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Abstract: Recent super-resolution imaging technologies enable tracing chromatin conformation
with nanometer-scale precision at the single-cell level. They revealed, for example, that human
chromosomes fold into a complex three-dimensional structure within the cell nucleus that is essential
to establish biological activities, such as the regulation of the genes. Yet, to decode from imaging
data the molecular mechanisms that shape the structure of the genome, quantitative methods are
required. In this review, we consider models of polymer physics of chromosome folding that we
benchmark against multiplexed FISH data available in human loci in IMR90 fibroblast cells. By
combining polymer theory, numerical simulations and machine learning strategies, the predictions of
the models are validated at the single-cell level, showing that chromosome structure is controlled
by the interplay of distinct physical processes, such as active loop-extrusion and thermodynamic
phase-separation.

Keywords: chromosome architecture; multiplexed FISH imaging; polymer physics; machine learning;
computer simulations

1. Introduction

Mammalian genomes are folded into a complex three-dimensional (3D) architecture
in the cell nucleus, including a large-scale structure of chromosomal interactions [1–4] that
involves, for instance, DNA loops [5], topologically associated domains (TADs) [6,7] and
higher-order contacts, such as meta-TADs [8] and A/B compartments [9]. Such a nested 3D
organization serves important functional roles, as genes and their distal regulators form
specific physical contacts to control transcriptional regulation [1,2]. Indeed, for example,
disruption of TADs due to genomic structural rearrangements, such as deletions or inver-
sions, has been linked to ectopic gene-regulator contacts, resulting in gene misexpression
and disease [10–13].

In the last decade, powerful technologies based on super-resolution microscopy ap-
proaches enabled to probe the 3D conformation of the genome with nanometer-scale
precision in single nuclei [14–17]. Those techniques revealed, for instance, that TADs exist
at the single-cell level, they broadly vary from cell to cell and correspond to spatially
segregated globular 3D conformations, confining, e.g., the activity of the regulators to their
proper target genes [15].

Those recent experiments triggered questions on the nature of chromatin contacts and
their origin: what are the mechanisms that shape genome 3D structure? What methods can
be developed to identify them? In this review, we discuss the application of models from
polymer physics to understand the machinery that establish chromosome architecture in the
nucleus of the cells. In particular, we focus on two recently proposed models of folding that
rely on two different physical processes, respectively, loop-extrusion and polymer phase-
separation. In the first process, spatial proximity between distal DNA sites is achieved by
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molecular motors that stochastically bind to DNA and extrude a polymer loop in an out-of-
equilibrium, active (e.g., ATP-dependent) physical process [18–24], and in the second, distal
genomic sites are tethered together by interactions mediated, e.g., by diffusing cognate
molecular particles, such as transcription factors, or by direct interactions produced, for
example, by DNA-bound histone molecules [12,25–40]. By taking as a case study a 2 Mb
wide chromatin region in human IMR90 cells where super-resolution multiplexed FISH
data are available [15], we combine those distinct physical mechanisms into polymer
models that we investigate by massive computer simulations (see Methods). We show
that both loop-extrusion and phase-separation significantly recapitulate microscopy data,
hinting that both processes can reliably coexist to determine the structure of chromosomes
at the single-cell level [28].

2. Methods

In the studied models, chromatin is represented as a polymer chain of non-overlapping
beads, subject to standard physical potentials derived from classical studies of polymer
simulations [41,42]. Specifically, adjacent beads along the polymer are tethered by an elastic
FENE potential and their overlap is prevented by a repulsive Weeks–Chandler–Anderson
(WCA) potential. In the loop-extrusion (LE) model, the extruding motors are modelled as
harmonic springs that can extrude loops by a translocation along the polymer chain, i.e.,
at each simulation step the spring is updated from the bead pair (i,j) to (i − 1,j + 1). As
broadly reported in the literature [18–23], those springs cannot pass through each other,
their number is fixed and they halt translocation when they collide with another extruding
motor or anchor sites with opposite orientation, or they stochastically unbind from the
polymer. A typical parameter choice in the simulations is to set the LE spring energy
constant equal to 10 kBT (kB is the Boltzmann constant and T the temperature) and its rest
length to 1.1σ (σ is the bead diameter) [18,19,37]. Additionally, to unveil the roles of the
LE ingredients beyond its minimal implementation, we examined a more refined version
where LE boundaries are chosen to best reproduce population-averaged contact data and
the model anchor sites are present with a specific, finite probability in a single-polymer
molecule to model cell-to-cell variation [28,37]. The average domain structure of the model
is thus reproduced from bulk data, but the ensemble of its single-molecule structures is
validated against independent single-cell microscopy conformations (see below). Another
key parameter controlling LE dynamics is the extruder processivity, i.e., the ratio between
the extrusion velocity and the unbinding rate from the chain, whose values can range, e.g.,
from 80 kb up to 750 kb [19,23,37].

