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efferocytosis of Pathogen-infected 
Cells
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The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is 
termed efferocytosis and is crucial for organism development, maintenance of tissue 
homeostasis, and regulation of the immune system. Dying cells are recognized by 
phagocytes through pathways initiated via “find me” signals, recognition via “eat me” 
signals and down-modulation of regulatory “don’t eat me” signals. Pathogen infection 
may trigger cell death that drives phagocytic clearance in an immunologically silent, or 
pro-inflammatory manner, depending on the mode of cell death. In many cases, effero-
cytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, 
some pathogens have subverted this process and use efferocytic mechanisms to avoid 
innate immune detection and assist phagocyte infection. In parallel, phagocytes can 
integrate signals received from infected dying cells to elicit the most appropriate effector 
response against the infecting pathogen. This review focuses on pathogen-induced cell 
death signals that drive infected cell recognition and uptake by phagocytes, and the 
outcomes for the infected target cell, the phagocyte, the pathogen and the host.
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iNTRODUCTiON

To maintain and protect themselves, multicellular organisms remove dead and dying cells arising 
during normal tissue development and function (1) or triggered by infection or sterile inflammation 
(2). At steady state, even within tissues with high constitutive rates of apoptosis, the number of 
detectable apoptotic cells is relatively low, indicating a high rate of removal (3–5). Efficient clearance 
is vital for the constant removal of approximately 106 cells/s undergoing apoptosis in various tissues 
in adult humans (6). Phagocytosis is defined as engulfment of particulate matter of >0.5–1 µm (7, 8) 
and is mediated by both professional and non-professional phagocytic cell types. Professional phago-
cytes are primarily macrophages and immature dendritic cells (DCs) resident in multiple tissues 
and tissue-infiltrating monocytes, neutrophils, and eosinophils. Non-professional phagocytes such 
as epithelial cells of mammary epithelium (9) and astrocytes in the brain (10) can also capture and 
engulf material including dying cells that are present in close proximity within tissue. “Efferocytosis” 
is a term describing the engulfment by phagocytes of dying and dead cells and their debris (11, 12) 
and demonstrates features of both conventional phagocytosis and the fluid-phase uptake mechanism 
macropinocytosis (13–15), resulting in uptake into “spaceous phagosomes” (15). However, although 
the term efferocytosis distinguishes recognition and engulfment of dead and dying cells from 
phagocytosis of other objects (12, 16), we are unaware of specific mechanistic differences that dis-
criminate between the two processes. Efferocytosis is mediated by a variety of interactions between 
the phagocyte and its dying target cell that show substantial redundancy and many soluble and cell 
surface receptor–ligand interactions defined for phagocytosis are used in efferocytosis (described in 
more detail below). The initial definition of efferocytosis related to clearance of apoptotic cells (15), 
but this has more recently been widened to include other modes of cell death (17, 18).
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FiGURe 1 | (A) Intracellular pathogens trigger regulated modes of cell death. Intracellular bacteria, viruses, and parasites infect target cells triggering different cell 
death pathways. Apoptosis is a non-inflammatory type of cell death in which the cellular contents remain membrane enclosed, whereas pyroptosis and necroptosis 
result in compromised membrane integrity leading to the release of intracellular contents that are pro-inflammatory. RIPK3, receptor-interacting protein kinase 3; 
MLKL, mixed lineage kinase domain-like; IRF3, interferon regulatory factor-3; PKR, protein kinase R; IAV, influenza A virus; EPEC, enteropathogenic Escherichia coli. 
(B) Pathogen infection modulates efferocytic outcomes. Intracellular bacteria, viruses, and parasites infect target cells inducing apoptosis. Dying target cells expose 
eat me signals and may down-modulate don’t eat me signals, leading to uptake and engulfment by efferocytes. Alternatively, the pathogen may escape from the 
infected cell wrapped in phosphatidylserine (PS)-containing membrane to deploy “apoptotic mimicry” for entry into the efferocyte. Efferocytosis may eliminate the 
pathogen, or may allow the pathogen to infect the efferocyte in a Trojan-horse type maneuver. The efferocyte will initiate anti-inflammatory or pro-inflammatory 
signaling depending upon the combined presence of immune-silencing signals (e.g., PS) and pro-inflammatory pathogen-associated molecular patterns and 
damage-associated molecular patterns.
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Cell death has been broadly categorized into accidental 
(necrosis) and regulated (including apoptosis, pyroptosis, and 
necroptosis) (17). Accidental cell death occurs during severe 
physical or chemical insult, such as membrane shearing and 
rupture via extremes of pressure, temperature, osmolarity, pH, 
or exposure to agents such as detergents and bacterial toxins, and 
is insensitive to pharmacologic or genetic manipulation. Because 
accidental cell death results in uncontrolled release of cell con-
tents including damage-associated molecular patterns (DAMPs), 
it is pro-inflammatory (19, 20). Regulated modes of cell death are 
implicated in post-embryonic ontogeny, tissue homeostasis, and 
during infection and immune responses, have a genetically pro-
grammed component, and can be modulated by altering pro- and 
anti-death signals (17). Pathogen infection is variously associated 
with all forms of regulated cell death (Figure 1A) and necrosis, 
and the type of cell death induced is directly linked to the type 
of infecting pathogen, its life cycle and its pathogen-associated 
molecular patterns (PAMPs) recognized by pattern recognition 
receptors (PRRs).

