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Prediction of activity‑related 
energy expenditure 
under free‑living conditions using 
accelerometer‑derived physical 
activity
Stephanie Jeran1, Astrid Steinbrecher1,2, Verena Haas3, Anja Mähler4, Michael Boschmann4,6, 
Klaas R. Westerterp7, Boris A. Brühmann8, Karen Steindorf9 & Tobias Pischon1,5,10,11*

The purpose of the study was to develop prediction models to estimate physical activity (PA)‑related 
energy expenditure (AEE) based on accelerometry and additional variables in free‑living adults. In 
50 volunteers (20–69 years) PA was determined over 2 weeks using the hip‑worn Actigraph GT3X + as 
vector magnitude (VM) counts/minute. AEE was calculated based on total daily EE (measured 
by doubly‑labeled water), resting EE (indirect calorimetry), and diet‑induced thermogenesis. 
Anthropometry, body composition, blood pressure, heart rate, fitness, sociodemographic and lifestyle 
factors, PA habits and food intake were assessed. Prediction models were developed by context‑
grouping of 75 variables, and within‑group stepwise selection (stage I). All significant variables were 
jointly offered for second stepwise regression (stage II). Explained AEE variance was estimated based 
on variables remaining significant. Alternative scenarios with different availability of groups from 
stage I were simulated. When all 11 significant variables (selected in stage I) were jointly offered for 
stage II stepwise selection, the final model explained 70.7% of AEE variance and included VM‑counts 
(33.8%), fat‑free mass (26.7%), time in moderate PA + walking (6.4%) and carbohydrate intake (3.9%). 
Alternative scenarios explained 53.8–72.4% of AEE. In conclusion, accelerometer counts and fat‑free 
mass explained most of variance in AEE. Prediction was further improved by PA information from 
questionnaires. These results may be used for AEE prediction in studies using accelerometry

Activity-related energy expenditure (AEE) is the component of total daily energy expenditure (TDEE) showing 
the largest within-person variance, and therefore plays an important role in body weight regulation and obesity 
research. AEE can be defined as the component of energy expenditure that is caused by “any bodily movement 
produced by skeletal muscles”1. In addition to physical activity (PA), individual factors such as age, sex, height 
or body composition are associated with  AEE2,3.
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Under laboratory conditions, AEE can be directly measured by indirect calorimetry in a respiration chamber, 
which is, however, not feasible for longer time periods under free-living conditions. Free-living AEE can be 
calculated as TDEE minus resting energy expenditure (REE) and diet-induced thermogenesis (DIT). The gold 
standard for measuring TDEE under free-living conditions is the doubly-labeled water (DLW) method, while 
REE can be determined by indirect calorimetry under fasting and resting conditions. However, in large-scale 
epidemiological studies these time-consuming and cost-intensive methods are not feasible. Therefore, AEE has 
been traditionally derived from PA information that was collected via questionnaires and linked to activity-spe-
cific energy costs (i.e. metabolic equivalent of task, MET values) to calculate an individual’s energy expenditure. 
Due to limitations of questionnaire-based assessment (e.g. subjective interpretation of duration and intensity of 
PA, memory issues), PA and thus energy expenditure may be prone to substantial under- or  overestimation4,5.

Accelerometry provides convincing opportunities for PA recording and, subsequently, estimating AEE, and 
is now used in several large-scale epidemiological studies, such as the German National  Cohort6 or the UK 
 Biobank7. Small accelerometer devices are attached to specific body sites and objectively capture acceleration 
of body movements in up to three planes to provide information about frequency, intensity and duration of 
 PA8. Analogue to questionnaire-derived PA information, the accelerometer output may be converted to energy 
expenditure estimates using device-specific algorithms, which were developed when performing standardized 
activities under controlled laboratory  conditions9–12.

Although many (device-dependent) algorithms were available, it is unclear to what extent accelerometry-
derived PA can explain the variance in AEE under free-living conditions, and to what extent other individual 
characteristics could improve this estimation of AEE. In a previous systematic review, we found a large hetero-
geneity across studies in the explained variance of free-living AEE estimated from accelerometry, ranging from 
4 to 80%13. Importantly, inclusion of other predictors in addition to accelerometer output significantly increased 
the explained variance but a large heterogeneity remained across  studies13.