In the class of phase-separation based models, we focused on the strings and binders
(SBS) model [30,39], in which a chromosome region is modeled as a self-avoiding polymer
chain where different specific types of binding sites are located for diffusing cognate molec-
ular particles (called binders). Binders and polymer sites are subject to a Brownian motion
regulated by the Langevin equation with standard parameters (i.e., friction coefficient
ζ = 0.5 [41]). The binders, via specific attractive interactions represented by a truncated
Lennard–Jones potential [34], can bridge their cognate sites on the chain, hence guiding
a micro-phase-separation of the polymer into different globules. As the number of the
binders (or their energy affinity) increases above a given threshold, the system undergoes a
thermodynamic phase-transition from a coil (i.e., randomly folded) to a phase-separated
globule state where the polymer self-assembles into distinct, spatially segregated globules
via a phase-separation mechanism [39]. Critical binder concentrations, for weak biochem-
ical affinities, fall in the fractions of µmol/L range [39], which is consistent with typical
transcription factor concentrations. The genomic locations of the binding sites of the SBS
model are inferred by a machine learning procedure based on the PRISMR algorithm [12].
In brief, PRISMR is a recursive Monte Carlo procedure that identifies the minimal set of
binding sites to best match input bulk (e.g., ensemble-averaged Hi-C or microscopy) data,
as fully detailed in [12,29,39]. Finally, we also discuss a model where the LE and SBS models
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are combined and act simultaneously in a single-polymer molecule (hereafter indicated as
the LE+SBS model).

To generate a statistical ensemble of in silico single-molecule conformations, each
model is investigated by massive molecular dynamics simulations until stationarity is
fully reached (typically up to 108 MD time iteration steps [43]); Langevin dynamics is
integrated via the Velocity–Verlet algorithm by using the free available LAMMPS [44]
and HOOMD [45] software. All the scripts required to perform the simulations of the
models are available at https://github.com/ehsanirani/PhaseSeparation-LoopExtrusion-
MD (accessed on 1 August 2022) [28].

3. Results

In this section, we benchmark our polymer models against single-cell super-resolution
microscopy data [15] available at 30 kb resolution in a 2 Mb wide genomic region (Chr21:
28–30 Mb) in human IMR90 cells. We show that the different models capture the complex
pattern of chromatin contacts at the cell population-averaged level, as well as the observed
3D conformations of the imaged chromatin region in single DNA molecules [28].

3.1. The Models Recapitulate Ensemble-Averaged Microscopy Data

In a first validation of the models, we computed their median distance matrix that we
compared against the corresponding map from multiplexed FISH data [15] (Figure 1).
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coordinates have >80% missing values. To quantitatively estimate the similarity between 
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Figure 1. The median spatial distance matrix of the IMR90 locus (Chr21: 28–30 Mb) from multiplexed
FISH microscopy [15] is compared against the corresponding in silico matrices of the considered
polymer models [28]. Both loop-extrusion (LE) and phase-separation based models (SBS and LE +
SBS) well recapitulate the complex experimental pattern of contacts. Adapted from [28].

The median distance map is the ensemble median of the single-molecule distance
maps, which, by definition, are symmetric square matrices reporting the Euclidean distances
between all pairs of polymer sites. Those matrices are visually represented as a 2D heatmap
with a color bar scheme to highlight contacting regions that are closer in 3D space (e.g.,
TADs or loops, colored in red in Figure 1) or those that have no significant interactions (blue
regions in Figure 1). To efficiently compute the distance matrices, we used built-in functions
within the Python SciPy package [28]. To reduce the noise within imaging data, we applied
a Gaussian filter on single-cell distance maps (standard deviation of the Gaussian kernel = 1)
and excluded single-cell conformations whose 3D coordinates have >80% missing values.
To quantitatively estimate the similarity between microscopy and model distance matrices,
we used the genomic distance-corrected Pearson correlation coefficient, r′, which corrects
the usual Pearson coefficient for genomic distance effects [12]. In brief, r′ is the Pearson
coefficient computed on distance matrices where each entry is subtracted by the mean value
of its diagonal. We found that the different models recapitulate the complex TAD patterns
observed in microscopy data, as well as specific pointwise interactions, as highlighted by
the high r’ correlation values: r′ = 0.49, r′ = 0.77 and r′ = 0.70, respectively, for LE, SBS and
LE+SBS [28]. To substantiate the statistical significance of the r’ correlations of the models,
we considered as null control model a self-avoiding chain with the same number of beads
as the imaged conformations and found that it returns a significantly lower correlation
value (r′ = 0.11, which is, respectively, four and seven times lower than the values found
for LE and SBS/LE+SBS). That indicates that both active processes, like loop-extrusion,
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and passive mechanisms, e.g., thermodynamic polymer phase-separation, are consistent
with the average structure of the considered IMR90 genomic region measured by bulk
imaging data.