PATHOGeN-TRiGGeReD CeLL DeATH

Apoptosis is a caspase-dependent programmed form of regulated 
cell death resulting in a series of well-characterized morphologic 
and molecular changes culminating in membrane blebbing, 
DNA fragmentation and expression of signals designed to attract 
phagocytes and trigger engulfment and disposal of the apoptotic 
cargo (17). Apoptotic cells that are not rapidly efferocytosed 
become late apoptotic cells with a phenotype related to that of 
necrosis and are pro-inflammatory (21, 22). Apoptosis may be 

triggered in various cell types by a variety of pathogens, including 
intracellular bacteria (23), parasites (24), and viruses (25). Despite 
having evolved in part as a mechanism to limit pathogen replica-
tion and spread, apoptosis may have been subverted to contribute 
to pathogen survival and disease pathogenesis as discussed below. 
Pyroptosis is a regulated mode of cell death triggered principally 
by infection with intracellular pathogens (26, 27) and is linked 
to inflammasome activation driving caspase-1 or non-canonical 
caspase-11-triggering of the pore-forming effector gasdermin 
family (28, 29). Since pyroptosis results in plasma membrane 
permeabilization and eventual rupture with release of cyto-
plasmic contents, it has pro-inflammatory outcomes similar to 
accidental cell death and necroptosis. Necroptosis is triggered 
by infection with a variety of intracellular pathogens including 
viruses and bacteria (30, 31). Similar to pyroptosis, necroptosis 
is also a pro-inflammatory mode of regulated cell death initiated 
by cell surface receptors but is triggered in a caspase-independent 
RIPK3-dependent manner and may be modulated by caspase-8 
activation toward apoptosis (17). Non-canonical forms of necrop-
tosis activated by IRF3 and PKR-dependent pathways have also 
been described (31). The different modes of pathogen-initiated 
cell death and their mechanisms have been recently reviewed 
[e.g., Ref. (27, 30–33)] and so will not be further discussed here 
but are summarized in Figure 1A with some examples of patho-
gens implicated.

