbs tested. A notable exception

was a ~100-fold diminished potency of the PGT151 (gp120/gp41 interface bnAb) against

GnT1- versions of all four glycan mutants of 426c, which has been observed for other viruses

as well [58] and is consistent with the known dependency of this bnAb on complex-type gly-

cans [60, 61]. GnT1- had no measurable impact on VRC34.01, whose epitope overlaps but is

distinct from that of PGT151 [62].
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Table 3. HIV-1 426c variants produced in GnT1- cells retain a tier 2 neutralization phenotype.

ID50 (dilution) in TZM-bla

293T Virusesb

Reagent Epitope 426c 426c.SM 426c.DM 426c.TM 426c.TM4

HIV-1 sera:

CHAVI-0293 pool2 Polyclonal 30 30 30 83 177

CHAVI-0537 pool2 Polyclonal 467 182 290 166 323

CHAVI-0642 pool2 Polyclonal 111 64 50 77 86

CHAVI-0461 pool2 Polyclonal 93 56 57 46 102

CHAVI-0598 pool2 Polyclonal 235 150 145 319 476

Geometric mean titer 128 78 81 109 189
Non-neutralizing Abs:

2219 V3 >25 >25 >25 >25 >25

2557 V3 >25 >25 >25 >25 >25

3074 V3 >25 >25 >25 >25 >25

3869 V3 >25 >25 >25 >25 >25

447-52D V3 >25 >25 >25 >25 >25

838-12D V3 >25 >25 >25 >25 >25

654-30D CD4bs >25 >25 >25 >25 >25

1008-30D CD4bs >25 >25 >25 >25 >25

1570D CD4bs >25 >25 >25 >25 >25

729-30D CD4bs >25 >25 >25 >25 >25

F105 CD4bs >25 >25 >25 >25 >25

293S GnTI- Virusesb

Reagent Epitope 426c 426c.SM 426c.DM 426c.TM 426c.TM4

HIV-1 sera:

CHAVI-0293 pool2 Polyclonal 45 84 41 299 343

CHAVI-0537 pool2 Polyclonal 109 120 94 111 203

CHAVI-0642 pool2 Polyclonal 206 262 134 258 235

CHAVI-0461 pool2 Polyclonal 66 85 280 56 131

CHAVI-0598 pool2 Polyclonal 566 482 489 897 1452

Geometric mean titer 130 161 148 212 315
Non-neutralizing Abs:

2219 V3 >25 >25 >25 >25 >25

2557 V3 >25 >25 >25 >25 >25

3074 V3 >25 23 >25 >25 >25

3869 V3 >25 >25 >25 >25 >25

447-52D V3 >25 >25 >25 >25 >25

838-12D V3 >25 >25 >25 >25 >25

654-30D CD4bs >25 >25 >25 >25 >25

1008-30D CD4bs >25 >25 >25 >25 >25

1570D CD4bs >25 >25 >25 >25 >25

729-30D CD4bs >25 >25 >25 >25 >25

F105 CD4bs >25 >25 >25 >25 >25

aNeutralization assays were performed with Env-pseudotyped viruses in TZM-bl cells as described in Materials and Methods.
bEnv-pseudotyped viruses were produced in either HEK 293T or HEK 293s GnT1- cells. The 426c glycan deletion mutants were SM (N276D), DM (N460D.N463D),

TM1 (N276D.N460D.N463D) and TM4 (S278R.G471S.N460D.N463D).

https://doi.org/10.1371/journal.ppat.1007431.t003
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Table 4. Neutralization of parental and glycan-modified 426c by mature, intermediate and germline forms of bnAbs.