The aim of this study was, therefore, to develop prediction models to estimate AEE in a free-living setting (i.e. 
DLW-derived) based on accelerometry-derived PA information and additional factors, and to clarify each factor’s 
impact on explaining AEE variance. In the context of practical use, different settings of additional factors were 
considered to investigate each factor’s potential of improving the AEE variance, and to provide opportunities 
for AEE prediction depending on predictors’ availability.

Methods
Study population. The ActivE-study was conducted between September 2012 and April 2014. Our sample 
size calculation revealed a total number of 49 participants for a given alpha level of 0.05, a power of 0.80, a partial 
correlation of 0.4 between accelerometer output and AEE, and four predictors included in the model. Stratified 
by sex (50:50), age (five 10-year age groups), and body mass index (BMI, 18.5–24.9, 25–29.9, > 30.0 kg·m−2), 50 
volunteers were recruited via institutional mailing lists, advertisement in newspapers and local stores in Berlin 
and surrounding area (Supplementary Fig. S1). Inclusion criteria were: age 20–69 years, BMI 18.5–35.0 kg·m−2, 
German language skills, and everyday life conditions. Exclusion criteria were: pregnancy or lactation period, 
addiction to drugs or alcohol, cardiovascular disease, diabetes mellitus, instable thyroid disease, weight 
changes > 10 kg during previous six months, participation in weight reduction programs during previous three 
months, hemophilia, or intake of medication interfering with energy expenditure. In case of acute infections or 
vacation, the examination was postponed.

Data collection. The study was performed in accordance with the relevant guidelines and regulations and 
the study protocol was approved by the local ethics committee of the Charité-Universitätsmedizin Berlin. All 
participants gave written informed consent prior to study entry and visited the study center at the first and last 
day of the 2-week examination period. At the first visit, we measured anthropometric parameters such as height 
(using stadiometer SECA 285, Hamburg, Germany), weight (using SECA mBCA 515 (Hamburg, Germany), 
BMI, hip and waist circumference (using measuring tape SECA 201, Hamburg, Germany), and fat mass and 
fat-free mass (FFM) (using bioelectrical impedance analysis (BIA) with SECA mBCA 515 and air-displacement 
plethysmography (ADP) with BODPOD® (Life Measurement, Inc., Concord, CA, USA). We measured blood 
pressure and resting heart rate (using hemodynamometer OMRON HEM 705 IT, Mannheim, Germany) and 
maximum handgrip strength (using Jamar Plus dynamometer, Patterson Medical, Bolingbrook, IL, USA), col-
lected information on sociodemographic factors (age, sex, school education, professional training/qualification, 
occupation), lifestyle factors (smoking habits, alcohol consumption, PA by using IPAQ-Short14, sleep duration), 
medical history and current medication in a personal questionnaire-based interview, collected one basal urine 
sample for DLW analyses, and equipped each participant with an accelerometer. During the 2-week examination 
period, participants wore the accelerometer continuously 24 h per day (except for sauna, water-based activities 
or high contact sports) and documented non-wear times, collected DLW urine samples at five pre-specified time 
points, and completed a 7-day dietary record (197 common food items in conventional portion sizes) that was 
analyzed using software Optidiet (V5.0.2.010, GOE mbH, Linden, Germany). At the second visit, we collected 
the last DLW urine sample, measured REE, and participants completed the ‘Questionnaire on PA on previous 
12 months’ (QUAP). All measurements followed standardized protocols.

To determine daily PA, we used the triaxial accelerometer ActiGraph GT3X + (ActiGraph TM, Pensacola, FL, 
USA) placed at the right hip, and the corresponding software ActiLife (versions 6.11.0–6.11.9; ActiGraph LLC, 
Fort Walton Beach, FL, USA). Acceleration raw data were recorded at 100 Hz sample rate using all three spatial 
axes with disabled ‘Idle sleep mode’. Along with the download, ActiLife converted the raw data into ‘counts’. We 
used an epoch length of one second to condense the data. Due to limited recording capability under the specified 
conditions, each participant switched to a provided pre-initialized second accelerometer for data recording in 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16578  | https://doi.org/10.1038/s41598-022-20639-0