eFFeROCYTiC SiGNALS

Phagocytes engage apoptotic cells via a defined set of markers 
termed “apoptotic cell-associated molecular patterns” or ACAMPs 
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(16). ACAMPs include externalized phosphatidylserine, calreti-
culin, and modified carbohydrates that are recognized by a set of 
specific receptors and bridging molecules and will be described 
briefly below. Efferocytosis of dead and dying cells can be divided 
into four distinct stages (34, 35): (i) Detection of the target cell 
by release of chemotactic “find me” signals (36, 37) that include 
lysophosphatidylcholine, CX3CL1 (fractalkine), nucleotides 
adenosine triphosphate and uridine 5′ triphosphate, and sphin-
gosine 1-phosphate (38–41). (ii) Exposure of “eat me” signals  
(42, 43), of which phosphatidylserine (PS) exposure on the 
outer leaflet of the plasma membrane is the best characterized, 
and although initially described in the context of apoptosis, 
appears to be shared between all modes of cell death (43–47). 
However, whereas PS externalization during apoptosis is medi-
ated enzymatically, it becomes accessible during pyroptosis and 
necroptosis via membrane permeabilization. Eat me signaling 
is counter-balanced by expression levels of “don’t eat me” 
cell surface molecules such as CD47 (48, 49). Many eat me 
signals are recognized directly by phagocyte receptors such 
as members of the T-cell immunoglobulin domain and mucin 
domain (TIM) family, complement receptors CR3 and CR4, 
scavenger receptors SRA and CD36, mannose receptor (MR) 
and integrins α5β3 and α5β5, whereas others require bridging 
molecules such as collectins, complement C1q, mannose bind-
ing lectin, pentraxin3, ficolins, thrombospondin, and milk fat 
globule protein (MFG-8) for their recognition (18, 42, 50, 51). 
(iii) Following recognition of eat me signals, receptors such 
as antibody Fc (52) and complement (53) receptors signal to 
the cytoskeleton and are directly phagocytic, whereas others 
such as TIM-4 (54) are implicated only in tethering the target 
cell. However, a phagocyte will integrate signals from multiple 
receptors to inform the outcome of whether or not to engulf the 
target cell (12, 34, 55). (iv) Cellular material is fully internal-
ized via cytoskeletal rearrangement of the plasma membrane 
(5, 12, 35) with processing of the engulfed cell usually (5, 55), 
but not exclusively (56), leading to its elimination within a 
phagolysosome-type compartment (57, 58). During the target 
cell recognition process, phagocytes may further evaluate the 
target’s chemical composition to estimate the threat posed by its 
contents and form such as size (59), geometry (60), and topog-
raphy (61). This assessment determines (i) whether engulfment 
occurs or is replaced with, for example, neutrophil NETosis, an 
anti-microbial cell death mechanism whereby neutrophils eject 
chromatin extracellular traps (62); (ii) the fate of the target cell 
within the phagocyte; and (iii) whether the clearance process is 
immunologically silent, such as the efferocytosis of apoptotic 
cells (11, 63), or stimulates an inflammatory response such as 
the engulfment of most pathogens, pathogen-infected cells, and 
necrotic cells (8, 19, 20).

This review will not further consider find me and eat me sig-
nals involved in recognition and uptake of dead and dying cells, 
or the downstream signaling and cytoskeletal changes leading to 
phagocytic uptake, topics that have been very comprehensively 
reviewed recently (4, 6, 12, 16, 63–67). Instead, we will highlight 
recent discoveries regarding phagocyte recognition of cell death 
triggered by microbial infection and outcomes for the pathogen 
and infected target cell, the phagocyte, and the host.

PATHOGeN iNFeCTiON DRiviNG CeLL 
DeATH AND eFFeROCYTOSiS

Infection by intracellular pathogens may lead to cell death by 
any of the regulated pathways described earlier (see Figure 1A), 
or by necrotic cell death in the case of some lytic infections. 
Microbial induction of regulated death is generally considered 
to be a mechanism evolved to reduce or prevent pathogen rep-
lication and spread (33). The beneficial outcomes for the host of 
pathogen-triggered cell death may comprise: (i) removal of the 
intracellular environment required for survival and replication; 
(ii) direct antipathogen effects of released intracellular compo-
nents; (iii) initiation of an anti-microbial inflammatory response 
by release of DAMPs and PAMPs; and (iv) uptake and presenta-
tion of pathogen antigens by antigen-presenting cells. Induction 
of cell death may itself be sufficient to reduce and control patho-
gen replication or may be assisted or mediated by efferocytic 
mechanisms as has been described for several bacterial and viral 
pathogens (14). Conversely, some pathogens may use efferocytic 
mechanisms to invade the phagocyte in a “Trojan-horse” type of 
manoeuver and thereby perpetuate or enhance replication and 
dissemination (14, 68). These outcomes are discussed in more 
detail below and summarized in Figure 1B.

