
International Journal of Multiphase Flow 157 (2022) 104247

A
0

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

Deep learning based liquid level extraction from video observations of
gas–liquid flows
Marc Olbrich a,b,∗, Leili Riazy c, Tobias Kretz a, Terri Leonard d, Dennis S. van Putten e,
Markus Bär a, Kilian Oberleithner b, Sonja Schmelter a

a Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
b Institute of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany
c Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany
d TÜV SÜD National Engineering Laboratory (NEL), East Kilbride, Glasgow G75 0QF, United Kingdom
e DNV, Energieweg 17, 9743 AN Groningen, The Netherlands

A R T I C L E I N F O

Dataset link: https://gitlab1.ptb.de/mfm2/liqui
d_level_extraction_unet

Keywords:
Multiphase flow
Gas–liquid interface
Deep learning
Image processing
Convolutional neural network
Videometry

A B S T R A C T

The slug flow pattern is one of the most common gas–liquid flow patterns in multiphase transportation
pipelines, particularly in the oil and gas industry. This flow pattern can cause severe problems for industrial
processes. Hence, a detailed description of the spatial distribution of the different phases in the pipe is needed
for automated process control and calibration of predictive models. In this paper, a deep-learning based image
processing technique is presented that extracts the gas–liquid interface from video observations of multiphase
flows in horizontal pipes. The supervised deep learning model consists of a convolutional neural network,
which was trained and tested with video data from slug flow experiments. The consistency of the hand-labelled
data and the predictions of the trained model have been evaluated in an inter-observer reliability test. The
model was further tested with other data sets, which also included recordings of a different flow pattern. It
is shown that the presented method provides accurate and reliable predictions of the gas–liquid interface for
slug flow as well as for other separate flow patterns. Moreover, it is demonstrated how flow characteristics
can be obtained from the results of the deep-learning based image processing technique.
1. Introduction

Multiphase flow phenomena are often encountered in different sec-
tors of the energy industry, particularly in the oil and gas production,
where the two phases of liquid and gas are flowing simultaneously
through transportation pipelines (Lin et al., 2020). Field measurements
of these flows have a high degree of uncertainty, reaching up to
20% (Elliott et al., 2021). Based on the operating conditions, different
flow patterns can form, which describe the spatial distribution of the
two phases in the pipe (Hanratty, 2013). One of the most common
flow patterns in multiphase transportation pipelines is the slug flow
pattern (Al-Kayiem et al., 2017).

Slug flow is characterized by a continuous liquid phase with coher-
ent blocks of aerated liquid, which are separated by volumes of gas,
see Fig. 1, left. These aerated blocks of liquid are called slugs. They
are moving downstream the pipe on top of a slowly flowing liquid
layer at approximately the same velocity as the gas (Hanratty, 2013;
Taitel and Dukler, 1977; Al-Safran, 2009). The slug flow pattern can
cause severe problems in industrial operations. The pressure drop due
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to slug flow can be an order of magnitude higher compared to other
gas–liquid flow patterns (Taitel and Dukler, 1977), such as stratified or
wavy flow, where the two phases are separated by a smooth or wavy
interface (Hanratty, 2013). Furthermore, the intermittent sequence of
liquid slugs, which can grow to large structures, induces vibrations and
stresses when impacting on surfaces of the piping (Hanratty, 2013).
These problems can also affect the multiphase flow measurement de-
vices significantly. Thus, a detailed characterization of the flow pattern
is required and had already been the subject of many investigations,
see, e.g., Pedersen et al. (2017), Olbrich et al. (2020) and Drury et al.
(2019). Parameters that are typically used for a characterization of this
flow pattern are temporal and spatial scales of the liquid slugs as well
as their translational velocities. Spatial scales are for example the slug
body length 𝐿𝑏 and the slug unit length 𝐿𝑢, i.e. the distance between
the slug front and slug rear or between two consecutive slug fronts,
respectively. Their corresponding time scales, the slug unit time 𝑇𝑢 and
the slug body time 𝑇𝑏, are defined as the time that a slug body or a slug
unit needs to pass by at a fixed position. Another often used parameter
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Fig. 1. Illustration of slug flow in a horizontal pipe (left side) with a slug unit, the slug unit length 𝐿𝑢, and the slug body length 𝐿𝑏, as well as the liquid level time series ℎ𝐿(𝑡)
at a fixed position x (right side) with the slug unit time 𝑇𝑢 and the slug body time 𝑇𝑏 for a given threshold.
is the mean slug frequency, defined as

𝑓𝑠 =
1
�̄�𝑢

with 𝑇𝑢 =
1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝑇𝑢𝑖 , (1)

where 𝑁𝑠 denotes the number of slug units in the considered time
interval, see Al-Kayiem et al. (2017), Baba et al. (2018), Dukler and
Fabre (1994) and Olbrich et al. (2021a). The length and time scales of
slug flow are illustrated in Fig. 1. These characteristics are often mea-
sured with non-intrusive imaging techniques, such as videometric ap-
proaches, where the flow is observed with a high-speed camera through
a transparent pipe segment (do Amaral et al., 2013). The flow param-
eters provided by these type of measurement techniques were used for
example to identify the flow pattern (Baghernejad et al., 2019), to ver-
ify and investigate flow pattern maps (Crawford, 2018), to investigate
shapes of slugs and bubbles for specific operating conditions (do Amaral
et al., 2013), to validate numerical simulations (Olbrich et al., 2018),
as well as to investigate the effects of slug frequency on induced pipe
stresses and develop predictive models and correlations (Mohmmed
et al., 2019).

One way to obtain these characteristic parameters is to consider
the time series of the vertical position of the liquid–gas interface at
a fixed 𝑥-position in the pipe, as illustrated on the right side of Fig. 1.
This non-dimensional parameter has a range of [0, 1] with respect to
the inner pipe diameter 𝐷 and is hereinafter referred to as the liquid
evel time series at a fixed position 𝑥, denoted by ℎ𝐿(𝑡) (Olbrich et al.,
2021a; Schmelter et al., 2021a). It reveals the dynamics of the spatial
distribution of the two phases in the pipe and can therefore reliably
indicate slugs, waves or other liquid structures, similarly to the hold-up
parameter, see Olbrich et al. (2021b). Typically, for analyses of hold-up
or liquid level time series, the conventional length and time scales of
slug flow are calculated by simple thresholding procedures, see Zhao
et al. (2015), Baba et al. (2018), Schmelter et al. (2021a) and Olbrich
et al. (2020, 2021b) and Fig. 1.

In this paper, the liquid level time series are derived from high-
speed video recordings of gas–liquid flows observed from the side
through a transparent pipe section. These flows are two-phase gas–oil
and gas–water flows, as well as three-phase gas–oil–water flows, where
the liquid phase is a homogeneous mixture of oil and water. For this, a
deep learning based image processing technique has been developed. In
an earlier work, the time series have been extracted from the video data
using a fixed sequence of image filters, see Olbrich et al. (2018). This
was similar to other approaches in the field, see e.g., do Amaral et al.
(2013) and provided reasonable results for the video data with (exactly)
the same conditions it was developed for, such as the colours of the
fluids and the background as well as lighting and reflections. However,
changes in these conditions as well as noisy data led to incorrect liquid
level estimations, and individual adaptations were needed. In contrast
to this, deep learning models have the potential to overcome such
difficulties and to provide reliable and more versatile image processing
2

techniques.
Deep learning describes a family of learning algorithms in the field
of machine learning and artificial intelligence (Emmert-Streib et al.,
2020). It is used to learn complex and robust prediction models,
e.g., multi-layer neural networks with many hidden units, directly
from the data without the need of carefully engineering suitable fea-
tures (Emmert-Streib et al., 2020; LeCun et al., 2015). Deep learning
has a wide range of applications in science, business, and technology,
e.g., image or speech recognition, see LeCun et al. (2015), Krizhevsky
et al. (2017), Ronneberger et al. (2015) and Graves et al. (2013).
However, in the field of multiphase flows, deep learning has only
rarely been applied. In the following, we give a short summary on such
applications.