www.nature.com/scientificreports/

the second examination week. From the merged data set, we derived the following activity parameters as daily 
averages: Axis 1 counts per minute (cpm), Axis 2 cpm, Axis 3 cpm, vector magnitude (VM) cpm, steps per day 
and steps per minute. Using an adapted version of the ‘Freedson Adult VM3 (2011)’  algorithm15, we calculated 
the time spent in PA of vigorous (6167 cpm and above), moderate (2690–6166 cpm), and low (79–2689 cpm) 
intensity, as well as time spent inactive (0–78 cpm). Based on these parameters, we calculated total and relative 
time in low, moderate and vigorous PA. For analysis, activity parameters were arithmetically averaged across 
complete days. Incomplete days due to study center visits or substantial non-wear time during waking hours 
(> 8 h) were excluded (details in Supplementary Table S1).

To determine average TDEE, we used the DLW method over the 2-week examination period according to an 
adapted version of the Maastricht  protocol16. The basal urine sample was collected at the midmorning at the first 
study center visit (day 1). Each participant took his individually weighed DLW dose before going to bed on that 
day. The first enriched urine sample was collected from the second voiding at the next morning (day 2). Further 
urine samples were collected on day 2 from a random voiding in the evening, on day 9 from the second voiding 
in the morning and from a random voiding in the evening, on day 14 from a random voiding in the evening, and 
on day 15 from the second voiding in the morning. The DLW isotope concentration of each urine sample was 
measured in duplicates using an isotope-ratio mass spectrometer. The difference in isotopes’ elimination rates 
revealed the  CO2 production rate, which was used to calculate TDEE considering assumptions about fractiona-
tion, dilution spaces and background levels of isotopes, and estimation of respiratory  quotient17. Further, we 
used an average value of 0.85 to estimate the FQ in order to calculate the TDEE, which is based on conditions of 
energy balance and consuming an omnivore diet  consumption18,19, both of which were present in our population.

To determine REE, we measured  VCO2 production and  VO2 consumption by indirect calorimetry in a respi-
ration  chamber20. Overnight-fasted participants entered the chamber in the morning of the second study center 
visit. We calculated REE based on the first 40 min of gas exchange after a 30-min equilibration phase and the indi-
vidual nitrogen excretion rate (for calculation details see Supplementary Table S2) using established  formulas21. 
Participants were instructed to refrain from sports, alcohol, caffeine, and eating after 9 pm the day before.

As DIT was estimated as 10% of  TDEE22, AEE was calculated as 0.9 × TDEE minus REE.
The QUAP was developed at the German Cancer Research Center (DKFZ, Heidelberg, Germany) and con-

sidered several activity domains (i.e. occupation, domestic work and gardening, locomotion by foot and bicycle, 
leisure time activity spent with walking and bicycling, sports/exercise, sleeping/resting, sitting) and its yearly 
(summer vs. winter), monthly and weekly (weekday vs. weekend)  variation23. The IPAQ-Short considered sitting, 
moderate, vigorous and walking activities of previous seven days across all  domains14.

Statistical analysis. For statistical analyses, we used SAS Enterprise Guide, version 4.3 (SAS Institute Inc., 
Cary, NC, USA). One participant was excluded because of abnormal thyroid hormone blood levels.

AEE prediction models were developed using linear stepwise regression analysis. Due to the high number 
of potential candidate variables (m = 75, after excluding missing-value variables) in contrast to 49 observations, 
we conducted a multi-step-selection process. In stage I, the 75 candidate variables were grouped by context or 
examination module, and within each group, significant variables were selected using stepwise regression on 
AEE with p-value limits of < 0.05 (stage I), that were considered for the next selection step (stage II).

The group of 15 accelerometer-derived variables was treated differently: each single variable was regressed 
on AEE to find out the most appropriate single parameter for AEE prediction. VM counts (33.8%) and Axis 1 
counts (34.0%) explained the highest proportion of AEE variance. In this study, we focused only on VM counts, 
because it was frequently used in previous  studies13, and revealed higher correlations in similar studies with 
larger sample  sizes24.

In stage II, we developed final AEE prediction models using stepwise selection regression on all significant 
stage I variables with p-value limits < 0.05 (referred to as Model A).