eFFeROCYTOSiS iN PATHOGeN 
CONTROL AND iTS SUBveRSiON BY 
PATHOGeNS

Bacterial infection
Gram-negative intracellular pathogenic bacteria including the 
Enterobacteriaceae Shigella (69, 70) and Salmonella (71) were 
initially proposed to induce apoptosis in infected macrophages. 
However, more recently, this view has been modified to take into 
account features of pyroptotic cell death including caspase-1 
and inflammasome activation (26, 72, 73). Virulent strains of 
many gram-negative intracellular bacteria have evolved to evade 
pyroptotic cell death, for example, Shigella inhibition of caspase-4 
activation (74), testifying to its importance as an innate immune 
antibacterial mechanism (26, 75, 76). Using an attenuated strain 
of Salmonella typhimurium that constitutively expresses flagellin 
and, therefore, activates NLRC4, Jorgensen et al. demonstrated 
that infected pyroptotic macrophages form “pore-induced intra-
cellular traps” that capture bacteria within cellular debris without 
killing them (77). The bacterium-containing cell debris is then 
cleared by efferocytic neutrophils that are attracted by find me 
and eat me signals and kill the bacteria in a ROS-dependent man-
ner (72, 77). Although apoptotic cell death of human monocytes 
or macrophages infected with wild-type (78–80) or attenuated 
(81) Mycobacterium tuberculosis is associated with reduced bacte-
rial survival, the mechanism was until recently unclear. Apoptosis 
may impart some cell-intrinsic anti-M. tuberculosis activity to 
macrophages by enclosing the bacilli within apoptotic membrane 
vesicles, but efferocytosis appears to be an important adjunct 
mechanism to clear viable bacteria associated with apoptotic 
macrophages (82, 83). Efferocytosis of apoptotic M. tuberculosis-
infected macrophages by uninfected macrophages results in 
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their trafficking to a degradative phagolysosomal compartment 
(83). Similarly, in the zebrafish model, apoptotic Mycobacterium 
marinum-infected granulomatous macrophages were engulfed 
by neutrophils resulting in their death by oxidative-burst 
exposure (84). Not only does efferocytosis reduce mycobacterial 
viability in human cells but also allows cross-presentation by DC 
of mycobacterial antigens for MHC class-I and CD1 presenta-
tion to CD8+ T cells in mice, reinforcing adaptive anti-bacterial 
immunity (85). The importance of macrophage apoptosis as an 
anti-mycobacterial mechanism contrasts with the finding that 
some virulent forms of M. tuberculosis have evolved to divert 
apoptotic cell death toward a programmed necrotic pathway, 
which fails to inhibit bacterial growth and allows bacterial release 
from the disrupted cell, promoting pathogen dissemination  
(79, 81, 86, 87). Thus, the type of cell death induced directly influ-
ences the outcome for the pathogen.

Bacteria may use efferocytic pathways to escape from 
elimination or to assist their dissemination using Trojan-horse-
type mechanisms in which dying cells carrying viable bacteria 
are engulfed leading to infection of the efferocyte. After the 
uptake of M. marinum by zebrafish macrophages, the infected 
macrophage undergoes apoptotic cell death. These apoptotic, 
infected macrophages are engulfed by other healthy mac-
rophages, driving dissemination of infection via efferocytosis 
to increase granuloma burden and seed secondary granulomas 
in a manner dependent on the RD1 virulence factor (88). Eat 
me signals potentially involved in efferocytic mycobacterial 
infected cell uptake have been partially defined. Blocking of 
human macrophage cell surface MR using anti-MR antibody or 
pre-incubation with competitive soluble sugars (mannan and 
GlcNAc) (89), or blocking TIM-4 (83) significantly reduced the 
uptake of apoptotic M. tuberculosis-infected macrophages by 
uninfected macrophages. TIM-4 is also implicated in the sub-
version of efferocytic mechanisms by the gram-positive bacterial 
pathogen Listeria monocytogenes. The bacterium is phagocy-
tosed by macrophages but avoids elimination by escaping the 
phagosome using the pore-forming toxin listeriolysin O (LLO) 
and recruits actin to drive cell-to-cell spread (90). The bacterium 
wraps itself in vesicles derived from the LLO-damaged host cell 
plasma membrane that exposes PS, which are in turn recognized 
by TIM-4 on healthy macrophages, leading to bacterial uptake 
and infection of a new host cell (91). Infection of a mouse strain 
lacking TIM-4 expression resulted in impaired bacterial growth, 
thus emphasizing its role in  vivo. An efferocytic Trojan-horse 
mechanism of dissemination using neutrophils as a cellular 
vector is proposed for Chlamydia pneumoniae (92) and Yersinia 
pestis (93). In mice, both bacteria are initially phagocytosed by 
neutrophils at the site of inoculation, but the bacteria survive 
and, in the case of Y. pestis, replicate within the neutrophils. 
Subsequent infected neutrophil apoptosis and PS exposure trig-
gered efferocytosis by macrophages, which were permissive for 
replication of both bacteria but elicited an anti-inflammatory 
cytokine response, potentially limiting anti-bacterial activity  
(92, 93). Macrophage recognition of C. pneumoniae in the con-
text of apoptotic cells was shown to be important for bacterial 
replication, since inhibition of efferocytosis using annexin-V 
reduced macrophage infection (92).