IC50 (μg/ml)a

293T Virusesb 293S GnT1- Virusesb

Reagent Epitope 426c 426c.SM 426c.DM 426c.TM1 426c.TM4 426c 426c.SM 426c.DM 426c.TM1 426c.TM4

Mature bnAbs:

2G12 glycan >25 >25 >25 >25 >25 >25 >25 >25 >25 >25

2F5 MPER >25 >25 >25 >25 >25 >25 >25 >25 >25 >25

4E10 MPER 3.32 1.52 1.00 0.98 1.66 4 3.8 3.7 4 1.6

10E8 MPER 0.8 1.26 1.11 1.52 0.53 0.35 0.28 0.45 0.51 0.19

DH511.2_K3 MPER 0.8 0.77 1.50 1.06 0.56 0.85 0.87 0.75 1.2 0.56

CH01 V2 apex >25 >25 >25 >25 >25 >25 >25 >25 >25 >25

PG9 V2 apex >5 >5 >5 >5 >5 >5 >5 >5 >5 >5

PG16 V2 apex >5 >5 >5 >5 >5 >5 >5 >5 >5 >5

PGDM1400 V2 apex >25 >25 >25 >25 >5 >5 >5 >5 >5 >5

PGT121 V3 glycan >5 >5 >5 >5 >5 2.5 4.2 3.4 3.4 >5

PGT128 V3 glycan >5 >5 >5 >5 >5 4.3 >5 >5 >5 >5

10–1074 V3 glycan 0.05 0.12 0.10 0.16 0.06 0.03 0.04 0.03 0.03 0.02

PGT151 gp120/gp41 0.01 0.01 0.01 0.01 0.01 1.6 1.9 2.2 2.5 2.9

VRC34.01 gp120/gp41 0.08 0.06 0.09 0.08 0.13 0.05 0.07 0.04 0.07 0.07

b12 CD4bs >25 >25 >25 >25 >25 >25 >25 >25 >25 >25

HJ16 CD4bs >25 >25 >25 >25 >25 >25 >25 >25 >25 >25

3BNC117 CD4bs 0.20 0.24 0.13 0.01 0.003 0.02 0.01 0.006 0.003 <0.001

VRC-CH31 CD4bs 0.62 >25 0.73 >25 0.15 0.04 0.7 0.02 1.6 0.01

CH103 CD4bs >40 >40 6.1 5.2 3.7 5.3 2.2 0.63 0.09 0.48

CH235 CD4bs >50 >50 >50 >50 >25 >25 >25 >25 >25 >25

CH235.12 CD4bs 8.95 1.08 0.66 0.09 0.1 >25 0.26 >25 0.07 24.2

VRC01 CD4bs 2.20 0.39 0.41 0.03 0.002 0.19 0.04 0.04 0.015 0.007

VRC03 CD4bs ntc nt nt nt 0.003 0.014 0.003 0.005 0.003 <0.002

VRC04 CD4bs nt nt nt nt 0.013 0.18 0.02 0.05 0.01 <0.002

VRC07 CD4bs nt nt nt nt <0.002 0.07 0.02 0.05 0.009 <0.002

VRC18b CD4bs nt nt nt nt 0.005 0.06 0.01 0.02 0.006 <0.002

VRC20 (VRC-PG20) CD4bs nt nt nt nt <0.002 0.015 0.004 0.007 0.005 0.008

VRC23 CD4bs nt nt nt nt 0.082 0.19 0.1 0.06 3.1 <0.002

12A12 CD4bs nt nt nt nt 0.003 0.06 0.01 0.01 0.01 <0.002

UCAs and intermediate Abs:

VRC01gl CD4bs >50 >50 >50 >50 >25 >50 0.99 >50 1.37 0.36

VRC03gl CD4bs nt nt nt nt >25 >25 >25 >25 >25 >25

VRC04gl CD4bs nt nt nt nt >25 >25 >25 >25 >25 >25

VRC07gl CD4bs nt nt nt nt >25 >25 0.76 >25 1.6 1.7

VRC18bgl CD4bs nt nt nt nt >25 >25 >25 >25 23 17.3

VRC20gl CD4bs nt nt nt nt 2.39 >25 10.3 >25 4.6 0.03

+VRC23gl CD4bs nt nt nt nt >25 >25 >25 >25 >25 >25

12A12gl CD4bs nt nt nt nt >25 >25 >25 >25 >25 0.63

3BNC117gl CD4bs nt nt nt nt >25 >25 >25 >25 >25 >25

VRC-CH31_UCA1 CD4bs >50 nt >50 nt >25 nt nt >50 nt >25

VRC-CH31_I4 CD4bs 1.32 nt 0.59 nt 0.02 nt nt 0.018 nt <0.011

VRC-CH31_I3 CD4bs 1.39 nt 0.84 nt 0.01 nt nt 0.021 nt <0.011

VRC-CH31_I2 CD4bs 1.52 nt 0.89 nt 0.07 nt nt 0.02 nt <0.011

VRC-CH31_I1 CD4bs 1.94 nt 1.15 nt 0.15 nt nt 0.032 nt <0.011

(Continued)
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Neutralization by germline-reverted forms of VRC01-class bnAbs requires