In sensitivity analyses, we applied an additional stage II approach based on Schwarz Bayesian Information 
Criterion (SBC). Considering different combinations of p-value limits for including/retaining variables in the 
model [(a) 0.05/0.05, (b) 0.10/0.10, (c) 0.25/0.25, (d) 0.50/0.05, (e) 0.50/0.10, (f) 0.50/0.25], each model that 
emerged during one single step of the stepwise selection process that revealed a lower SBC compared to Model 
A was selected as Model B. While Models A contained only predictors that met the p-value threshold of < 0.05, 
Models B could include predictors that did not necessarily meet this threshold.

For practical application, various alternative models were developed at stage II simulating that only a reduced 
set of variables was available (e.g. due to not implemented measurements).

All selected models were checked for fulfilment of regression assumptions and collinearity. In sensitivity 
analyses, models were recalculated applying bootstrap sampling (2000 samples) at stage II.

Results
We recruited 25 men and 25 women almost equally distributed over age and BMI groups (Supplementary 
Table S3). Participants were stable in weight during the 2-week examination period (mean weight difference 
0.17 ± 0.95 kg). Table 1 shows the main characteristics for men and women; additional characteristics are pre-
sented in Supplementary Table S4. FFM (by ADP and BIA), maximum handgrip strength, systolic blood pressure, 
and energy intake were higher in men, while relative fat mass and resting heart rate were lower in men compared 
to women. Men had higher absolute TDEE, REE and AEE than women, whereas the relative proportions of REE 
and AEE were similar in both sexes. PA parameters derived from accelerometry and questionnaires (QUAP, 
IPAQ) were similar in men and women.
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Stage I selection and crude analysis. Seventy-five candidate variables were assigned to 17 different 
groups, each including between 1 to 15 variables (Table 2). Group-wise stage I selection revealed a total of 11 
variables significantly associated with AEE across groups (Table 2). Table 3 shows the crude association estimates 

Table 1.  Main characteristics of ActivE study population stratified by sex. Data are presented as mean, 
standard deviation (SD), minimum (Min) and maximum (Max), or as median, 25th and 75th percentile 
(P25th, P75th) separately for men and women. Additional characteristics are provided in Supplemental Digital 
Content Table 4. a Similar results were obtained with the BIA method (see Supplemental Digital Content 
Table 4, which shows additional characteristics of ActivE study population stratified by sex). b AEE was 
calculated as  TDEEDLW –  REEIC – DIT (assumed as 10% of TDEE). c Intensity of physical activity was defined as 
low (79–2689 cpm), moderate (2690–6166 cpm), vigorous (6167 cpm and above) based on Vector magnitude 
counts per  minute15. ADP air-displacement plethysmography, AEE activity-related energy expenditure, BMI 
body mass index, cpm counts per minute, DIT diet-induced-thermogenesis, DLW doubly-labeled water, 
FFM fat-free mass, FM fat mass, IC indirect calorimetry, IPAQ International Physical Activity Questionnaire, 
PA physical activity, QUAP Questionnaire on Physical Activity on previous 12 months, REE resting energy 
expenditure, TDEE total daily energy expenditure.

Men (n = 25) Women (n = 25)

Mean ± SD (Min–Max) Mean ± SD (Min–Max)

Age and anthropometry

Age (years) 49.9  ± 13.8 (26.0–69.0) 40.0  ± 14.6 (20.0–68.0)

Height (cm) 181.0  ± 6.0 (172.1–194.1) 167.5  ± 6.5 (156.8–183.6)

Weight (kg) 87.8  ± 12.1 (67.0–120.1) 72.5  ± 12.7 (52.4–97.2)

BMI (kg  m−2) 26.8  ± 3.5 (21.1–36.1) 25.9  ± 4.6 (18.6–35.4)

FFMADP (kg)a 64.0  ± 5.1 (53.6–72.2) 46.2  ± 6.2 (34.3–60.5)

FM%ADP (%) 26.3  ± 8.3 (6.7–41.4) 35.0  ± 10.8 (16.0–53.8)

Fitness and circulatory parameters

Handgrip strength, maximum (kg) 49.0  ± 7.1 (36.7–68.2) 31.5  ± 7.3 (18.5–44.6)