viral infection
There is limited work on the role of efferocytosis in controlling 
viral replication. Influenza A virus infection of HeLa cells resulted 
in their apoptosis and rapid efferocytic engulfment and transit 
into phagosome-like structures within murine alveolar mac-
rophages (94). The outcome of this was to limit viral release in the 
culture, suggesting that this may be a mechanism for suppressing 
replication in  vivo (95). Of interest, the authors demonstrated 
that the eat me signals implicated in this efferocytic uptake were 
a combination of plasma membrane PS exposure and desialyla-
tion of surface glycans on the infected cells (96), consistent with 
other studies suggesting that loss of cell surface sialic acid during 
apoptosis is a novel eat me signal (97).

Recently, Baxter et al. observed that recognition and uptake of 
HIV-1-infected CD4+ T cells by human monocyte-derived mac-
rophages led to enhanced macrophage infection when compared 
to incubation of these cells with cell-free virus (98). Macrophage 
infection by this cell-to-cell route was high multiplicity allow-
ing robust infection even by weakly-macrophage–tropic viral 
strains (98). Although infected apparently healthy cells were 
weakly selectively captured, the strongest eat me signal came 
from dying HIV-1-infected cells, implying efferocytic signals. 
However inhibitors of PS–receptor interactions and other 
apoptotic cell death recognition receptor–ligand interactions 
failed to significantly reduce infected T-cell uptake, suggesting 
alternative signals that have yet to be defined (98). Macrophage 
phagocytosis of simian immunodeficiency virus-infected CD4+ 
T cells occurs in the macaque model, suggesting that this mode 
of viral spread may have in vivo relevance for immunodeficiency 
viruses, although it is unclear if the macrophages were produc-
tively infected or simply harbored infected efferocytosed cells  
(99, 100). This raises the general caveat that phagocytes may take 
up pathogen-infected cells giving the appearance of infection but 
without necessarily undergoing productive infection themselves 
(68). Thus, astrocytes, long proposed to undergo an atypical 
HIV-1 infection in the brain but which lack the primary HIV-1 
receptor CD4, are phagocytic and engulf dying HIV-1-infected 
cells leading to markers of viral infection but are resistant to 
viral entry and infection (101). Finally, in an interesting twist to 
this paradigm, human papilloma virus (HPV) appears to have 
subverted efferocytosis to facilitate viral persistence in  vivo. 
Efferocytosis of HPV-infected cervical cancer cells by primary 
human fibroblasts (102) led to expression of the HPV E6 gene 
within the fibroblasts and elicitation of a tumorigenic phenotype 
with implications for viral persistence (103).

While not formally efferocytosis, apoptotic cell mimicry 
achieved by the incorporation of PS into viral envelopes is a 
related phenomenon that has been described as enhancing infec-
tivity for several enveloped virus families (104, 105) including 
HIV-1 (106), vaccinia virus (107), and lentiviral vectors pseu-
dotyped with multiple viral envelope glycoproteins (105, 108). 
Non-enveloped picornaviruses also use this strategy, effected by 
wrapping themselves in PS-containing vesicles during cellular 
exit (109, 110). PS incorporated into the viral envelope during 
budding is recognized by a multitude of PS receptors on the 
target cell including TIM-1 and TIM-4 and TAM tyrosine kinase 
receptors TYRO3, AXL, and MER (11, 105, 108, 111) and may be 
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further enhanced by bridging molecules such as MFG-E8 (105). 
Apoptotic mimicry has the major advantage of compromising 
pro-inflammatory programs by activating anti-inflammatory 
signaling cascades, which would otherwise trigger innate and 
adaptive immune responses against the invading virus, reducing 
viral replication in vivo (112). This immune evasion strategy is 
also used to good effect by parasites (see below).