For the numerical simulations of multiphase flows, deep learning
models were trained for example to approximate the governing equa-
tions, estimate simulation errors, predict flow parameters, as well as
closure coefficients, see e.g., Wang and Lin (2020), Bao et al. (2020)
and Ma et al. (2015). Other applications of deep learning models are
for example the correction or prediction of certain parameters for
multiphase flow measurements, such as flow rates, phase fractions or
velocities, see e.g., Yan et al. (2018), Alakeely and Horne (2021), Dang
et al. (2019) and Li et al. (2021). Furthermore, in Lin et al. (2020), a
deep learning model is used to predict different two-phase flow patterns
in inclined pipes based on superficial velocities of the individual phases
and inclination angles. Moreover, image processing techniques based
on deep convolutional neural networks have been presented in Poletaev
et al. (2020), Haas et al. (2020) and Cerqueira and Paladino (2021) for
the detection, reconstruction, and analysis of gas bubbles in vertical
pipes and micro-channels, for the recognition of flow patterns in micro
pulsating heat pipes (Kamijima et al., 2020; Ahmad et al., 2022) as
well as for the extraction of relevant water regions as pre-processing
step for two-phase PIV-measurements in the field of ship and ocean
engineering (Yu et al., 2021). For the quantification of separated and in-
termittent gas–liquid flow patterns in horizontal pipes, such as stratified
wavy or slug flow, such advanced image processing techniques have not
been reported. For this, image filter based methods are typically used,
which are sensitive to changes in image quality, contrast, and recording
set-up. The deep-learning based image processing technique presented
here overcomes these problems to certain extent and provides a quan-
tification for other separated flow pattern, namely, stratified, wavy,
plug, and slug flow.

The proposed deep-learning model was trained in a supervised
manner to correctly predict the liquid level time series from video
recordings of gas–liquid flows. The model, a convolutional neural net,
was extensively trained and tested with video data from real slug flow
experiments and classifies each region in a video frame into its respec-
tive phase being either liquid or gas. For supervised learning the data
has to be labelled. To do so, the respective video frames were used to
create hand-labelled segmentation maps. Furthermore, the consistency
of the hand-labelled data and the predictions of the trained model

have been evaluated in an inter-observer reliability test. For further
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evaluations of the reliability and versatility of the trained model, data
from experiments are considered, which differ from the ones used for
training and testing. These data also include an experiment with a
different flow pattern, namely a stratified wavy flow.

2. Methods

In this section, the architecture of the convolution neural network
as well as the experiments, the data, and its acquisition are described.
Furthermore, it is explained, how the deep learning model is used with
pre- and post-processing steps to extract the liquid level time series
from the video data of the experiments. Moreover, the training and
test procedure for the deep learning model is described. Finally, the
accuracy and error metrics are provided that are used to evaluate the
trained model.

2.1. Convolutional neural network

Deep convolutional neural networks are state-of-the-art machine
learning techniques for image classification and segmentation prob-
lems (Dhillon and Verma, 2020; Aloysius and Geetha, 2017). In this
paper, the liquid level extraction is considered as an image segmen-
tation problem, where regions of liquid and gas need to be identi-
fied and segmented in the video frames. For this purpose, a specific
convolutional neural network, the so-called U-net, was chosen. This
architecture was introduced by Ronneberger et al. (2015) and has
been successfully applied in many image-to-image learning problems,
e.g., computer tomography, see Mao et al. (2016), Dosovitskiy et al.
(2015) and Jin et al. (2017). The U-net is able to achieve accurate
results with only few labelled training data and was therefore taken
in this paper. The structure was altered from its original form and
adapted from Sterbak (2018). The final architecture is illustrated in
Fig. 2. An RGB-image input with the dimensions of 128 × 1024px is
assed through several layers of convolutions comprising a contracting
art (left part of the U-shape), a bottleneck with minimal dimension
n the centre of the U-shape and an expansive part (right part of the
-shape). The contracting part transfers the input image into a feature
ap with lower spatial dimensions but a higher number of feature

hannels. The expansive part generates the resulting segmentation map
ith the same spatial dimensions as the input image from the lower
imensional feature maps. In Fig. 2, the blue rectangles represent multi-
hannel feature maps. Here, their dimensions are also given, where the
irst two entries of the 3-tuple are related to the spatial dimensions
height and length) of the input image and the last entry corresponds
o the number of feature channels. The basic operation in this network
s the 3 × 3-convolution, which is followed by a batch normalization
peration and a rectified linear unit (ReLU) as activation function. For
he contracting part, the spatial dimensions are down-sampled with
× 2-max-pooling operations with stride 2. After each max pooling

peration the number of features produced by the 3 × 3-convolution is
oubled. For the expansive part, the feature-maps are up-sampled by
× 3-(up)-convolutions, which halve the number of feature channels,

ut double the number of spatial dimensions. For additional informa-
ion in the reconstruction of the higher dimensional map, the feature
aps from the corresponding level of the contracting part are copied

nd concatenated after each up-convolution. Finally, the segmentation
ap results from a 1 × 1-convolution and an activation operation
sing the Sigmoid function. The operations are illustrated as coloured
rrows in Fig. 2. For details on the architecture and the operations,
ee Ronneberger et al. (2015) and Sterbak (2018).

.2. Experiments

The used deep-learning model was trained and tested with data
3

rom video observations of horizontal gas–liquid flows. These flows s
Table 1
Laboratory that conducted the experiments, the set-up for the video recordings (see
Fig. 3) and fluid properties for some operating conditions that are used in the
experiments.

Lab Set-up Fluid Density Viscosity Temp. Pressure
in kgm−3 in cP in °C in bar (g)

MultiFlowMet I

NEL 1 & 2
Paraflex oil 831.40 16

20 9Brine Water 1037.89 1.15
Nitrogen gas 11.51 0.018

MultiFlowMet II

NEL 3
Paraflex HT9 815.10 7.32

45 9Brine Water 1024.19 0.65
Nitrogen gas 10.5 0.019

DNV 4
Exxsol D120 827.55 5.10

18 8Brine Water 1031.69 1.04
Nitrogen gas 10.46 0.018

are two-phase gas–oil or gas–water flows, as well as three-phase gas–
oil–water flows, where the liquid phase is a homogeneous mixture
of oil and water. The experiments were performed by TÜV SÜD NEL
and DNV as part of the projects Multiphase flow metrology in oil and
gas production (MultiFlowMet I) (Crawford, 2018) and Multiphase flow
reference metrology (MultiFlowMet II) (Pieper, 2020).

The experimental set-ups are illustrated in Fig. 3. They consist of a
horizontal inflow section followed by a vertical measurement section,
but here the latter part is of minor interest since the flows in the
horizontal pipe are investigated. For the set-up of the MultiFlowMet
I project, the horizontal inflow section consists of a straight hori-
zontal pipe with an inner diameter 𝐷 = 0.0972m and two different
lengths 𝐿inflow ∈ {100𝐷, 500𝐷}, followed by a transparent Perspex
iewing section with a length of 𝐿viewSec = 5𝐷. For the set-up of the
ultiFlowMet II project, the horizontal inflow section consists of a

traight horizontal pipe with an inner diameter 𝐷 = 0.066 64m and
hree different lengths 𝐿inflow ∈ {100𝐷, 300𝐷, 600𝐷}, followed by a
ransparent Perspex viewing section with a length of 𝐿viewSec = 9𝐷.