Resting heart rate (bpm) 60.9  ± 8.8 (43.5–80.5) 66.6  ± 9.2 (52.0–85.0)

Energy expenditure components

TDEEDLW (kcal  day−1) 3158  ± 408 (2496–3905) 2571  ± 464 (1813–3704)

REEIC (kcal  day−1) 1813  ± 192 (1432–2256) 1501  ± 141 (1273–1849)

AEEb (kcal  day−1) 1029  ± 300 (342–1465) 813  ± 339 (169–1611)

Dietary data

Energy intake (kcal  day−1) 2450  ± 516 (1580–3890) 1957  ± 496 (1190–3000)

Carbohydrate intake, relative (%) 43.5  ± 7.1 (27.0–52.0) 47.2  ± 6.9 (31.0–57.0)

Accelerometryc

Vector magnitude counts (cpm) 439  ± 126 (258–711) 458  ± 119 (269–721)

Time in low PA (min  day−1) 122  ± 33 (71–196) 138  ± 33 (83–242)

Time in moderate PA (min  day−1) 97  ± 28 (53–164) 100  ± 21 (61–143)

Time in vigorous PA (min  day−1) 22  ± 11 (6–45) 21  ± 12 (6–51)

Median (P25th, P75th) Median (P25th, P75th)

QUAP

Time in occupation (h  week−1) 38.0 (0.0, 40.5) 39.0 (14.0, 40.0)

Time in locomotion (h  week−1) 2.5 (1.1, 4.5) 4.8 (1.8, 7.0)

Time in domestic work/gardening (h  week−1) 7.0 (5.0, 15.0) 10.0 (4.0, 15.0)

Time in leisure time bicycling (h  week−1) 0.6 (0.1, 1.4) 0.6 (0.1, 1.3)

Time in leisure time walking (h  week−1) 0.5 (0.2, 1.4) 1.0 (0.6, 1.4)

Time in sports/exercise (h  week−1) 2.7 (1.5, 5.5) 2.0 (1.2, 4.2)

Mean  ± SD (Min–Max) Mean  ± SD (Min–Max)

Time in sedentary behavior (h  day−1) 9.4  ± 3.1 (2.6–14.0) 10.5  ± 3.0 (3.7–16.1)

Median (P25th, P75th) Median (P25th, P75th)

IPAQ-short

Time in vigorous PA (min  day−1) 25.7 (8.6, 42.9) 17.1 (4.3, 34.3)

Time in moderate PA (min  day−1) 5.7 (0.0, 25.7) 6.4 (0.0, 25.7)

Time in walking activity (min  day−1) 19.3 (4.3, 30.0) 17.1 (8.6, 60.0)

Mean  ± SD (Min–Max) Mean  ± SD (Min–Max)

Time in sedentary behavior (h  day−1) 7.9  ± 3.3 (2.5–14.0) 6.9  ± 3.8 (1.5–15.0)
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and explained variances of each significant variable with AEE. VM counts was strongly positively associated with 
AEE and explained alone the largest variance in AEE  (R2 = 33.8%), closely followed by FFMADP  (R2 = 32.6%). 
Time spent sitting, resting heart rate and sex were inversely associated with AEE. Normal distribution and homog-
enous variance in the residuals were verified. 

Stage II selection for final AEE prediction models. Table 4 presents the results of the stage II stepwise 
selection process for the AEE prediction models. We used the term ‘selected’ for variables that were offered for 
stepwise regression, and were statistically selected based on the p < 0.05 threshold. When all 11 significant vari-
ables from stage I were considered for stage II selection step, VM counts, FFMADP, time in moderate PA and walk-
ing, and carbohydrate intake were selected as predictor variables, which explained 70.7% of the AEE variance.

Running the stage II selection step with reduced sets of stage I variables offered for stepwise regression, we 
examined to what extent other variables may substitute in explaining AEE variance (Table 4, Supplementary 
Table S5). In all these models, VM counts (considered in every model) was always selected as first predictor, and 
FFMADP (when considered) was always selected as second predictor. Time in moderate PA and walking derived 
from IPAQ was always selected as predictor, if information from IPAQ was considered (Table 4).