Parasite infection
Leishmania infection is transmitted to man by the sandfly, 
recruits a rapid neutrophil influx to the site of parasite entry, 
and replicates primarily within macrophages. The Leishmania 
major inoculum consists of a mixture of apoptotic and viable 
parasites, and depletion of apoptotic parasites reduces in  vivo 
infectivity in a mouse model, proposed to be a consequence 
of loss of the anti-inflammatory TGF-β signal imparted on 
macrophages by the PS-expressing parasites (113). Using intra-
vital microscopy of infected sandfly bites in mouse ear, it was 
observed that neutrophils are rapidly recruited to the site of the 
bite and engulf the parasites, many of which remain viable and 
infectious (114). Leishmania uptake by neutrophils can delay 
or accelerate neutrophil death in a manner dependent upon the 
experimental system. In vitro studies demonstrate that apoptosis 
of neutrophils is delayed for up to 2 days by L. major infection, 
thereby potentially serving as intracellular survival vectors for 
the parasites, during which time the neutrophils release MIP-1β, 
which attracts monocytes and macrophages (115). However, by 
contrast with in  vitro studies, Leishmania-infected neutrophils 
analyzed ex vivo showed enhanced expression of PS, indicating 
accelerated apoptosis and potentially serving as an eat me signal 
for macrophage and DC uptake (116). Regardless of the underly-
ing mechanism, macrophages may then efferocytose-infected 
apoptotic neutrophils becoming infected themselves in the pro-
cess, the Trojan-horse mechanism (113). An alternative scenario, 
imaged by intravital microscopic analysis, is that rather than car-
rying parasites into the macrophage by efferocytosis, neutrophils 
may release viable parasites into regions densely populated by 
macrophages for subsequent macrophage engulfment and infec-
tion (114). Interestingly, in this study, depletion of neutrophils 
reduced L. major infection in mice (114), consistent with the 
idea that efferocytosis of apoptotic neutrophils imprinted an 
anti-inflammatory TGF-β signal on the neutrophils, preventing 
effective parasite elimination (115). A similar finding was also 
obtained when apoptotic neutrophils were engulfed by L. major-
infected macrophages that produced the anti-inflammatory 
mediators TGF-β and prostaglandin PGE2 (117). However, these 
results must be evaluated in the context of the strain of mouse, 
the species of parasite, and the timing of macrophage encounter 
with apoptotic neutrophils in comparison with their encounter 
with the parasite. By contrast with the BALB/c mice used in the 
study above, engulfment of neutrophils by L. major-infected 
macrophages from parasite-resistant C57BL/6 mice reduced 
parasite load, concomitant with the secretion of TNF that most 
likely antagonized the anti-inflammatory signals released by 
uptake of apoptotic neutrophils (117, 118). Moreover, parasite 
killing may be parasite species dependent, since neutrophils from 
parasite-susceptible BALB/c mice triggered macrophage killing of 

Leishmania amazonensis and Leishmania braziliensis (119, 120). 
Finally, efferocytosis of apoptotic neutrophils by macrophages 
from resistant C57BL/6 mice 3  days prior to encounter with  
L. major led to enhanced permissivity to the parasite (121), a result 
that contrasts with studies in which infection took place prior to 
neutrophil exposure. Thus, in summary, whether efferocytosis of 
dying neutrophils results in advantageous or deleterious conse-
quences for the parasite is complex and context dependent.

Trypanosma cruzi infection induces lymphocyte apoptosis in 
both experimentally infected mice (122, 123) and infected humans 
(124), and disease severity correlated with the degree of ex vivo 
apoptosis observed (124, 125). Mouse experiments support the 
concept that phagocyte uptake of apoptotic T lymphocytes results 
in the establishment of an anti-inflammatory response dictated 
by TGF-β and prostaglandin PGE2 that fuels parasite persistence 
and disease (126). Treatment of T. cruzi infected mice with inhibi-
tors of apoptosis reversed the anti-inflammatory phenotype and 
reduced ex vivo parasite replication (123, 127), consistent with 
efferocytosis of apoptotic cells reducing macrophage anti-parasite 
activity and enhancing parasite persistence and disease.