In Table 1, the laboratory that conducted the experiments, the
ecording set-up for the video data (see also Fig. 3), the fluids and
heir properties for some operating conditions are given for the two
rojects, for details see Crawford (2018) and Pieper (2020). In Table 2,
he superficial velocities and lengths of the horizontal inflow sections
inflow of the considered two- and three-phase flows of MultiFlowMet
and MultiFlowMet II are given, respectively. For all flows except the
tratified wavy flow of Experiment Nr. 13, the slug flow pattern was
bserved. Please note that, for the stratified wavy flow experiment Nr.
3 and for the slug flow experiments Nr. 1–7 and Nr. 9–12, the interface
s clearly visible from the side, which is necessary for the algorithm to
ork. These experiments have been considered in the training, testing,
nd evaluation procedure (see Sections 3.1 and 3.3). For the slug
low experiments Nr. 8, 14, 15, and 16, the gas–liquid interface is
partially) unrecognizable due to dispersed phenomena, such as foam
r spray. These flows have been considered for the investigations on the
imitations of the proposed image processing technique, see Section 4.

The flows were recorded at the viewing sections from the side
sing a high-speed RGB-camera with a frame rate of 240fps. For each
xperimental set-up, two different video recording set-ups were used,
ee Fig. 3. The set-ups 1, 2 and 3 were recorded at NEL, and set-up 4
as recorded at DNV. In set-up 1, the Paraflex oil has an orange–brown

olour, the background is black and the viewing section is illuminated
rom the front. In set-up 2, the Brine water is of grey colour but slightly
ransparent, the background has a dark blue colour and the viewing
ection is illuminated from below. In set-up 3, the Paraflex oil (HT9)
as a red-brown colour, the background is blue and the viewing section
s illuminated from the front. And in set-up 4, the Exxsol oil (D120)
s ocher-green, the background has a blue colour and the viewing

ection is illuminated from behind. Please note that nitrogen gas is



International Journal of Multiphase Flow 157 (2022) 104247M. Olbrich et al.
Fig. 2. Illustration of the architecture of the U-net. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Illustration of the experimental setting of the projects MultiFlowMet I and MultiFlowMet II with the different recording set-ups. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
transparent and colourless, similar to other common gases in the oil
and gas industry, e.g., natural gas and argon (Pieper, 2020). Hence, the
background colour is visible through the gas for all recording set-ups.
Furthermore, for the three-phase gas–oil–water flows recorded in set-
up 1, 3 and 4, the watercut is relatively small. Hence, the water does
not form a separate liquid layer and the liquid phase appears in the
video observations as a homogeneous oil–water mixture with similar
colour as the oil. In Tables 3 and 6, the video recording set-up as well
4

as the recorded time (length of the videos) are given for the considered
experiments of MutliFlowMet I and II.

2.3. Pre- and post-processing

The U-net, described in Section 2.1, is used to segment liquid
and gas regions in parts of the video frames. However, before the
U-net is applied, the video frames need to be prepared in several
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Table 2
Superficial velocities 𝑣oil

𝑠 , 𝑣water
𝑠 , 𝑣gas

𝑠 and lengths of inflow section 𝐿inflow in inner
diameters D for the considered experiments of the MultiFlowMet I & II project.

Experiment Superficial velocities in ms−1 𝐿inflow

𝑣oil
𝑠 𝑣water

𝑠 𝑣gas
𝑠 in 𝐷

MultiFlowMet I

Nr. 1 1.349 0 1.692 100, 500
Nr. 2 1.869 0 0.627 100
Nr. 3 1.930 0 0.751 100, 500
Nr. 4 2.547 0 3.185 100, 500
Nr. 5 0.986 0.328 2.849 100
Nr. 6 1.963 0.638 0.892 100
Nr. 7 0 1.847 0.678 100
Nr. 8 3.386 0 1.276 100

MultiFlowMet II

Nr. 9 0.822 0 3.285 100, 300, 600
Nr. 10 1.218 0 1.179 100, 300, 600
Nr. 11 1.610 0 0.704 100, 300, 600
Nr. 12 2.390 0.006 2.398 100
Nr. 13 0.475 0 3.246 100
Nr. 14 2.352 1.559 1.548 100
Nr. 15 0.399 0 7.699 100
Nr. 16 0.739 0.470 11.442 100

pre-processing steps. Furthermore, to extract a time series from the gas–
liquid segmentation maps of the U-net, additional post-processing steps
are necessary.

In Fig. 4, the complete processing pipeline of the liquid level extrac-
tion from the video observations is illustrated. The first step is to extract
a vertical line (pixelcolumn) through the pipe at a fixed 𝑥-position
for every frame, i.e., time step, and stack it. From this procedure, an
RGB-pixelcolumn over time is obtained, which represents the phase
distribution along the observed vertical line through the pipe and its
temporal changes at a fixed 𝑥-position. Because of this, the gas–liquid
interface visible in this image is associated with the liquid level time
series with respect to the inner pipe diameter. Under this construction,
the frame rate of the video represents the sample rate of the time
series. Therefore, the RGB-pixelcolumn over time provides the basis
for further calculations. In the second step, the RGB-pixelcolumn over
time is interpolated to a uniform height (𝑦-component) of 128 px and
cut into segments with a length (𝑡-component) of 1024 px, to meet
the input dimension criterion for the chosen U-net architecture. In
the third step, the evenly sized segments are normalized to reduce
the influence of disturbances in the video recording set-up, such as
differences in luminance or colour. For this normalization, the z-score
(also called statistical standardization or standard score, see Larsen
and Marx (2012)) is applied RGB-component wise. This step completes
the pre-processing and the standardized image segments are passed to
the U-net to perform the segmentation. The output of the U-net is a
continuous segmentation map with values in [0, 1], where 1 (white)
indicates gas and 0 (black) indicates liquid. In the first post-processing
step, the continuous segmentation maps are binarized (with a threshold
of 0.5) to obtain a sharp gas–liquid interface. Afterwards, the segments
are concatenated in correct order to get a segmentation map for the
complete RGB-pixelcolumn over time. In the last step, the vertical
position of the gas–liquid interface (edge between black and white
regions) is detected in the binarized and concatenated segmentation
map. In case of multiple vertical interface positions at one time step,
such as for bubbles or droplets, the values are averaged to get a unique
representation of the interface over time. This ensures the property
of a mathematically well-defined function for the extracted liquid level
time series in case of multiple vertical interface positions such that it
can be used for further time series analyses. It should be noted that this
averaging can lead to a misrepresentation of certain flow structures in
the liquid level time series. With this procedure the liquid level time
series are obtained from the video recordings of multiphase flows. The
5

code for the extraction of the liquid level time series from the RGB-
pixelcolumns over time is available as Jupyter Notebook in Olbrich
et al. (2021c).

2.4. Training and testing

The U-net was trained and tested with data from horizontal gas–
liquid slug flows. For this, the video data of 18 different slug flows
were used. That includes data from 9 experiments of the MultiflowMet
I project and 9 experiments of the MultiflowMet II project, specifically
Nr. 1−6, as well as Nr. 9−11 for all inflow lengths, see Table 3. For the
testing in the optimization process of the training procedure, a subset
of the data is needed, which is disjoint to the training data. Here, the
randomly chosen two experiments Nr. 5 - 100𝐷 and Nr. 11 - 300𝐷 are
used for testing and the remaining 16 experiments are used for training.
Please note that the naming of the individual experiments are given in
the form of (Nr. - 𝐿inflow).