a combination of Man5-enrichment and glycan deletion

The elevated sensitivity of GnT1- versions of glycan-deleted 426c EPV to neutralization by cer-

tain mature CD4bs bnAbs led us to test whether the viruses would be sensitive to germline-

reverted and early intermediates of CD4bs bnAbs. These tests included near-germline forms

of several VRC01-class bnAbs in addition to fully reverted germline forms of CH103, CH235

and CH235.12. Mature CH235 and CH235.12 are members of the same lineage and exhibit

18% and 90% neutralization breadth, respectively, against a multiclade panel of 199 viruses [2].

Their unmutated common ancestor (UCA) is referred to here as CH235 UCA2.

GnT1- versions of the SM, TM1 and TM4 were remarkably sensitive to neutralization by

germline-reverted VRC01, with IC50s of 0.99, 1.37 and 0.36 μg/ml, respectively (Table 4 and

Figs 1 and S1). DM, which retains glycan 276, was the only mutant not neutralized. VRC01

has been shown to bind gp140 trimers of SM and TM1 but not DM [27], leading to the sugges-

tion that germline VRC01 recognizes viruses lacking glycan N276 and that accommodating

this glycan leads to breadth [63]. Our results agree with this interpretation and suggest that

Man5 enrichment will further improve germline binding to functional Env trimers.

293T versions of the glycan-deleted 426c EPVs were not susceptible to neutralization by

germline-reverted VRC01, although we note a minor positive deflection against the 293T ver-

sion of TM4 (Fig 1). Parental 426c resisted neutralization regardless of the cells used for EPV

production (Fig 1). Thus, germline-reverted VRC01 neutralizes 426c when the Env is both

Man5-enriched and lacking glycan N276.

GnT1- versions of SM, TM1 and TM4 were also susceptible to neutralization by germline

forms of other VRC01-class bnAbs (Table 4 and Fig 2A). SM, TM1 and TM4 were sensitive to

VRC07gl and VRC20gl. TM1 was in addition sensitive to VRC18gl, while TM4 was in addition

sensitive to VRC18gl and 12A12gl. No neutralization was detected with germline forms of

Table 4. (Continued)

IC50 (μg/ml)a

293T Virusesb 293S GnT1- Virusesb

Reagent Epitope 426c 426c.SM 426c.DM 426c.TM1 426c.TM4 426c 426c.SM 426c.DM 426c.TM1 426c.TM4

CH103_UCA1.1_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH103_UCAGrand5 CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH103_IA_9_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH103_IA_8_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH103_IA_7_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH103_IA_6_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH103_IA_5_4A CD4bs >20 nt nt >20 >25 nt nt nt >20 >20

CH103_IA_4_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH235 UCA2 CD4bs >50 nt nt >50 >50 nt nt nt >50 >50

CH235_I4_v2_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH235_I3_v2_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

CH235VH_I1_v2_4A CD4bs >50 nt nt >50 >25 nt nt nt >50 >25

aNeutralization assays were performed with Env-pseudotyped viruses in TZM-bl cells as described in Materials and Methods. Light shade, 0.5–25 μg/ml; middle shade,

0.01–0.49 μg/ml; dark shade, <0.01 μg/ml.
bEnv-pseudotyped viruses were produced in either HEK 293T or HEK 293s GnT1- cells. The 426c glycan deletion mutants were SM (N276D), DM (N460D.N463D),

TM1 (N276D.N460D.N463D) and TM4 (S278R.G471S.N460D.N463D).
cnt, not tested.

https://doi.org/10.1371/journal.ppat.1007431.t004
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VRC03, VRC04, VRC23, 3BNC117 and VRC-CH31 (Table 4). Thus, GnT1- versions of SM,

TM1 and TM4 are highly susceptible to neutralization by some but not all germline-reverted

forms of VRC01-class bnAbs. SM was the most sensitive to VRC07gl (0.76 μg/ml), whereas TM4

was the most sensitive to VRC18gl (17.3 μg/ml), VRC20gl (0.03 μg/ml) and 12A12gl (0.63 μg/ml).

