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SUPPLEMENTARY METHODS 
Amplicon reconstruction from CRISPR-CATCH sequencing 

Using short-read sequencing data from CRISPR-CATCH with double size selection as 

described above, we implemented new strategies and modified existing methods1 to 

resolve ecDNA structures. Broadly, the methods involved seven steps. The last six steps 

are available in a CRISPR-CATCH reconstruction pipeline, available at 

https://github.com/siavashre/CRISPRCATCH. 

 

1. To identify the regions of interest, we ran PrepareAA 

(https://github.com/jluebeck/PrepareAA) (version 0.931.4) and AmpliconArchitect 

(version 1.2_r2, available from https://github.com/jluebeck/AmpliconArchitect) on two 

public bulk SNU16 WGS datasets (SRX54666122; SRR530826, Genome Research 

Foundation) and found comparable graphs in both. We used PrepareAA with BWA-MEM3 

(version 0.7.12-r1039) to align reads to hg19 and CNVKit4 (version 0.9.7) to generate 

seed regions having copy number (CN) > 5. These regions were provided to AA, which 

constructed a CN-aware breakpoint graph. The genome regions AA included in the graph 

were converted to bed format and used as the seed regions in the analysis of each PFGE 

band, so that the regions studied were always consistent between bands. 

 

2. Using WGS reads generated from CRISPR-CATCH-isolated DNA, for each band we 

next aligned to the hg19 reference genome using PrepareAA which included BWA MEM 

and a PCR-duplicate removal step (using samtools5 version 1.3.1), and we also made 

estimates of insert size distribution using Picard (version 2.25.6) for quality control 

purposes.  

 

3. The aligned PFGE data and seed regions identified from bulk sequencing were 

provided to AmpliconArchitect (version 1.2_r2) to construct the CN-aware breakpoint 

graph, using non-default arguments –downsample -1 –pair_support 2 –no_cstats –

insert_sdevs 8.5. The –insert_sdevs parameter allows for larger insert size variation 

without forming breakpoints from read pairs marked as discordant, as we found high 

insert size variance occurred frequently in DNA extracted from the gels. Following AA, we 
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ran a script on the resulting CN-aware breakpoint graph to filter non-foldback graph edges 

joining regions smaller than 1 kb from the graph, representing potential unfiltered artifact 

edges arising from overdispersion in insert size variance, in order to reduce the 

complexity of the graph when performing pathfinding. Since the edges removed joined 

regions not more than 1 kb apart and did not lead to changes in the orientation of the 

genome, this step had a negligible effect on the resulting paths. This utility for filtering AA 

graphs is made available as part of PrepareAA (graph_cleaner.py). 

 

4. Central to the method for ecDNA reconstruction is the assumption that a single ecDNA 

is being analyzed within the graph, and as a result the estimated genomic copy numbers 

should closely relate to the number of times a segment appears within the ecDNA. We 

termed the number of times a segment appeared within a single ecDNA as the “multiplicity” 

of a genomic segment. The path finding method first removes low CN elements from the 

graph representing the background genome and contamination from incomplete 

separation of ecDNAs (i.e., remove segments with CN below 20% of the maximum CN of 

all segments having length > 100 bp, or below 10% of the maximum, if the maximum CN 

is >10000). In the remaining segments, we assumed that the majority of segments 

appeared once within an ecDNA. We assumed that ecDNAs for which the majority of 

segments are present more than once would reflect cases where two or more ecDNAs 

were present, instead of one. Thus, to compute the multiplicity of each graph segment, 

the method computes the 40th percentile of the remaining graph segment copy numbers 

and assigns that copy number, S1, to multiplicity = 1. For each segment, i, in the graph, 

we computed its multiplicity, M(i) as.  

𝑀(𝑖) = round(
𝐶𝑁(𝑖)
𝑆!