iMMUNe CONSeQUeNCeS OF iNFeCTeD 
CeLL eFFeROCYTOSiS

The outcome for the phagocyte of engulfment of an infected dying 
cell is influenced both by the infecting pathogen and by the mode 
of death elicited in the target cell. PS exposed on apoptotic cells 
delivers an anti-inflammatory signal that is associated with defined 
receptor and signaling pathways and the production of regulatory 
cytokines such as TGF-β and IL-10 (11, 66) and is essential for 
rapid removal of apoptotic cells to avoid inflammatory and poten-
tial autoimmune consequences (19, 63). However, this is in the 
context of uninfected cells undergoing homeostatic apoptosis and 
immune-silent clearance. As described earlier, pathogen infection 
may induce more pro-inflammatory types of cell death via release 
of DAMPs and components of the pathogen present within the 
infected dying cell act as PAMPs to signal a pro-inflammatory 
response through PRRs (128). Thus, the phagocyte must integrate 
the pro- and anti-inflammatory signals to initiate the appropriate 
outcome, resulting in pathogen containment or clearance. Due 
to this complexity, experiments to probe the effects of specific 
pathogen infections of target cells on phagocyte pro- and anti-
inflammatory programs are challenging to design and interpret. 
However, some information is available, particularly with regard 
to outcomes of efferocytosis of bacterial infection in the context 
of apoptotic cells. Torchinsky et al. (129) demonstrated that the 
combination of apoptotic and TLR-4-based signals presented to 
DCs by apoptotic neutrophils or B cells associated or not with 
E. coli or LPS triggered the release of TGF-β and IL-23 in the 
context of IL-6, a cytokine pattern, which favors the induction 
of Th17 effector Th cells. Th17 cells secrete the cytokine IL-17, 
which is important for the recruitment of neutrophils to resolve 
bacterial infections, and the combination of apoptotic cells and 
bacterial PAMPs was optimal for Th17 induction in the context 
of the model Citrobacter rodentium infection of mouse gut (129). 
LPS alone failed to induce biologically active TGF-β and also 
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induced high levels of IL-12, favoring a Th1-type response rather 
than Th17-type response, an outcome that would be suboptimal 
for extracellular bacterial clearance. Similarly, comparison of 
DC-mediated efferocytosis of an uninfected or E. coli-infected 
macrophage line induced to undergo apoptosis resulted in dis-
tinct outcomes (130). DC efferocytosis of infected apoptotic cells 
showed increased CD86 and CCR7 expression associated with an 
enhanced migratory capacity compared to uninfected apoptotic 
cells and enhanced production of IL-6, TGF-β, and IL-23, indica-
tive of Th17 differentiation capacity (130). This again suggests 
that combination of pathogen and dying cells integrates signals 
to elicit the most appropriate immune outcome to control the 
specific pathogen. However, infection associated with apoptosis 
may also lead to misdirected adaptive immunity resulting in auto-
immune outcomes. Thus, using apoptotic B cells infected with L. 
monocytogenes, Campisi et  al. showed that the combination of 
stimuli present within the phagocyte resulted in presentation of 
self-antigens in the context of a pro-inflammatory environment 
(131). Using an in vivo murine model, this translated into Th17-
induced colitis in the context of a C. rodentium bacterial infection, 
confirming the potentially deleterious effects of co-presentation 
of apoptotic and inflammatory infection signals by DC.

The most obvious implication of efferocytic uptake of virally 
infected dying cells is in cross-presentation, since CD8+ T-cell 
priming against viral infections requires access of viral antigens 
to the MHC class-I processing and presentation apparatus. While 
viruses that infect antigen-presenting cells do this directly by 
cytoplasmic expression of their antigens, induction of immune 
responses to viruses that do not productively infect DCs rely 
upon efferocytosis of infected apoptotic cells followed by cross-
presentation. The first demonstration of this was in the context 
of influenza virus infection of monocytes that led to their apop-
tosis and uptake by DCs, driving efficient CD8 T-cell priming 
against influenza antigens (132). Since then, multiple studies have 
reported on cross-presentation of viral antigens by efferocytic 
uptake of dying cells infected with vaccinia virus, HTLV-1, 
measles virus, CMV, and EBV (133, 134). Similar observations 
have been made for a series of intracellular bacterial pathogens 
including L. monocytogenes and M. tuberculosis (133). Although 
much of the cell biology of cross-presentation has been defined, 
what remains to be addressed is how the combination of cell 
death and pathogen-triggered signals influence the outcome 
of cross-presentation, as for example has been dissected for 
T-helper cell responses (128). The restriction factor SAMHD1 
renders DC relatively resistant to HIV-1 infection and limits DC 
activation and antigen presentation (135). However, as recently 
demonstrated by Silvin et al. (136), DCs are heterogeneous with 
respect to viral infection and, while CD1c+ DCs are sensitive 
to HIV-1 and influenza virus infection resulting in DC death, 
CD141+ DCs are resistant. The authors provide evidence that 
in the absence of direct infection, CD141+ DC acquires viral 
antigen by efferocytosis of dying virus-infected cells including 
CD1c+ DC, allowing efficient cross-presentation. Also relevant 
to cross-presentation of infected dying cells, cells dying by 
necroptosis, rather than by necrosis or apoptosis, trigger a 
RIPK1-dependent NFκB transcriptional program-directing 
release of inflammatory cytokines that enhance cross-priming 