The ability to detect germline-reverted forms of certain VRC01-class bnAbs in neutraliza-

tion assays suggests utility for monitoring early precursors in clinical trials. Neutralization-

based evidence that such precursors exist in serum samples would be strengthened by confirm-

ing VRC01-like epitope specificity. To enable epitope mapping, we introduced a known

VRC01 resistance mutation, D279K [63], into TM1 and show that the GnT1- version of this

mutant is highly resistant to germline forms of VRC01, VRC07 and VRC20 (Fig 2B).

In addition to germline-reverted bnAbs, we also assessed intermediate forms of

VRC-CH31, CH103 and CH235. Due to limited quantities, the intermediates of CH103 and

CH235 were assayed only with the TM1 and TM4, which were the most susceptible to germ-

line forms of VRC01-class bnAbs. As shown in Table 4, these EPVs were resistant to the inter-

mediate antibodies regardless of whether the EPVs were produced in 293T or GnT1- cells.

Assays with intermediates of VRC-CH31 were performed with DM and TM4 as the two

mutants that were most sensitive to the mature bnAb. 239T versions of both mutants were sen-

sitive to all four VRC-CH31 intermediates, with DM being slightly more sensitive than paren-

tal 426c. Far greater potency (>10-fold) was seen when DM was produced in GnT1- cells,

suggesting that the GnT1- version of this Env may provide an advantage for engaging and

detecting early intermediates of the VRC-CH31 lineage.

As an initial test of utility for immunogen design, the binding affinity of germline-reverted

VRC01 was measured against 293T and GnT1- versions of uncleaved gp140s from SM and

TM1. Strong (nM apparent affinity) binding was detected in all cases and was stronger against

TM1 than SM gp140; however, no improvement was seen with GnT1- version of the gp140s

(Table 5). These results indicate that GnT1- provides no germline-targeting advantage for

uncleaved gp140. Unfortunately, GnT1- versions of corresponding SOSIPs, which exhibit a

more native-like structure, were not available.

Discussion

Most current HIV-1 vaccine candidates are unable to engage appropriate germline B cells that

give rise to bnAbs. To overcome this obstacle, researchers are identifying natural and engi-

neered Env proteins that bind germline-reverted forms of the bnAbs as partial mimics of the

naïve B cell receptors [2, 6, 26, 27, 37–39, 64–66]; such proteins are in early stages of develop-

ment and it is unclear whether they will initiate correct antibody lineages in humans and/or

wild-type animal models. We sought Env glycan modifications that would permit germline

forms of CD4bs bnAbs to neutralize EPV as stringent proof of functional Env trimer binding.

A previous study demonstrated weak neutralization by germline-reverted CH103 against an

early autologous tier 1 EPV [30]. Another study demonstrated neutralization by germline-

reverted NIH45-46 (a clonal variant of VRC01) against 293T versions of SM and TM1 but

only at very high antibody concentrations (IC50 ~100 μg/ml) [27]. We identified a combina-

tion of Env glycan modifications that permit far greater neutralization potency by near germ-

line forms of multiple VRC01-class bnAbs.

Fig 1. Complementarity of targeted glycan-deletion and Man5-enrichement for neutralization by germline-reverted

VRC01. Parental and glycan deletion mutants of 426c were produced as Env-pseudotyped viruses in 293T and 293S

GnT1- cells and assayed for neutralization by mature and germline-reverted VRC01 in TZM-bl cells. The 426c glycan

deletion mutants were SM (N276D), DM (N460D.N463D), TM1 (N276D.N460D.N463D) and TM4 (S278R.G471S.

N460D.N463D).

https://doi.org/10.1371/journal.ppat.1007431.g001
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Fig 2. Detection and epitope mapping of neutralization by germline-reverted forms of VRC01-class bnAbs. (A) Germline reverted forms of the indicated bnAbs

were assayed in TZM-bl cells against Env-pseudotyped viruses 426c, 426c.SM (N276D), 426c.DM (N260D.N463D), 426c.TM1 (N276D.N460D.N463D) and 426c.TM4

(S278R.G471S.N460D.N463D) produced in 293S GnT1- cells. (B) Germline-reverted forms of VRC01, VRC07 and VRC20 were assayed in TZM-bl cells against 426c.