To prepare the video data for the training of the U-net, the RGB-
pixel-columns over time are extracted and normalized as described in
Section 2.3 and Step 1 − 4 in Fig. 4. Furthermore, binary segmentation
masks are needed as reference in the training and testing process,
which represent a correct classification into gas and liquid. These masks
were generated from hand-labelled gas–liquid interfaces in the RGB-
pixelcolumns over time for all experiments. They have a sharp interface
with values of 1 for gas and 0 for liquid. Since they are extracted from
the RGB-pixelcolumns over time, the masks represent an approximation
of the temporally resolved gas volume fraction fields in a vertical line
through the pipe at a fixed position. In the training and testing of the
U-net, the masks are compared with the predicted segmentation maps
to determine an accuracy for the prediction. For this, the masks are
also transformed into evenly sized segments of 128 × 1024 px (see Step
2 in Fig. 4). This results in 483 pairs of evenly sized RGB-segments and
corresponding mask segments for the training set as well as 61 of such
pairs for the test set.

Since the segmentation includes only 2 classes, i.e., gas and liq-
uid, the binary accuracy function was chosen as accuracy metric, see
Eq. (2) and Chollet et al. (2015). Furthermore, for the training process
the stochastic gradient descent optimization method adaptive moment
estimation (ADAM) was set together with the binary cross-entropy-loss
function and a dropout of 5%. Details can be found in Ronneberger
et al. (2015), Sterbak (2018), Chollet et al. (2015) and Kingma and
Ba (2017). For the training, the dropout-layer is located after every
max-pooling operation in the contracting part of the U-net and after
every concatenation-operation in the expansive part of the U-net, see
Fig. 2. Furthermore, a mini batch size of 32 was used to train the U-
net over a maximum number of 50 epochs. Early stopping (Prechelt,
1998) was applied. For details, see Sterbak (2018) and Chollet et al.
(2015). The model was trained and tested using python version 3.7,
tensorflow version 2.3 and Keras version 2.4.3, see Chollet et al. (2015)
and Abadi et al. (2015). The implementation of the model, the code for
the training of the model as Jupyter Notebook, and the weights of the
trained model are available in Olbrich et al. (2021c).

2.5. Accuracy and error metrics

In this section, the metrics are given, which are used to evaluate the
segmentation maps from the U-net as well as the extracted liquid level
time series.

The binary accuracy of a predicted segmentation map 𝐴pred and a
corresponding mask 𝐴mask is given by

𝑎𝑐𝑐bin(𝐴pred, 𝐴mask) = 1
𝑁 ⋅𝑁

𝑁𝑡
∑

𝑁𝑦
∑

𝜙
(

𝐴pred
𝑖𝑗 , 𝐴mask

𝑖𝑗

)

, (2)

𝑡 𝑦 𝑖=1 𝑗=1
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Fig. 4. Illustration of the processing pipeline from the raw video observations to the final liquid level time series. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
where 𝑁𝑡 and 𝑁𝑦 denote the number of pixels of the mask in 𝑡-direction
and 𝑦-direction, respectively, and the pixelwise binary evaluation func-
tion 𝜙 is given by

𝜙(𝐴pred
𝑖𝑗 , 𝐴mask

𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1, if 𝐴pred
𝑖𝑗 > 0.5 ∧ 𝐴mask

𝑖𝑗 > 0.5
1, if 𝐴pred

𝑖𝑗 ≤ 0.5 ∧ 𝐴mask
𝑖𝑗 ≤ 0.5

0, else.
(3)

Then, 𝜙 indicates if a pixel in the predicted segmentation map
was successfully classified as gas or liquid. This function is pre-
implemented in the open source software library Keras, see Chollet
et al. (2015).

The deviation of the liquid level times series, which are extracted
from the hand-labelled segmentation map ℎmask

𝐿 and the U-net output
ℎpred
𝐿 can be measured in terms of the mean absolute error (MAE), given

by

𝜖(ℎpred
𝐿 , ℎmask

𝐿 ) = 1
𝑁𝑡
∑

|

|

|

ℎpred
𝐿 (𝑡𝑖) − ℎmask

𝐿 (𝑡𝑖)
|

|

|

. (4)
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𝑁𝑡 𝑖=1
3. Results

In this section, the results of the liquid level extraction with the deep
learning model are presented for the training and testing
procedure, as well as for additional evaluations on different data sets.
The results include the accuracy of the predicted segmentation maps
with respect to the hand-labelled masks and the mean absolute error of
the extracted liquid level time series. Furthermore, the consistency of
the hand-labelled data and the prediction is investigated in an inter-
observer reliability test. Moreover, the limitations of the proposed
image processing technique are demonstrated and discussed.

3.1. Training and testing

The U-net was trained on a set of 483 pairs and tested on a set of
61 pairs of RGB-images from horizontal slug flow and corresponding
masks, as described in Sections 2.3 and 2.4. The training was termi-
nated after 42 epochs due to early stopping. The best model was found
after 31 epochs. For this model, a mean binary accuracy of 97.91%
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Fig. 5. Prediction of the U-net and extracted liquid level from Experiment Nr. 10 - 100𝐷 in comparison with hand-labelled mask for the interval [50 s, 55 s].
for the training set and a mean binary accuracy of 97.74% for the
test set, was achieved. These accuracies are high compared to the re-
ported training and test accuracies in between 89% and 98.7% of other
successfully trained deep-learning based gas and liquid segmentation
models, see e.g. Cerqueira and Paladino (2021), Yu et al. (2021) and
Ahmad et al. (2022).

In Fig. 5, the RGB-pixelcolumn over time from Experiment Nr. 10 -
100𝐷, the prediction of the U-net, its binarization, the corresponding
hand-labelled mask, as well as the extracted liquid level time series
are given. Please note that, Experiment Nr. 10 - 100𝐷 belongs to the
training set. The prediction of the U-net and its binarization show good
agreement with the mask. Furthermore, the gas and liquid regions are
segmented in more detail in the prediction, compared to the hand-
labelled mask, as can be seen for instance at the slug between 52 s and
52.5 s in Fig. 5. Here, the hand-labelled mask shows one larger slug,
but the prediction shows two slugs, which are separated by a short gas
bubble and foam. Due to the foamy areas between the rear of the first
slug and the front of the second slug, this (optical) separation is not
obvious. Nevertheless, the separation of the two slugs can be verified
in the RGB-pixelcolumn over time, see Fig. 5a. Hence, in this case,
the prediction from the trained model is more consistent and detailed
compared to the hand-labelled mask on which it was trained.

In Table 3, the binary accuracy (see Eq. (2)) of the predictions and
the masks in full length, as well as the mean absolute error (see Eq. (4))
of the extracted liquid level time series from prediction and mask are
given for all experiments used for training and testing. The binary
accuracy of the segmentation maps varies from 96.86% to 98.85% and
the mean absolute error of the liquid level time series varies from
1.15% to 3.12%. From these high accuracies and low errors for the
training and testing, it can be concluded, that the model performs well
for the considered types of data. Furthermore, since the net accurately
predicts the segmentation maps also for the two test sets that were
not used in training, it is able to generalize to unseen data from both
experimental set-ups, respectively.
7

Table 3
The number of the experiment, the recording set-up, the recorded time (length of the
video), the belonging to training or test set, the binary accuracy 𝑎𝑐𝑐bin(𝐴pred , 𝐴mask) (see
Eq. (2)) of the predicted segmentation map and corresponding mask as well as the mean
absolute error 𝜖(ℎpred

𝐿 , ℎmask
𝐿 ) (see Eq. (4)) of the liquid level time series, extracted from

prediction ℎpred
𝐿 and mask ℎmask

𝐿 are given for all experiments used for training and
testing.