) 

 

5. To find paths in the graph which represented candidate ecDNA structures, we used an 

exhaustive search constrained by the multiplicities of the segments and (if available) the 

estimated maximum molecule size suggested by the CRISPR-CATCH data. Candidate 

ecDNA structures are determined through a constrained depth-first search (DFS) 

approach, which attempts to identify paths in the graph, and performs the process starting 
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at every segment in the graph assigned a non-zero multiplicity. During the search, the 

length of the path (in base pairs) must remain less than the maximum allowed length (L). 

For every segment i, appearing ni times in the path, ni ≤ M(i). The DFS recursion 

terminates if either constraint is violated, and the current path is scored as ∑ 𝑛"" . The path 

is compared against the current best path (initiated as an empty path with score 0) and 

updated if it scores higher. Both the best-scoring cyclic paths as well as the best-scoring 

paths regardless of cyclic status are returned after removing all duplicate (identical) paths 

from the collection of best-scoring paths. This utility is also individually available from 

PrepareAA (plausible_paths.py). 

 

6. We found a number of features of both the breakpoint graph and the reconstructions 

to be informative about the quality of the data in the band. We developed quality 

annotations reported along with each reconstruction to provide users with annotations 

about the confidence of the reconstruction. We note that CN-aware breakpoint graphs 

derived from NGS data may contain a number of error sources including missing edges 

between graph segments and incorrect estimation of copy numbers (leading sometimes 

to incorrect estimation of multiplicity). The method applies the following filters. 

 

a) In the amplicon region analyzed by AA, the total amount of amplified material (non-

zero multiplicity) should not significantly exceed the maximum estimated molecular size 

of the band (if provided). We used a cutoff such that amplicons with 1.4x the maximum 

estimated molecular size of the band were flagged for low quality (incomplete separation 

of ecDNA).  

 

b) Changes in multiplicity must be accompanied by one or more breakpoint junctions, and 

thus for a breakpoint graph with |e| total edges, amplicons where 
|𝑒|

max	(𝑀(𝑖)) 	< 1 

were flagged for low quality (missing graph edges). 
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c) We defined a root mean square residual for the unexplained copy numbers of M(i). In 

a given path, for each segment i, having ni occurrences in the path, the root mean square 

residual was defined as  

𝑅𝑀𝑆𝑅 = 	9
1
𝑁:;𝑛" −𝑀(𝑖)=

#
$

"%!

 

where N is the number of segments having non-zero multiplicity in the graph. We set a 

default cutoff such that amplicons with RMSR > 0.9 were flagged as low quality (too many 

amplified graph segments having incompletely used multiplicity). 

  

d) To assess how tightly segment copy numbers could be segregated by segment 

multiplicity, we computed the Davies-Bouldin index6 (DBI) on the clusters of copy 

numbers. Each cluster was comprised of all segment copy numbers assigned to a 

multiplicity (singleton clusters excluded), and the centroid of the cluster was the mean CN 

for the cluster. Amplicons where the DBI was > 0.3 were flagged as low quality due to 

noisy copy number estimation. 

 

e) If a minimum molecular size for the band was given, we flagged reconstructions which 

fell below that 90% of that value as low quality as they reflected incomplete 

reconstructions. 

 

f) If no segment in the reconstruction overlapped the CRISPR-Cas9 target site, we 

flagged it as being low quality as it was either an incomplete reconstruction, or the 

incorrect amplicon was detected. 

 

7. Since the reconstructed paths are reported in the textual AA_cycles.txt format, the 

method also provides automated circular visualizations of the structures and the WGS 

coverage tracks which are generated by CycleViz (https://github.com/jluebeck/CycleViz) 

(version 0.1.0). 

 

Optical mapping 
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Optical maps from SNU16 cells were generated as follows: ultra-high molecular weight 

(UHMW) DNA was extracted from 1.5 million frozen cells preserved in DMSO following 

the manufacturer’s instructions (Bionano Genomics, #30398, 80042). Briefly, cells were 

digested with Proteinase K (Puregene #158920) and RNAse A (Puregene #158922) and 

then the DNA was precipitated with isopropanol and bound with nanobind magnetic disks. 