TM1 and 426c.TM1.D279K produced in 293S GnT1- cells.

https://doi.org/10.1371/journal.ppat.1007431.g002
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Man5-enrichment in GnT1- cells was hypothesized to reduce steric barriers to germline

bnAb binding without disrupting native Env conformation. That Man5-enriched Envs were

infectious and maintained a tier 2 neutralization phenotype is consistent with previous reports

[46, 55, 58] and indicates that native conformation was indeed preserved, at least in large part.

Several mature CD4bs bnAbs were substantially more potent against Man5-enriched Envs

than wild type Envs, while most bnAbs to epitopes outside the CD4bs were unaffected. One

exception is the negative impact Man5-enrichment had on PGT151, which was observed

before [58] and agrees with previous reports that PGT151 requires one or more complex-type

glycans [60, 61]. In another study, Man5-enrichment had only modest effects on mature

CD4bs bnAbs and had more dramatic effects on V2 apex and gp120/gp41 interface bnAbs

than we observed [58]. Because of the many strain specific effects observed [58], discrepancies

between the two studies are likely explained by the different viruses used.

A combination of Man5-enrichment and targeted glycan deletion of 426c EPV was required

for neutralization by germline-reverted forms of VRC01-class bnAbs. A simple explanation

for why both modifications were necessary is that targeted glycan deletion alone did not

remove all complex-type glycans that serve as steric barriers to germline binding. Indeed,

reducing the glycan density on Env by targeted-glycan deletion has potential to relieve steric

constraints on α-mannosidases and result in an increased number of remaining glycans that

are fully processed [41–44]. Any additional complex-type glycans generated in this way should

remain arrested as smaller Man5 glycoforms when produced in GnT1- cells, thereby affording

a lower barrier to germline binding without the unwanted consequence of creating additional

complex-type glycans.

Our observations raise the possibility that heterogeneity in Env sequon location and occupa-

tion, and in the composition of glycans at occupied sites [50, 52, 53] contribute to VRC01-class

bnAb responses in HIV-1 infected individuals, where part of the maturation process appears to

involve an ability to accommodate glycan N276 and surrounding complex-type glycans. Our

observations also suggest that Man5-enrichment has potential to improve germline-targeting to

initiate VRC01-class bnAbs, especially when combined with other germline-targeting design

features [27, 37, 39]. How well these glycan modifications will perform with native versus non-

native forms of Env is uncertain; however, it is important to emphasize that our findings reflect

antibody interactions with functional Env trimers as the sole targets for neutralization. This

might explain why GnT1- provided no advantage for germline-reverted VRC01 binding to

uncleaved gp140 trimers. A more native form of the trimer might be necessary to gain the bene-

fit of Man5-enrichment. Also, because the germline-reverted VRC01-class bnAbs used here and

in previous studies contain mature HCDR3 and J regions, additional 426c Env modifications

might be needed to initiate the earliest stages of this bnAb class.

Another application of our findings is the detection of early precursors of VRC01-like

bnAbs in vaccine studies. Detection of early precursors in a high throughput neutralization

assay would complement other technologies, such as antigen-specific memory B cell sorting

and immunoglobulin sequence analyses. Based on relative sensitivities, Man5-enriched SM is

optimal for detecting VRC07gl, while Man5-enriched TM4 is optimal for VRC01gl, VRC18gl,

Table 5. Germline-reverted VRC01 Fab binding to 426c Env variants produced in 293T and GnT1- cells.

Env (producer line) KD (M) kon(1/Ms) kon Error koff(1/s) koff Error

426c N276D gp140 (293T) 5.88E-08 9.01E+03 3.27E+02 1.93E-04 2.50E-05

426c N276D gp140 (GnT1-) 1.78E-07 1.11E+04 3.09E+02 7.39E-04 1.89E-05

TM1 gp140 (293T) 2.94E-08 5.03E+03 6.97E+01 1.48E-04 3.23E-06

TM1 gp140 (GnT1-) 4.26E-08 5.37E+03 8.43E+01 2.29E-04 2.74E-06

https://doi.org/10.1371/journal.ppat.1007431.t005
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VRC20gl and 12A12gl. Both viruses should be useful to screen for the presence of vaccine-elic-

ited VRC01-like bnAb precursors. Addition evidence for the presence of these precursors is

obtainable by showing whether the activity is abrogated by the D279K resistance mutation.