Experiment Set-up Rec. time Training 𝑎𝑐𝑐bin 𝜖
(Nr. - 𝐿inflow) in s or Test in % in %

Nr. 1 - 100𝐷 1 122 Training 98.01 2.00
Nr. 1 - 500𝐷 1 150 Training 98.65 1.38
Nr. 2 - 100𝐷 1 150 Training 97.91 2.08
Nr. 3 - 100𝐷 1 150 Training 98.17 1.82
Nr. 3 - 500𝐷 1 150 Training 98.85 1.15
Nr. 4 - 100𝐷 1 150 Training 97.40 2.59
Nr. 4 - 500𝐷 1 150 Training 97.73 2.26
Nr. 6 - 100𝐷 1 150 Training 97.15 2.85
Nr. 9 - 100𝐷 3 122 Training 96.86 3.12
Nr. 9 - 300𝐷 3 126 Training 97.61 2.41
Nr. 9 - 600𝐷 3 121 Training 97.73 2.31
Nr. 10 - 100𝐷 3 122 Training 97.54 2.45
Nr. 10 - 300𝐷 3 125 Training 98.37 1.62
Nr. 10 - 600𝐷 3 123 Training 98.47 1.52
Nr. 11 - 100𝐷 3 122 Training 97.86 2.13
Nr. 11 - 600𝐷 3 123 Training 98.12 1.84

Nr. 11 - 300𝐷 3 123 Test 97.72 2.26
Nr. 5 - 100𝐷 1 150 Test 97.75 2.42

3.2. Inter-observer test

In this section, the inter-observer reliability is considered to eval-
uate the consistency of the hand-labelled data sets, which were used
for the training of the U-net. For this, three independent observers
have labelled the gas–liquid interface for the first 60 s of four chosen
experiments from the training and test set, namely Nr. 5 - 100𝐷, Nr.
6 - 100𝐷, Nr. 9 - 100𝐷 and Nr. 10 - 300𝐷 (see Table 3). Please note
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Table 4
The Pearson-correlation values for the pairwise comparison of the different labels.

Experiment 𝑟(ℎobs1
𝐿 , ℎobs2

𝐿 ) 𝑟(ℎobs1
𝐿 , ℎobs3

𝐿 ) 𝑟(ℎobs2
𝐿 , ℎobs3

𝐿 )

Nr. 5 - 100𝐷 0.973 0.965 0.969
Nr. 6 - 100𝐷 0.920 0.981 0.880
Nr. 9 - 100𝐷 0.938 0.914 0.931
Nr. 10 - 300𝐷 0.985 0.981 0.977

Table 5
The Pearson-correlation values for the pairwise comparison of the prediction with the
different labels.

Experiment 𝑟(ℎpred
𝐿 , ℎobs1

𝐿 ) 𝑟(ℎpred
𝐿 , ℎobs2

𝐿 ) 𝑟(ℎpred
𝐿 , ℎobs3

𝐿 )

Nr. 5 - 100𝐷 0.970 0.970 0.962
Nr. 6 - 100𝐷 0.954 0.933 0.901
Nr. 9 - 100𝐷 0.970 0.962 0.939
Nr. 10 - 300𝐷 0.993 0.987 0.981

that, the U-net was trained and tested with labels from Observer 1. The
nter-observer or inter-rater reliability (IRR) is defined as the degree of
elationship between the labels of different observers that are operating
ndependently (Kottner and Dassen, 2008; Tinsley and Weiss, 1975).
ere, the IRR for the hand-labelled time series is quantified by the nor-
alized cross-correlation coefficient. In the IRR-context, this coefficient

s also referred to as Pearson’s r or Pearson-correlation, see Kottner and
assen (2008) and Berman (2016).

For every experiment, the labelled data sets of the different ob-
ervers show a strong correlation to each other with values in between
.88 and 0.985, see Table 4. This indicates a high degree of relation
etween the hand-labelled liquid level time series of the different
bservers. Hence, the hand-labelled liquid level time series show con-
istency and reliability among the different observers and are therefore
uited for the training of the U-net. This correlation was calculated
sing the function pearsonr of python’s SciPy module (Virtanen et al.,
020). Please note that, it returned 𝑝-values for the null-hypothesis

significance testing of less then 0.001 for all cases. Furthermore, this
analysis is applied to the prediction of the U-net to quantify the degree
of relation between the prediction and the labels of the independent
observers, see Xiao et al. (2017).

As given in Table 5, the Pearson-correlation values for the pairwise
comparisons of the prediction and the labels of the different observers
reach from 0.901 to 0.993 with 𝑝-values of less then 0.001 for all
ases. This shows a strong correlation in a similar range as for the
bservers (see Table 4), and therefore, indicates a consistency between
he predictions of the U-net and the labels of the independent observers.

In addition to the Pearson-correlation, the pointwise errors be-
ween the hand-labelled time series of the different observers as well
s between the labels and the prediction of the U-net are consid-
red. For a quantification of the error between the observers, the
hree time series of the pointwise errors between the different ob-
ervers |ℎobs𝑖

𝐿 (𝑡𝑘) − ℎ
obs𝑗
𝐿 (𝑡𝑘)|𝑘=1,…,𝑁𝑡

for 𝑖 ≠ 𝑗 ∈ {1, 2, 3} are ensemble-
averaged (Walburn et al., 1983) to obtain one time series of the average
pointwise error in between the observer for every experiment, i.e.,

⟨|ℎobs𝑖
𝐿 − ℎ

obs𝑗
𝐿 |⟩(𝑡𝑘) =

1
3

∑

𝑖≠𝑗∈{1,2,3}
|ℎobs𝑖

𝐿 (𝑡𝑘) − ℎ
obs𝑗
𝐿 (𝑡𝑘)|, for every 𝑡𝑘. (5)

The same is done for the comparison of ℎpred
𝐿 and ℎ

obs𝑗
𝐿 with 𝑗 ∈ {1, 2, 3}.

These ensemble-averages are shown as boxplots on the right side of
Fig. 6. Here, the boxplots represent the distribution of these errors. It
can be seen that, the statistical quantities (mean, median) and ranges
(interquartile range and range between 5th and 95th percentile) of
the errors are smaller for ⟨|ℎpred

𝐿 − ℎ
obs𝑗
𝐿 |⟩ compared to ⟨|ℎobs𝑖

𝐿 − ℎ
obs𝑗
𝐿 |⟩

for all experiments. On the left side of Fig. 6, the range in between
the minima and maxima of the liquid level time series for every time
point, labelled by the three observers, are given for the interval of 5 s.
8

This range represents a tolerance in the observation of the gas–liquid a
Table 6
The number of the experiment, the recording set-up, the recorded time (length of
the video), the binary accuracy 𝑎𝑐𝑐bin(𝐴pred , 𝐴mask) (see Eq. (2)) of the predicted
egmentation map and corresponding mask as well as the mean absolute error
(ℎpred

𝐿 , ℎmask
𝐿 ) (see Eq. (4)) of the liquid level time series, extracted from prediction

pred
𝐿 and mask ℎmask

𝐿 for the three additional independent evaluations.