If no ADP to estimate FFM was considered, then FFMBIA was selected instead (Table 4). If no information 
from ADP or BIA was considered at all, then height was selected instead.

If no information from IPAQ was considered, then time spent sitting and time in locomotion derived from 
QUAP were selected instead (if considered). If no information from neither QUAP nor IPAQ was considered, 
no other predictor was selected instead.

Table 2.  Variable groups and its candidate variables after stage I selection using stepwise regression seperately 
for each group (n = 49). In each group all candidate variables were offered to select significant variables for AEE 
prediction by stepwise selection regression using p-value limits of 0.05 for the corresponding partial F-statistic 
for including and retaining variables in the model. a In the accelerometry group, of 15 candidate variables 
the single parameter VM counts was selected because it explained the highest proportion of variance in AEE 
(33.8%, similar to Axis 1 counts 34.0%) using linear regression, was frequently used in previous  studies13, and 
revealed higher correlations in similar designed studies with higher sample  sizes24. b In addition, we tested the 
following combined variables that were calculated as sum of the single variables: total time in locomotion, 
bicycling, walking, and sports; total time in locomotion, bicycling, walking, sports, and domestic work; total 
time in locomotion, bicycling, walking, sports, domestic work, and occupation. c We considered two groups for 
nutrition: the second group does not include energy intake, as this variable is directly related to the aggregated 
intake of the macronutrients (carbohydrate, protein, and fat). ADP air-displacement plethysmography, BIA 
bioelectrical impedance analysis, FFM fat-free mass, FM fat mass, IPAQ International Physical Activity 
Questionnaire, MET metabolic equivalent of task, PA physical activity, QUAP Questionnaire on Physical 
Activity on previous 12 months, VM vector magnitude.

Variable group

Candidate variables for stage I selection step

Offered to the model (groupwise) Selected by the model (significant)

Accelerometrya (Separate analysis) VM  countsa

ADP FFMADP,  FMADP, FM%ADP FFMADP

BIA FFMBIA,  FMBIA, FM%BIA FFMBIA

Anthropometry Height, weight, body mass index, waist circumference, hip circumference, waist-to-hip ratio, 
arm circumference height

QUAPb Time in occupation, MET-h in occupation, time in domestic work, MET-h in domestic work, 
time in bicycling, MET-h in bicycling, time in locomotion, time in walking, time in  sportsb Time in locomotion

IPAQ
Time in vigorous PA, time in moderate PA, time in walking activity, total time in moderate 
and vigorous PA, total time in moderate PA and walking activity, total time in moderate and 
vigorous PA and walking

Total time in moderate PA and walking activity

Sitting (from QUAP & IPAQ) Time spent sitting (IPAQ), time spent sitting (QUAP), time spent sitting on weekdays (QUAP), 
time spent sitting on weekend (QUAP) Time spent sitting (QUAP)

Sleeping (from QUAP & IPAQ) Time spent sleeping incl. napping (IPAQ), time spent sleeping incl. napping (QUAP), time 
spent sleeping excl. napping (QUAP) None

Nutrition 1 Energy intake, fat intake, relative fat intake, carbohydrate intake, relative carbohydrate intake, 
protein intake, relative protein intake Energy intake

Nutrition  2c Carbohydrate intake, fat intake, relative fat intake, relative carbohydrate intake, protein intake, 
relative protein intake Carbohydrate intake

Circulatory parameters Systolic blood pressure, diastolic blood pressure, resting heart rate Resting heart rate

Physical fitness Handgrip strength Handgrip strength

Demography Age, sex Sex

Metabolism Fasting respiratory quotient None

Socioeconomic School education, professional qualification, occupation None

Lifestyle Smoking status, pack years of smoking, frequency of alcohol consumption, alcohol intake None

Other Season of examination None
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Carbohydrate intake was selected in almost every model, if information on nutrition was considered; other-
wise no other predictor was selected instead. Resting heart rate was selected only in a few models. The variables 
sex, handgrip strength, and energy intake were not selected in any AEE prediction model.