Thus, a complete signature for VRC01-like precursors is the ability to neutralize 426c in a

manner that is dependent on both glycan-deletion and Man5-enrichment, and is abrogated by

D279K. Until the technology is refined to capture a wider range of VRC01 class precursors,

negative neutralization should not be interpreted as evidence that precursors are absent. In

cases where a positive signature is detected, additional confirmation of the presence of

VRC01-like precursors should be sought at the molecular level. Indeed, the signature should

prove useful as an initial screening tool to identify interesting cases for deeper interrogation.

In summary, converting complex-type glycans to smaller Man5 glycoforms on 426c Env

complements targeted glycan deletion strategies in reducing steric barriers to near germline

forms of VRC01 without disrupting functional Env conformation. This finding is based on

virus neutralization as a specific measure of functional Env trimer binding and suggests appli-

cation to vaccines that aim to elicit VRC01-like bnAbs. Preservation of the fusion-competent

structure of glycan-modified 426c Env might be essential for early B cell interactions that initi-

ate the bnAb lineage. Finally, a set of virus reagents identified here should be useful for moni-

toring the presence of early VRC01-like precursors in vaccine trials.

Methods

Ethics statement

This study utilized pre-existing, de-identified human serum samples under approval of the

Duke University Health System Institutional Review Board (Pro00015593). The data were ana-

lyzed anonymously.

Cells

TZM-bl, HEK 293T/17 and HEK 293S/GnT1- cells were maintained in Dulbecco’s Modified

Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS) and gentamicin (50 μg/

ml) in vented T-75 culture flasks (Corning-Costar). Cultures were incubated at 37˚C in a

humidified 5% CO2–95% air environment. Cell monolayers were split 1:10 at confluence by

treatment with 0.25% trypsin, 1 mM EDTA.

Antibodies and HIV-1 sera

The monoclonal antibodies used here were described previously: CD4bs bnAbs VRC01,

VRC03, VRC04, VRC07, VRC-18b, VRC20, VRC23, 12A12 [8–10, 24], 3BNC117, 3BNC60

[7], VRC-CH31 [67], N6 [5], HJ16 [3] and IgG1b12 [68]; high mannose glycan-specific bnAb

2G12 [69]; gp41 membrane proximal external region (MPER)-specific bnAbs 2F5, 4E10 [70],

10E8 [71] and DH511.2_K3 [72]; V2 apex bnAbs PG9, PG16 [73], CH01 [67] and PGDM1400

[74]; V3 glycan bnAbs PGT121, PGT128 and 10–1074 [57, 75]; gp41-gp120 interface bnAbs

PGT151 [60] and VRC34.01 [62]. VRC01, VRC34.01 and 10E8 were produced by the Vaccine

Research Center, NIH. N6 was obtained from Dr. Mark Connors. 3BNC117, 3BNC60 and 10–

1074 were obtained from Dr. Michel Nussenzweig. VRC-CH31 and CH01 were produced by

Catalent Biologics (Madison, WI). DH511.2_K3 was produced by the Human Vaccine Insti-

tute, Duke University Medical Center. HJ16 was obtained from Dr. Davide Corti. IgG1b12,

2G12, 2F5, 4E10, PG9 and PG16 were purchased from Polymun Scientific (Klosterneuburg,

Austria). PGDM1400, PGT121, PGT128 and PGT151 were a kind gift from Dr. Dennis Bur-

ton. VRC01, VRC03, VRC04, VRC07, VRC-18b, VRC20, VRC23, 12A12, 3BNC117, 3BNC60,
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VRC-CH31 and N6 belong to the VRC01-class of bnAbs characterized by heavy-chain mim-

icry of the CD4 receptor, VH1-2 germline gene usage, and a 5-amino acid CDRL3. VRC01,

VRC03 and VRC07 are clonally related.