Experiment Set-up Rec. time 𝑎𝑐𝑐bin 𝜖
(Nr. - 𝐿inflow) in s in % in %

Nr. 7 - 100𝐷 2 60 96.99 3.00
Nr. 12 - 100𝐷 4 60 95.41 4.92
Nr. 13 - 100𝐷 3 60 97.68 2.32

interface or the liquid level. In addition to this, the liquid level time
series from the prediction of the U-net is superimposed. Here, it can be
seen that, the predicted time series is near or in the tolerance range.

Altogether, the hand-labelled parameters of the different observers
have a strong correlation as well as low pointwise errors between
each other. Hence, this parameter shows consistency in between the
observers and is therefore a reliable parameter for the training of the
U-net. Furthermore, the comparison of the predicted liquid level time
series with the observers show not only similarly strong correlation val-
ues, but also smaller statistical quantities of the considered pointwise
errors. Hence, the predictions of the U-net also provide liquid level time
series, which are consistent with respect to the different observers.

3.3. Further evaluations on different data sets

For further evaluations on the reliability and versatility of the
trained model, data from three additional experiments are considered,
which differ from the ones used for training and testing.

The model was trained and tested for Paraflex oil–nitrogen slug
flows with black or blue background (recording set-up 1 and 3), see
Fig. 3 and Section 2.4. In contrast to this, the flows considered in this
section are either recorded in a different set-up with different fluids,
or for a different flow pattern. They inlcude the brine water–nitrogen
slug flow experiment Nr. 7 - 100𝐷 from recording set-up 2 with grey
iquid colour and dark blue background, the Exxsol oil–nitrogen slug
low experiment Nr. 12 - 100𝐷 from recording set-up 4 with an ocher-
reen liquid colour, and the stratified wavy Paraflex oil–nitrogen flow
xperiment Nr. 13 - 100𝐷 from recording set-up 3. Please note that, also
he lighting conditions and occurring reflections differ from the training
nd test set, e.g., reflections in the back of the pipe for Experiment Nr.
- 100𝐷 and white colour on top of the slugs for Experiment Nr. 12
100𝐷, see Fig. 7. These differences are causing changes in contrast
nd RGB-intensity values. Together with the different flow pattern, this
eads to a change in conditions for the model, compared to the training
nd testing data.

In Table 6, the binary accuracy of the prediction and the corre-
ponding hand-labelled masks as well as the mean absolute error of
he extracted liquid level time series are given. For the Brine water–
itrogen slug flow of Experiment Nr. 7 - 100𝐷, the binary accuracy
f 96.99% and the error value of 3% are in the same ranges as for
he training and testing that are [96.86%, 98.85%] and [1.15%, 3.12%],
espectively. The same holds for the stratified wavy flow of Experiment
r. 13 - 100𝐷, with a binary accuracy of 97.68% and an error of
.32%. The prediction for the slug flow experiment Nr. 12 - 100𝐷 did
ot achieve such high accuracy as the other experiments. Nevertheless,
ith a binary accuracy of 95.41% and an error of 4.92%, it is still close

o the other values and a reasonable result.
In Fig. 7, the RGB-pixelcolumn over time with the extracted liquid

evels from the prediction and the hand-labelled mask are given for a
ime interval of 5 s for experiment Nr. 7 - 100𝐷, Nr. 12 - 100𝐷 and Nr. 13
100𝐷. As it can be seen in Fig. 7(i), the liquid level from the prediction
or the brine water - nitrogen slug flow experiment Nr. 7 - 100𝐷 shows
frequent underestimation in foamy areas in between shorter slugs.
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Fig. 6. Inter-observer comparison with prediction for the slug flow experiments Nr. 5 - 100𝐷, Nr. 6 - 100𝐷, Nr. 9 - 100𝐷 and Nr. 10 - 300𝐷. Left: range of hand-labelled liquid
evel time series by the three independent observers and superimposed prediction for 5 s. Right: Boxplots of the ensemble-averaged point wise differences between the observers
nd between prediction and observers. Please note, the whiskers in the boxplots represents the 5th and 95th percentile, the coloured box represents the interquartile range (Q3-Q1),
he horizontal line in the box represents the median, and the black cross represents the mean. (For interpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)
or the Exxsol oil - nitrogen slug flow experiment Nr. 12 - 100𝐷 in
ig. 7(ii), the prediction shows differences for slugs that are close to
ach other, see for instance the slugs at [50 s, 50.5 s] and [52 s, 52.5 s].
urthermore, for this flow, the slug rears are predicted later compared
o the mask. One reason for this is the liquid film that flows down on
he inner walls of the pipe after a slug passed by. This also causes the
op of the slugs to appear smeared out in the RGB-pixelcolumn over
ime and leads to the differences in between prediction and mask. Apart
rom the aforementioned deviations, the liquid level time series from
he prediction and mask are in good agreement for all three flows.

In addition to this evaluation, the two previously unseen slug flow
xperiments Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷 are further validated in
he same manner as in the inter-observer test in Section 3.2. There-
ore, the three independent observers have labelled the gas–liquid
nterface of these two slug flows. For the validation, the Pearson-
orrelation 𝑟 between the different observers, as well as between the
rediction and the observers, are considered, see Tables 7 and 8.
urthermore, the ensemble-averaged pointwise errors ⟨|ℎpred

𝐿 − ℎ
obs𝑗
𝐿 |⟩

nd ⟨|ℎobs𝑖
𝐿 − ℎ

obs𝑗
𝐿 |⟩ are considered for this evaluation, see Fig. 8.

For the two additional experiments, the hand-labelled data sets of
he different observers show a strong correlation to each other with
alues in between 0.922 and 0.974 and 𝑝-values of less then 0.001, see
9

Table 7
The Pearson-correlation values for the pairwise comparison of the different labels.

Experiment 𝑟(ℎobs1
𝐿 , ℎobs2

𝐿 ) 𝑟(ℎobs1
𝐿 , ℎobs3

𝐿 ) 𝑟(ℎobs2
𝐿 , ℎobs3

𝐿 )

Nr. 7 - 100𝐷 0.974 0.958 0.953
Nr. 12 - 100𝐷 0.941 0.942 0.922

Table 7. These values are similar to the ones obtained for the inter-
observer test in Section 3.2 and indicate a high degree of relation
between the hand-labelled liquid level time series of the different
observers. The Pearson-correlation values for the pairwise comparisons
of the prediction and the labels of the different observers reach from
0.868 to 0.967 with 𝑝-values of less then 0.001, see Table 8. This
also shows a strong correlation and, therefore, indicates a consistency
between the predictions of the U-net and the labels of the independent
observers.

As mentioned in the discussion of Fig. 7, the predictions of the
liquid level time series for Experiment Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷
show some systematic deviations from the hand-labelled data. For the
previously unseen nitrogen-water slug flow Experiment Nr. 7 - 100𝐷,
the prediction of the liquid level at the aerated liquid film region behind
the slugs is often lower compared to the hand-labelled data. Moreover,

for the previously unseen nitrogen–oil–water slug flow Experiment
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Fig. 7. Visualization of the results for three untrained flows and set-ups. For each experiment, the RGB-pixelcolumn over time and the extracted liquid level from the binarized
prediction and the corresponding mask are given for the time interval [50 s, 55 s]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Table 8
The Pearson-correlation values for the pairwise comparison of the prediction with the
different labels.