Across the examined variable sets, 53.8–72.4% of the variance in AEE was explained by 2–6 predictors 
included in the models (Table 4). VM counts and FFM (by ADP or BIA) or alternatively height contributed most 
to the explained AEE variance (partial  R2: VM counts = 33.8%, FFMADP = 26.7%, FFMBIA = 24.7%, height = 20.0%). 
The other predictors—when selected—contributed a smaller proportion to the explained AEE variance (partial 
 R2 range: 2.9–7.9%).

Application and sensitivity analyses. The results of our analysis may easily be used to predict AEE 
depending on the availability of variables  (Table  4, and all necessary details for calculation in Supplemental 
Digital Content Table 5). In Fig. 1, Model Example I illustrates the application of the prediction equation for the 
model with the highest explained variance (Model No.5 from Table 4, for calculation details see also Supplemen-
tal Digital Content Table 5). In this example, a person with the following characteristics, VM counts = 440 cpm, 
FFMADP = 55  kg, FFMBIA = 55  kg, time in locomotion = 3.5  h/week, time spent sitting = 10  h/day, carbohydrate 
intake = 250  g/day, would have a predicted AEE of 869  kcal/day. In Fig.  1, Model Example  II illustrates the 
application if only a minimal variable set is available. In this example, when information only on accelerometry 
and BIA is available (Model No.13 from Table 4, for calculation details see also Supplemental Digital Content 
Table 5), the same person would have a predicted AEE of 872 kcal/day.

In sensitivity analyses, when selection was based on improved SBC, additional AEE prediction models were 
developed in five variable settings (listed as Model B in Supplementary Table S5). In the full variable set, 75.4% 
of AEE variance was explained by the predictors VM counts (33.8%), FFMADP (26.7%), time in moderate PA and 
walking (6.4%), time in locomotion (2.4%), time spent sitting (2.3%) and carbohydrate intake (3.9%).

When AEE prediction models were recalculated using bootstrap sampling and stepwise regression, the boot-
strap inclusion frequencies of the selected variables reflected the results obtained from original analysis.

All AEE prediction models met the assumptions of normally distributed residuals and homoscedasticity, and 
no substantial multi-collinearity among the predictors was detected.

Discussion
In this study, we developed models to predict free-living AEE based on accelerometry information and additional 
predictors. Considering a variety of potential variables, we found a model that included VM counts, FFMADP, time 
in moderate PA and walking (IPAQ) and carbohydrate intake explaining 70.7% of variance in free-living AEE. 
Considering reduced sets of variables, we developed models explaining 53.8–72.4% of variance in free-living 
AEE depending on the number of selected predictors. Models developed in reduced variable sets could explain 
a higher AEE variance compared to the ‘full variable set’ model, if unavailable variables were substituted by 
other or a higher number of predictors. The results of our analysis may be used in studies using accelerometry 
for AEE prediction.

The triaxial accelerometer output VM counts explained 33.8% of the variance in AEE, which is in the range 
(22.0–49.0%) of previous  studies25–29. The anthropometric variables (FFMADP, FFMBIA, height) added the highest 
proportion of explained AEE variance (20.0–26.7%) in addition to VM counts. Other selected predictors (time in 
moderate PA and walking, time spent sitting, time in locomotion, carbohydrate intake, resting heart rate) contributed 
a much lower proportion ranging from 2.9 to 7.9%.

Table 3.  Crude association of significant variables from stage I selection step and AEE (kcal  day−1) using 
single linear regression sorted by strength of association (n = 49). ADP air-displacement plethysmography, 
beta unstandardized regression coefficient, BIA bioelectrical impedance analysis, bpm beats per minute, cpm 
counts per minute, FFM fat-free mass, FM fat mass, HGS handgrip strength, IPAQ International Physical 
Activity Questionnaire, MPA moderate physical activity, QUAP Questionnaire on Physical Activity on previous 
12 months, R2 coefficient of determination, SE standard error, STbeta standardized beta coefficient, VM vector 
magnitude.