In addition to these mature bnAbs, we utilized UCAs, intermediates and mature forms of

CH103, CH235/CH235.12 [2, 30] and VRC-CH31 [10], which were produced by the Human

Vaccine Institute, Duke University Medical Center, Durham, North Carolina. The unmutated

common ancestor (UCA) sequence for the CH235/CH235.12 lineage used in this study differs

by one amino acid from the UCA described previously [2]. The UCA used here, which we

refer to as CH235 UCA2, has a methionine in the 4th position of the light chain in place of a

leucine in the previously described UCA version. Other antibodies included germline-reverted

forms of the VRC01-class bnAbs VRC01, VRC03, VRC04, VRC07, VRC18b, VRC20, VRC23,

12A12 and 3BNC117 [9, 10, 24, 27], which were produced at the Vaccine Research Center,

NIH. These latter germline-reverted antibodies possess mature HCDR3 and J regions whose

germlines could not be inferred with existing sequence information. Sequences of these germ-

line-reverted antibodies are shown in S1 Table.

Neutralization tier phenotyping was performed with serum pools from individuals in

southern Africa (South Africa, Malawi and Tanzania) who participated in a CHAVI study of

chronic HIV-1 infection (CHAVI samples 0406, 0060, 0642, 0293, 0598, 0537, 0468, 0461,

0382 and 0134). These study subjects had all been infected for at least three years. Samples

from 6–10 time points collected over 8–60 months were pooled on a per-subject basis and

heat-inactivated for 30 minutes at 56˚C. For deeper interrogation of neutralization phenotype,

a set of monoclonal antibodies that show a strong preference for tier 1 viruses was used. This

set included V3-specific antibodies 2219, 2557, 3074, 3869, 447-52D and 838-D, and the

CD4bs antibodies 654-30D, 1008-30D, 1570D, 729-30D and F105, all produced by Drs. Susan

Zolla-Pazner and Miroslaw K. Gorny at New York University and the Veterans Affairs Medi-

cal Center, New York, New York.

Pseudotyping Envs

Full-length functional HIV-1 Envs were used for virus pseudotyping. Previous reports

described Envs for strains CE1176 [76], WITO [77], TRO.11 [77], CH0505TF and CH0505.

w4.3 [2]. Glycan deleted Envs CH0505TF.gly4, CH0505TF.gly197, CH0505TF.gly3.276 and

CH0505TF.gly3.461 were described by Zhou et al. [49, 78]. Envs for 426c and the glycan

deleted variants SM (N276D), DM (N460D.N463D), TM1 (N276D.N460D.N463D) and TM4

(S278R.G471S.N460D.N463D) were described by McGuire et al. [27, 37]. In some cases addi-

tional mutations introduced by site-directed mutagenesis as described [79].

Transfection

Env-pseudotyped viruses were produced in either 293T/17 or 293S GnT1- cells (American

Type Culture Collection) as described [80]. 293S GnT1- cells lack the enzyme N-acetylglucosa-

minyltransferase and have been shown to yield HIV-1 Envs that contain Man6-9 glycoforms

and are enriched for under-processed Man5 glycoforms in place of complex glycans [46, 55].

Env-pseudotyped viruses were generated by transfecting exponentially dividing 293T/17 or

293S GnT1- cells (5 X 106 cells in 12 ml growth medium in a T-75 culture flask) with 4 μg of

rev/env expression plasmid and 8 μg of an env-deficient HIV-1 backbone vector (pSG3ΔEnv),

using Fugene 6 transfection reagent. Cells were washed after 3–8 hours and incubated in fresh

growth medium without transfection reagents. Env-pseudotyped virus-containing culture

supernatants were harvested 2 days after transfection, filtered (0.45 μm), and stored at -80˚C

in 1 ml aliquots. Infectivity was quantified in TZM-bl cells by performing serial fivefold
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dilutions of pseudovirus in quadruplicate wells in 96-well culture plates in a total volume of

100 μl of growth medium for a total of 11 dilution steps. Freshly trypsinized cells (10,000 cells

in 100 μl of growth medium containing 75 μg/ml DEAE-dextran) were added to each well, and

the plates were incubated at 37˚C in a humidified 5% CO2−95% air environment. After a

48-hour incubation, 100 μl of culture medium was removed from each well and 100 μl of Brite-

lite reagent was added to the cells. After a 2-min incubation at room temperature to allow cell

lysis, 150 μl of cell lysate was transferred to 96-well black solid plates (Corning-Costar) for

measurements of luminescence using a Victor 3 luminometer (Perkin-Elmer Life Sciences,

Shelton, CT). A dilution of virus that results in 50,000–250,000 relative luminescence units

(RLUs) was used for neutralization assays.