Bound UHMW DNA was resuspended in elution buffer (EB) and quantified with Qubit 

dsDNA BR assay kit (ThermoFisher Scientific, Q32850). The final DNA concentration was 

initially too high (280 ng/µl), therefore UHMW DNA was further diluted with EB, gently 

mixed with a wide-bore tip five times, and allowed to relax at room temperature for two 

days. Upon resting, UHMW DNA was diluted to 110 ng/µl in EB and DNA labeling was 

performed following the manufacturer’s instructions (Bionano Genomics, #30206, 80005). 

Standard Direct Labeling Enzyme 1 (DLE-1) reactions were carried out using 750 ng of 

purified UHMW DNA. Using the Qubit dsDNA HS assay kit (ThermoFisher Scientific, 

#32854), the final labeled DNA concentration was determined as 5.4 ng/µl with a 

coefficient of variation of 0.026. The fluorescently labeled DNA molecules were loaded 

onto the Saphyr Chip G2.3 (Bionano Genomics, #20366, 30142) and were imaged 

sequentially across nanochannels on a Saphyr instrument (Bionano Genomics, #90023). 

An effective genome coverage of approximately 340X, using molecules >= 150 kb 

(molecule N50 of 0.2505 Mb) was achieved.  

 

De novo assembly of SNU16 was performed with Bionano’s de novo assembly pipeline 

(Bionano Solve v3.6, #90023) using standard haplotype aware arguments. With the 

Overlap-Layout-Consensus paradigm, pairwise comparison of DNA molecules of 

approximately 130X coverage was used to create a layout overlap graph, which was then 

used to generate the initial consensus genome maps, which had a contig N50 of 50 Mb. 

By realigning molecules to the genome maps (P value cutoff of <10-12), and by using only 

the best matched molecules, a refinement step was done to refine the label positions on 

the genome maps and to remove chimeric joins. Next, during an extension step, the 

software aligned molecules to genome maps (P<10-12), and extended the maps based on 

the molecules aligning past the map ends. Overlapping genome maps were then merged 
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(P<10-16). These extension and merge steps were repeated five times before a final 

refinement (P<10-12) was applied to “finish” all genome maps. 

 

Validating candidate structures with optical mapping 
To validate candidate ecDNA paths we used long-range optical mapping (OM) data. 

Previously, we developed a method, AmpliconReconstructor (AR)7, which uses OM data 

and AA’s outputs as inputs. AR attempts to identify paths within the breakpoint graph 

supported by OM contigs. In the CRISPR-CATCH data, the graphs may have many 

smaller segments than the graphs derived from bulk WGS, due to noisier CN profiles in 

the gel-extracted DNA, or due to highly complex ecDNA structures having very dense 

breakpoints. In these cases, large numbers of graph segments may be too small to 

reliably align against OM contigs using AR’s standard approach. Thus, we added a 

method to AR whereby the user can provide an AA-formatted cycles.txt file containing the 

full candidate path. The individual segments are combined into a single long genome 

sequence, then converted to an in silico digested OM sequence. The combined candidate 

OM sequence is then aligned with OM contigs using AR’s SegAligner method. The 

resulting candidate sequence alignment label indices are mapped back to the original 

uncombined candidate path. Contig alignments for the candidate path were combined if 

necessary and visualized using CycleViz. The candidate path alignment utility added to 

AR for this analysis is available at https://github.com/jluebeck/AmpliconReconstructor.  

 

ChIP-seq 
ChIP-seq data for SNU16 were previously published under GEO accession GSE1599868. 

Paired-end reads were aligned to the hg19 genome using Bowtie29 (version 2.3.4.1) with 

the --very-sensitive option following adapter trimming with Trimmomatic10 (version 0.39). 

Reads with MAPQ values less than 10 were filtered using samtools (version 1.9) and 

PCR duplicates removed using Picard’s MarkDuplicates (version 2.20.3-SNAPSHOT). 