Next, we checked whether our models also explain local properties of chromatin
structure. To this aim, we computed the boundary probability genomic function, i.e., the
probability for each genomic position across the studied IMR90 locus to appear as boundary
of a single-cell TAD domain [15] (Figure 2).
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The boundary function has local peaks corresponding to the main TAD boundaries
visible in the median distance map of the IMR90 locus and, interestingly, this function is
non-zero across the entire imaged region, indicating a substantial cell-to-cell variability
in the genomic position of TAD boundaries. We found that the different models return
boundary probabilities with profiles consistent with imaging data, as quantified by the
high Pearson correlations between models and experiment: r = 0.83, r = 0.63 and r = 0.65,
respectively, for LE, SBS and LE + SBS [28].

Taken together, these analyses show that both loop-extrusion and phase-separation
processes can quantitatively explain chromatin structure at the cell population-averaged
level. In particular, loop-extrusion (LE) is the best to capture the boundary probability
function, while phase-separation based models (SBS and LE + SBS) return overall higher
correlation values with ensemble-averaged distance data.

3.2. All-against-All Comparison between Single-Molecule Imaged and Model-Derived
3D Structures

As a further step, we aimed to investigate the structural predictions of our polymer
models at the single-molecule level. In particular, to assess whether our models do provide
a bona-fide representation of the imaged chromatin structures, we used a computational
method based on the root-mean-square deviation (RMSD) criterion [39,46]. In brief, the
algorithm performs a roto-translational alignment of two conformations (e.g., experimen-
tal and model derived) by minimizing the RMSD of their particle positions; in this way,
each experimental 3D structure from imaging is univocally associated to a corresponding
best-matching conformation of the models by searching for the minimum RMSD of their
coordinates. To fairly compare model and imaged 3D conformations, a z-score is performed
on both sets of coordinates. To efficiently run the RMSD comparison, we used the MDAnal-
ysis Python library, which employs the fast quaternion-based characteristic polynomial
(QCP) algorithm to calculate the least RMSD between two structures [47]. In Figure 3 we
report an example of best-matching conformations identified by the RMSD method: in
this case, for instance, the single-cell imaged distance map is characterized by two main
TAD-like structures, corresponding to distinct globules in 3D space, which are consistently
recapitulated by the different models (Figure 3).

To check the statistical significance of the RMSD analysis, we considered as control the
RMSD distribution between random pairs of imaged conformations (Figure 4). For each
type of model, we found that the experiment-model best-match distribution is statistically
distinguishable from the control (Figure 4a, two-sided Mann–Whitney test p-value = 0),
with less than 5% of the entries of the former distribution that fall above the first decile of
control (Figure 4b) [28]. Overall, the all-against-all RMSD analysis show that both loop-
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extrusion and phase-separation single-molecule conformations significantly represent the
ensemble of single-cell imaged 3D structures of the studied IMR90 cell region.
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4. Discussion

In this work, we discussed the application of polymer physics models to investigate
the mechanisms that establish the complex 3D structure of the genome as observed by
recent single-cell imaging data [15]. We focused on two main, distinct physical processes
that are supported by growing experimental evidence, i.e., loop-extrusion and phase-
separation. In the first mechanism, an active motor (e.g., Cohesin or Condensin) extrudes
DNA loops between specific anchor sites (envisaged as CTCF binding sites with opposite
orientation) in an out-of-equilibrium process; in the second, chromatin contacts between
distal genomic sites are established by diffusing molecular agents (such as transcription
factors) or direct DNA interactions that, sustained by the thermal bath, spontaneously
bridge their cognate sites.

By using as benchmark super-resolution microscopy data available for a 2 Mb wide
chromosome region in human fibroblast cells, we showed that both mechanisms can
quantitatively recapitulate single-cell imaged conformations, indicating that they can
coexist in shaping chromosome folding [28]. By allowing a deeper understanding of the
mechanisms driving the organization of the genome, models from polymer physics can be
used for real-world applications in real experimental contexts [48]. For example, validated
polymer models can be efficiently employed to impute missing values or reduce noise
effects in large imaging datasets. Additionally, and importantly, they can be employed to
predict in silico the structural effects of disease-associated mutations, linked, for instance,
to congenital disorders [11,12] or cancer [13,49].

Overall, those studies show that novel data from microscopy can be complemented
with quantitative models from physics to understand the mechanisms and function of
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genome structure, paving the way for important and useful applications, such as the
prediction of genomic perturbations on chromosome 3D architecture.
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