Neutralization assay

Neutralization assays were performed in TZM-bl cells (NIH AIDS Research and Reference

Reagent Program, contributed by John Kappes and Xiaoyun Wu) as described [80]. Briefly, a

pre-titrated dose of Env-pseudotyped virus was incubated with serial 3-fold or 5-fold dilutions

of test sample in duplicate in a total volume of 150 μl for 1 hr at 37˚C in 96-well flat-bottom

culture plates. Freshly trypsinized cells (10,000 cells in 100 μl of growth medium containing

20 μg/ml DEAE dextran) were added to each well. One set of control wells received cells

+ virus (virus control) and another set received cells only (background control). After 48

hours of incubation, the cells were lysed by the addition of Britelite (PerkinElmer Life Sci-

ences) and three quarters of the cell lysate was transferred to a 96-well black solid plate

(Costar) for measurement of luminescence. Neutralization titers are either the serum dilution

(ID50) or antibody concentration (IC50) at which relative luminescence units (RLU) were

reduced by 50% compared to virus control wells after subtraction of background RLUs. For all

reported results, the average RLU of virus control wells was >10 times the average RLU of cell

control wells, the percent coefficient of variation (%CV) between RLU in the virus control

wells was�30%, the percent difference between duplicate wells was�30%, and neutralization

curves cross the 50% neutralization cut-off 0–1 times. Unless otherwise stated, the values and

neutralization curves in the manuscript are from a single assay in (duplicate wells) that passed

these quality control criteria.

Soluble recombinant Env gp140 trimers

Plasmids encoding recombinant His-tagged SM and TM1 uncleaved 426c gp140 trimers were

expressed by transient transfection in HEK 293T or HEK 293S (GnT1-) cells as described pre-

viously [37]. Secreted envelope proteins were purified from conditioned media using Ni-NTA

resin (Qiagen) followed by 16/60 S200 size-exclusion chromatography into PBS buffer. SEC

fractions containing trimeric gp140 were pooled, aliquoted, frozen in liquid nitrogen and

stored at -20˚C until further use.

Biolayer interferometry

Kinetic analysis of antibody-binding to 426c uncleaved soluble gp140 trimers was performed

by BLI as described previously [81] using the Octet Red instrument (ForteBio, Inc, Menlo

Park, CA) at 29˚C with shaking at 500 r.p.m. Briefly, germline-reverted VRC01 IgG was

immobilized on anti-AHC biosensors (40 μg/ml in PBS) for 240s. Sensors were then incubated

for 1 min in kinetic buffer (KB: 1X PBS pH7.4, 0.1% BSA, 0.02% Tween 20 and 0.05% NaN3)

to establish the baseline signal. Antibody loaded sensors were then immersed into 2-fold dilu-

tion series of Env trimers in KB (ranging from 4 μM to>250 nM) for 300 seconds association,

followed by immersion in KB alone for 600 seconds dissociation. Measurements of Env-Ab
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binding were corrected by subtracting the background signal obtained from duplicate Env

traces generated with an Env-irrelevant control IgG. Curve fitting to determine relative appar-

ent antibody affinities for envelope was performed using a 1:1 binding model and ForteBio

data analysis software. Mean kon, koff, and KD values were determined by averaging all the

binding curves within a dilution series (all R2 values greater than 95% confidence level).

Supporting information

S1 Fig. Repeat assay results for VRC01gl. Shown are results for VRC01gl assayed against

GnT1- versions of 426c.TM1 (n = 5) and 426c.TM4 (n = 4). Due to a limited supply of the

antibody, some concentration ranges are lower than others. Accompanies Fig 1. Fig 1 shows

the curves for assay 3 for both viruses as representing the closest to the mean.

(PDF)

S1 Table. Amino acid sequences of germline-reverted antibodies.

(XLSX)
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