of CD8+ T cells by DC (137). Although the cells in this instance 
were not infected, the relationship between this mechanism and 
infections driving necroptosis is obvious and raises questions 
regarding the ability of pathogens to modulate or suppress NFκB 
activation and other pro-inflammatory programs in dying cells. 
HIV-1 infection is a weak trigger of type-I interferon responses 
in macrophages, considered in part to result from “shielding” of 
viral nucleic acid PAMPs from intracellular sensors (138, 139), 
although early entry events can elicit low interferon levels (140). 
HIV-1 infection of CD4+ T cells leads to their death by apoptosis 
(141) during productive infection or pyroptosis during abortive 
infection (142), and in vivo, there is likely to be a combination 
of these types of death associated with infection. Using model 
in  vitro systems, Lepelley et  al. showed that HIV-1-infected 
CD4+ T  cells elicit robust type-I interferon release from plas-
macytoid DCs that is partially elicited by TLR-7 sensing of viral 
RNA (143) but potentially also by DAMPs released from infected 
dying T cells. Thus, cell-associated viral PAMPs appear to elicit a 
stronger innate immune anti-viral response than the virus alone.

CONCLUDiNG ReMARKS

It is evident that efferocytosis is both an essential element of 
tissue homeostasis and a mechanism for elimination of intracel-
lular pathogens. However, as described earlier, subversion of 
efferocytic mechanisms via (i) the Trojan-horse type of strategy,  
(ii) cell-free microorganisms expressing or hijacking PS-containing 
membrane, and (iii) triggering of anti-inflammatory programs 
in macrophages by efferocytosis of apoptotic cells contributes to 
immune evasion and pathogen persistence. Therapeutic inter-
vention in efferocytic pathways may well be a rational approach 
to reducing infection by certain pathogens, but care must of 
course be exercised to avoid perturbing the fine balance between 
homeostasis and deleterious inflammation. In vitro studies 
demonstrated a reduction in HIV-1 infectivity of macrophages 
in the presence of soluble recombinant annexin-V, suggesting 
a mechanism to target this viral reservoir (144). The anti-PS 
monoclonal antibody Bavituximab has been used in a number of 
clinical trials as an anti-cancer agent, and its use in targeting viral 
infections such as HIV-1 (145), Pichinde virus (as a model for 
Lassa fever virus), and CMV (146) has been investigated. Aside 
from directly targeting pathogen replication, chronic infections 
such as HIV-1 (147) and HCV (148) are associated with long-term 
inflammatory outcomes that predispose to disease even in the 
context of suppressive anti-viral regimens. Chronic inflamma-
tion in HIV-1 infection is linked to acute inflammatory events in 
the gut-associated lymphoid tissue (GALT) initiated by massive 
HIV-1 infection and death of CD4+ T cells (149) that predispose 
this tissue to translocation of microbial products from the lumen 
(150). Excessive CD4+ T-cell apoptotic death may saturate GALT 
efferocytic capacity driving neglect of apoptotic cells by phago-
cytes leading to secondary necrosis, a type of cell death associated 
with tissue infiltration of monocytes and neutrophils that may 
mediate further tissue damage and is linked to chronic inflam-
matory autoimmune conditions (22). Moreover, abortive HIV-1 
infection of tissue CD4+ T cells has been implicated in pyroptotic 
cell death (142), which might directly promote pro-inflammatory 
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programs in phagocytes. Whether modulating efferocytosis in 
conditions such as this may influence the inflammatory outcome 
is a question that requires attention. Very recently, it has been 
demonstrated that efferocytosis during drosophila development 
can reprogram macrophages via JNK signaling to increased 
expression of the damage receptor Draper for robust responses to 
subsequent tissue injury or infection (151). This type of priming 
leading to innate immune “memory” deserves further investiga-
tion and may potentially be targeted for either anti-pathogen or 
anti-inflammatory outcomes in the clinic.
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