Experiment 𝑟(ℎpred
𝐿 , ℎobs1

𝐿 ) 𝑟(ℎpred
𝐿 , ℎobs2

𝐿 ) 𝑟(ℎpred
𝐿 , ℎobs3

𝐿 )

Nr. 7 - 100𝐷 0.967 0.957 0.946
Nr. 12 - 100𝐷 0.905 0.900 0.868

Nr. 12 - 100𝐷, the slug rears often appear later in the prediction
compared to the hand-labelled data. This is also shown in Fig. 8. This
behaviour leads to slightly lower (but still high) Pearson-correlation
values between the prediction and the observers for Experiment Nr. 12
- 100𝐷 compared to Experiment Nr. 7 - 100𝐷. Furthermore, this also
leads to a slightly larger variation in the ensemble-averaged pointwise
errors ⟨|ℎpred

𝐿 − ℎ
obs𝑗
𝐿 |⟩, compared to ⟨|ℎobs𝑖

𝐿 − ℎ
obs𝑗
𝐿 |⟩ for both experi-

ments, see Fig. 8. Nevertheless, the liquid level predictions of both
experiments are near or in the tolerance range of the observers, see
left side of Fig. 8. Moreover, the statistical parameters of the ensemble-
averaged pointwise errors between the predictions and the observers
⟨|ℎpred

𝐿 − ℎ
obs𝑗
𝐿 |⟩ are very similar to the ones between the different

observers ⟨|ℎobs𝑖 − ℎ
obs𝑗

|⟩, see right side of Fig. 8. Hence, for the two
10

𝐿 𝐿
difficult unseen slug flow experiments Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷,
a strong consistency between the prediction and the observers can be
concluded.

In the further, slug flow characteristics are calculated from the
extracted liquid level time series for Experiment Nr. 12 - 100𝐷. The
characteristics considered in this paper are the slug unit times 𝑇𝑢,
the slug body times 𝑇𝑏, as well as their mean values, the mean slug
frequency 𝑓𝑠, the mean slug unit length �̄�𝑢, the mean slug body length
�̄�𝑏, as well as the mean translational velocity of the slugs �̄�slug, see
Fig. 1 and Eq. (1). Considering these slug characteristics that can be ob-
tained from the predicted time series exemplifies the physical insights
provided by the results of the proposed image processing technique.
It also allows further validation of the predicted time series. In that
regard, it is shown that the predicted liquid level time series provide
reasonable slug characteristics, also for the unseen data of Experiment
Nr. 12 - 100𝐷 with the lowest accuracy and largest error values of all
considered cases (𝑎𝑐𝑐bin(𝐴pred, 𝐴mask) = 95.41%, 𝜖(ℎpred

𝐿 , ℎmask
𝐿 ) = 4.92%),

see Tables 3 and 6.
In Fig. 9a, the predicted and hand-labelled liquid level time series

of Experiment Nr. 12 - 100𝐷 are given for a time interval of 5 s, similar
to Fig. 7(ii). For the calculation of the slug unit times 𝑇𝑢 and slug body
times 𝑇 , a threshold value of 0.95 has been set to detect the slug fronts
𝑏
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Fig. 8. Inter-observer comparison with prediction for the slug flow experiments Nr. 7 - 100𝐷 and Nr. 12 - 100𝐷. Left: range of hand-labelled liquid level time series by the three
independent observers and superimposed prediction for 5 s. Right: Boxplots of the ensemble-averaged point wise differences between the observers and between prediction and
observers. Please note, the whiskers in the boxplots represents the 5th and 95th percentile, the coloured box represents the interquartile range (Q3-Q1), the horizontal line in the
box represents the median, and the black cross represents the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 9. The predicted and hand-labelled liquid level time series ℎmask
𝐿 and ℎpred

𝐿 for Experiment Nr. 12 - 100𝐷 with the threshold of 0.95 for slug detection (see a), histograms and
probability density functions (pdf’s) of the slug unit times 𝑇𝑢 (see b) and slug body times 𝑇𝑏 (see c) in comparison. Here, an illustration of the calculation of 𝑇𝑢 and 𝑇𝑏 is given
in the time series plot (see a).
and slug rears in the time series, as illustrated in Fig. 9a. Please note
that thresholding is the conventional procedure for this task, see Zhao
et al. (2015), Baba et al. (2018) and Schmelter et al. (2021a), and
therefore also applied in this investigation. Generally, the choice of
the threshold values for the detection of slugs in the time series is not
obvious and needs to be chosen individually for every time series. It
should not be too high, otherwise larger slugs are separated by their
entrained gas bubbles. However, it should also be chosen high enough
to avoid the miscounting of large amplitude waves (Schmelter et al.,
2021a). Furthermore, the histograms and probability density functions
(pdf’s) of the calculated slug unit times 𝑇 and the slug body times 𝑇
11

𝑢 𝑏
are given in Fig. 9b and c for both, the hand-labelled and predicted
liquid level time series. It can be seen that the predicted time series
provide similar values for 𝑇𝑢 and 𝑇𝑏 compared to the hand-labelled
time series. This is especially the case for the slug unit times 𝑇𝑢 with
nearly identical pdf’s. The histograms and pdf’s for the slug body times
show a slight shift to larger values for the prediction compared to
the hand-labelled time series. This is caused by the later prediction
of the slug rears in the predicted liquid level time series, as already
discussed for Fig. 7(ii). Furthermore, the mean slug frequency 𝑓𝑠 can
directly be obtained from the mean slug unit time �̄� , see Eq. (1),
𝑢
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Fig. 10. Illustration of the calculation of the mean translational slug velocity �̄�slug.
which is about 2.4Hz for both time series, see also Table 9. In addi-
tion, the mean translational velocity of the slugs is calculated for the
hand-labelled and predicted liquid level time series. This was achieved
by a cross-correlation analysis, which is typically used to calculate the
mean translational velocity and approximate the length scales 𝐿𝑢 and
𝐿𝑏 of the slugs from hold-up and liquid level time series, see Baba
et al. (2018), Viggiano et al. (2018) and Olbrich et al. (2021a). For
this, the proposed image processing technique is applied to extract
the liquid level time series at two different positions 𝑥1 and 𝑥2 along
the pipe in the video with a distance of 2.2 inner diameters 𝐷, as
illustrated in Fig. 10. For the comparison, also hand-labelled liquid
level time series have been considered for these positions. Then, the
time lags of the time series from position 𝑥1 and 𝑥2 are calculated by
using the cross-correlation coefficient for the time series, resulting in
8 time steps (0.033 s) for the prediction and 7 time steps (0.029 s) for
the hand-labelled time series with a sample rate of 240Hz. Then, the
mean translational velocity of the slugs �̄�slug is obtained by dividing
the distance between 𝑥1 and 𝑥2 (0.146m) by the calculated time lag
(0.033 s for the prediction and 0.029 s for the hand-labelled time series),
resulting in �̄�slug = 4.390m s−1 for the prediction and �̄�slug = 5.017m s−1

for the hand-labelled time series, see also Table 9.
Moreover, the mean slug body length 𝐿𝑏 and the mean slug unit

length 𝐿𝑢 are approximated by multiplying the corresponding mean
time scales �̄�𝑢 and �̄�𝑏 with the mean translational slug velocity �̄�slug.
The approximated length scales for both, the prediction and the hand-
labelled time series can also be found in Table 9. Altogether, the slug
flow characteristics obtained by the predicted liquid level time series
are in good agreement with the ones from the hand-labelled time series.
This holds in particular for the temporal scales (�̄�𝑢, �̄�𝑏, 𝑓𝑠). For the
spatial scales (�̄�𝑢 and �̄�𝑏), on the other hand, slight deviations between
the predicted and the hand-labelled data can be observed due to the
one time step difference in the lag detected in the cross-correlation
procedure. Hence, this analysis also gives insight into how much error
propagation plays a role if parameters are considered that are not
directly determined but calculated from other derived quantities.