ChIP-seq signal was converted to bigwig format for visualization using deepTools 

bamCoverage11 (version 3.3.1) with the following parameters: --bs 5 --smoothLength 105 

--normalizeUsing CPM --scaleFactor 10.  
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Identification of SNU16 connected ecDNA segments 
To identify enriched ecDNA species in SNU16 from CRISPR-CATCH, we obtained raw 

sequencing counts in all CRISPR-CATCH-isolated ecDNA species in 5-kb genomic bins 

using bedtools (version 2.30.0)12, divided each count by total reads and multiplied by one 

million to give a normalized count (count per million, CPM). We then calculated the log2 

fold change of each bin in each sequencing library over WGS by dividing the respective 

CPMs followed by log-transformation. To map connected ecDNA segments in SNU16 

using CRISPR-CATCH, we assigned a value of 1 to the 5-kb genomic bins with log2 fold 

changes over WGS above 3.5 and a value of 0 otherwise. For each pair of 5-kb genomic 

bins, co-occurrence was calculated by number of co-occurring 1’s in each sequencing 

library across all CRISPR-CATCH-isolated SNU16 ecDNAs. To compare connected 

ecDNA segments identified by CRISPR-CATCH with chromatin conformation capture 

background signals, H3K27ac HiChIP count matrix for SNU16 was obtained from a 

previously published study under GEO accession GSE1599868. The Juicer Tools13 (1.9.9) 

dump command was used to extract the chromosome of interest from the .hic file with 5-

kb resolution without normalization and the unnormalized interaction counts were plotted 

in R. To predict connected ecDNA segments in bulk WGS, we ran PrepareAA (version 

0.931.4) and AmpliconArchitect (version 1.2_r2) as described above on SNU16 WGS 

obtained from SRX54666122 to generate an amplicon cycles text file. Connected DNA 

segments were divided into 5-kb bins as before and co-occurrences of bins on amplicons 

were summed and plotted in R to compare with the CRISPR-CATCH result and chromatin 

conformation capture interaction signals.  
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Supplementary Table 1.  
gRNA sequence gRNA information 
TGGCGCAGTTATGCTTTAAC EGFR guide A, used in GBM39 experiments 

GGATCTACTTGGCACTCGCT EGFR guide B, used in GBM39 experiments 

CAATACCGCACTCAATGTCA EGFR guide C, used in GBM39 experiments 

ACAAACCGCGAGATCAGGGG EGFR guide D, used in GBM39 experiments 

ACGTTAAAAAGCTGTCGCGC EGFR guide E, used in GBM39 experiments 

TCCCGTGCGCGATGACGACA EGFR guide F, used in GBM39 experiments 

TAAACCACGGAAGCGGCGGC EGFR guide G, used in GBM39 experiments 

GCCTTGTCGTCATCGCGCAC EGFR guide H, used in GBM39 experiments 

CCAGCAATCGTTAACCACTG MYC guide 3, used in SNU16 experiments 

CTTCGGGGAGACAACGACGG MYC guide 5, used in SNU16 experiments 

GTGATATTTGAACCGCCCTG MYC guide 7, used in SNU16 experiments 

GGGGATTGGTACCGTAACCA FGFR2 guide 17, used in SNU16 experiments 

GAGGCGATAATATCAACATG FGFR2 guide 18, used in SNU16 experiments 

ATCATGTAGTATCCCCCACC MYC guide 82, used in SNU16 experiments 

AAGCGGTTTAAATACAGCGC SNU16 guide targeting enhancer E1 

CCTAGGTTTTACGCATTCAT SNU16 guide targeting enhancer E2 

TTAAGCGCGCGGCGGCAGCA SNU16 guide targeting enhancer E3 

GGGTGTTAACCGTAGGATGA SNU16 guide targeting enhancer E4 

ACGAAGCCCATACATAAGGT SNU16 guide targeting enhancer E5 

CCAGTGTGCACCTTACCCGG SNU16 guide targeting enhancer E6 

CGTAGCTACATGTCTCATAG NRAS guide 194, used in patient tumor experiment 
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