The characterization of slug flow with length and time scales as well
as frequency spectra of the complete liquid level time series, obtained
from the results of the proposed deep learning based image processing
technique have already been used in the investigation of flow exper-
iments and validation of numerical simulations, see Schmelter et al.
(2021b).
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Table 9
Comparison of the mean slug characteristics calculated from the hand-labelled and
predicted liquid level time series.

Parameter Mask Prediction

Mean slug unit time �̄�𝑢 in s 0.421 0.415
Mean slug body time �̄�𝑏 in s 0.205 0.229
Mean slug frequency 𝑓𝑠 in Hz 2.373 2.407
Mean transl. slug vel. �̄�slug in ms−1 5.017 4.390
Mean slug unit length �̄�𝑢 in D 31.709 27.353
Mean slug body length �̄�𝑏 in D 15.392 15.056

Altogether, it can be concluded that the trained model can handle
different types of data and provides reliable results for its specific
task. Furthermore the proposed image processing technique provides
accurate liquid level time series that allow a detailed characterization
of the flow.

4. Limitations

The visual recognition of gas and liquid regions or the gas–liquid
interface in the video data constitutes a major limitation of the suc-
cessful extraction of the liquid level time series with the proposed
deep learning based image processing technique. For flows, where the
interface cannot be observed from the side, a meaningful gas–liquid
segmentation cannot be provided by the trained model. This is for
instance the case for dispersed or annular flow patterns as well as for
flows with large amounts of liquid spray, e.g., for slug or wavy flows
in the transition to a dispersed or annular flow pattern. Furthermore,
for foamy/bubbly regions in the flow, the segmentation often includes
foam into the liquid phase, leading to overestimated absolute values
for the liquid level time series. This overestimation was investigated in
detail in Olbrich et al. (2021b), where hand-labelled liquid level time
series of slug flow have been compared to reference parameters of a
conventional tomography measurement system.

To demonstrate the limitations of a meaningful liquid level ex-
traction with the proposed image processing technique, the method is
applied to four instances of slug flow with larger amounts of dispersed
phenomena, such as foam/bubbles or spray/mist. These are Experiment
Nr. 8 and 14 with high liquid and low gas flow rates leading to a high
liquid level in the pipe with large amounts of short slugs and foam/
bubbles (see Tables. 2, 10 and Figs. 11i, 11iii) as well as Experiment
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Fig. 11. Visualization of the limitations of the prediction for four slug flows with large amounts of dispersed phenomena. For each experiment, the RGB-pixelcolumn over time
(see a), the binarized predicted segmentation map (see b) and the extracted liquid level time series (see c) are given for the time interval [50 s, 55 s].
Table 10
The number of the experiment, the recording set-up, the recorded time (length of the
video), the superficial liquid and gas velocities 𝑣liquid

𝑠 , 𝑣gas
𝑠 (see also Table 2) and the

dominant dispersed phenomena in the flow leading to an unrecognizable gas–liquid
interface.

Experiment Set-up Rec. time 𝑣liquid
𝑠 𝑣gas

𝑠 Dispersed
(Nr. - 𝐿inflow) in s in ms−1 in ms−1 phenomena

Nr. 8 - 100𝐷 1 60 3.386 1.276 Foam/bubbles
Nr. 14 - 100𝐷 3 60 3.911 1.548 Foam/bubbles
Nr. 15 - 100𝐷 3 60 0.399 7.699 Spray/mist
Nr. 16 - 100𝐷 3 60 1.209 11.442 Spray/mist

Nr. 15 and 16 with high gas and low liquid flow rates leading to a low
liquid level with fewer shorter slugs and large amounts of spray/mist
(see Tables. 2, 10 and Figs. 11ii, 11iv).

Due to the dispersed phenomena, the gas–liquid interface becomes
(at least partially) unrecognizable for the observer in the considered
image data. Thus, a meaningful hand-labelled segmentation map as
ground truth for a validation of the prediction is not obtainable. How-
ever, the predictions are presented with the RGB-pixelcolumns over
time in order to give an impression about the limitations of the pro-
posed deep-learning based image processing technique.

For Experiment Nr. 8 and 15, the binarized predictions show arte-
facts caused by the foam/bubbles or the spray/mist, see for instance
the segmented bubble in the foam/bubbles at [51.5 s, 52 s] in Fig. 11i(b)
as well as the segmented lump of liquid in the spray/mist at 53 s in
Fig. 11ii(b). These artefacts lead to deviations for the extraction of
the liquid level time series. Despite the fact that a detailed validation
with hand-labelled segmentation masks cannot be made, the extracted
liquid level time series show the dominant liquid structures in the
flow and can therefore be used for a quantification of the slugs in
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these two cases. For Experiment Nr. 14 and 16, on the other hand,
with more dispersed phenomena compared to Experiment Nr. 8 and
15, the binarized predictions show larger areas of segmented liquid
compared to what can visually be observed in the corresponding RGB-
pixelcolumns over time (see 11iii(a,b) and 11iv(a,b)). This includes
foam/bubbles or spray/mist, which are identified as liquid in the gas–
liquid segmentation by the trained deep learning model, leading to
impractical liquid level time series approximations.

5. Conclusions

In this paper, an image processing method based on a supervised
deep learning model was presented, which extracts the liquid level time
series from video recordings of liquid–gas flows in horizontal pipes.
This method consists of a certain type of a deep convolutional neural
network, called U-net, and several pre- and post-processing steps. The
U-net was trained and tested with video data from horizontal oil–gas
slug flows for the task of segmenting liquid and gas regions in the video
frame data. For further evaluations of this model, additional indepen-
dent video data were considered, which show different fluids, recording
set-ups, and flow pattern. It was shown that, the trained model provides
an accurate segmentation of oil and gas in the video data, even for
previously unseen video recordings. In that regard, the model has
proven to be versatile and is also applicable for other transparent
gases. Furthermore, the extracted liquid level time series from the
predicted segmentation maps show low errors. For the quantification
of accuracy and error values, hand-labelled data was used as reference.
The consistency between these hand-labelled data and the predictions
of the U-net was shown in an inter-observer reliability test. Moreover,
it was demonstrated how flow characteristics can be obtained from
the results of the deep-learning based image processing technique.
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Altogether, the presented method accurately extracts the liquid level
time series from the considered video data. It can handle different types
of data, even unseen data sets. Furthermore, it can overcome various
noise effects, which are generally included in such image or video data.
Once, the net is successfully trained, it predicts highly accurate segmen-
tation maps in very short time. Prospectively, this method can provide
parameters for the analysis and characterization of certain types of
multiphase flows, in particular for the wavy or slug flow pattern,
where temporal and spatial scales of the slugs, waves and bubbles, as
well as their translational velocities can be derived from the extracted
liquid level time series. The achieved characterization helps to assess
and quantify problems for industrial operations that are induced by
specific flow patterns. In addition, the proposed model has the potential
for a segmentation of more complex three-phase flows, such as gas–
oil–water flows with separate phases, on condition that it is trained
with such data. Moreover, the proposed deep-learning based image
processing technique can be used for monitoring multiphase flows for
operation control if a transparent viewing section can be installed. This
includes academic investigations under laboratory conditions as well
as industrial applications, e.g., transportation pipelines in the oil and
gas industry as well as cooling systems in the nuclear energy sector. In
that regard, the link between the extracted liquid level time series and
controlling parameters, such as pressure, flow rates, and phase ratio
can be subject to further research.
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