Variables (stage I) beta SE 95% CI p-value STbeta R2 (%)

VM counts (cpm) 1.60 0.33 (0.94, 2.26)  < 0.001 0.58 33.8

FFMADP (kg) 18.48 3.87 (10.69, 26.27)  < 0.001 0.57 32.6

FFMBIA (kg) 15.29 3.96 (7.33, 23.25)  < 0.001 0.49 24.1

Height (cm) 18.07 4.71 (8.60, 27.53)  < 0.001 0.49 23.9

Energy intake (kcal  d−1) 0.29 0.08 (0.14, 0.45)  < 0.001 0.48 23.2

Carbohydrate intake (g  d−1) 2.08 0.62 (0.83, 3.33) 0.002 0.44 19.3

SittingQUAP (h  day−1) − 46.30 14.27 (− 75.00, − 17.60) 0.002 − 0.43 18.3

HGSmax (kg) 11.85 3.95 (3.90, 19.81) 0.004 0.40 16.0

Resting heart rate (bpm) − 13.96 5.11 (− 24.24, − 3.69) 0.009 − 0.37 13.7

LocomotionQUAP (h  week−1) 21.40 8.78 (3.74, 39.06) 0.019 0.34 11.2

Sex (male = 0, female = 1) − 220.05 92.14 (− 405.41, − 34.69) 0.021 − 0.33 10.8

MPA +  walkingIPAQ (min  day−1) 2.25 1.11 (0.01, 4.49) 0.049 0.28 8.0
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These findings emphasize the relevance of anthropometric variables for AEE prediction in addition to objec-
tive PA parameters as derived from accelerometry. Two-parameter models, comprised of VM counts and FFM or 
height, explained 53.8–60.5% of AEE variance, which was also found in previous  studies27,30. Interestingly, FFM 
and height were never included together in a  model27,30–34, probably due to the strong relation between these 
variables (based on their relation to sex), that would have induced multi-collinearity problems. Physiologically 
plausible, FFM reflects the skeletal muscle mass that represents the major location of energy expenditure due 
to PA  movement1,3. Similarly, height reflects the sex-based differences in FFM. Some previous studies included 
height in combination with body weight32,34, which comprises fat mass and FFM. However, in this study, weight 
was not selected during the stage I selection step of the anthropometry variable group, and was therefore not 
offered for stage II selection to develop AEE prediction models.

Self-reported PA information from questionnaires contributed slightly to moderately to AEE variance. These 
parameters may include relevant information about activities that were not adequately captured by the acceler-
ometer, such as cycling, static exercises, or water  activities4. Therefore additional PA information from question-
naires could further improve AEE prediction, although the effort to obtain this information and its validity has 
to be  considered4,8.

Table 4.  AEE prediction models derived from stage II stepwise selection regression using accelerometer 
variable VM counts and full or reduced variable sets (n = 49). Predictors were selected applying stepwise 
regression with p-value limits of 0.05 (Model A). Gray-shaded variables were not offered for selection in the 
specific setting. More details and the results of the sensitivity analyses revealing additional models are shown in 
Supplemental Digital Content Table 5 (Details of prediction models for AEE [kcal  day−1] derived from stepwise 
selection regression using accelerometer-derived VM counts and full or reduced sets of preselected stage I 
variables). AEE activity-related energy expenditure, ADP air-displacement plethysmography, BIA bioelectrical 
impedance analysis, bpm beats per minute, cpm counts per minute, FFM fat-free mass, IPAQ International 
Physical Activity Questionnaire, MPA moderate physical activity, n.i. not included (not offered for selection 
step), n.s. not selected, QUAP Questionnaire on Physical Activity on previous 12 months, VM vector magnitude.

AEE predic�on models Selected predictor variables Model fit 
Unstandardized Beta (Standard Error), Par�al R², p-value R² adj.R² 

VM counts FFMADP FFMBIA Height MPA+walking Locomo�on Si�ng Carbohydrate Res�ng heart [%] [%] 
No. Variable sets [cpm] [kg] [kg] [cm] IPAQ [min·d-1] QUAP [h·wk-1] QUAP [h·d-1] intake [g·d-1] rate [bpm] 

Full variable set  1.16 (0.24) 16.46 (2.84) 2.22 (0.69) 1.00 (0.42) 70.7 68.1 
1 (Model A) 33.8 % 26.7 % n.s. n.s. 6.4 % n.s. n.s. 3.9 % n.s.

<0.001 <0.001 0.002 0.020
no ADP  1.18 (0.24) 13.83 (2.65) 2.39 (0.70) 1.00 (0.42) -7.24 (3.45) 71.7 68.4 

2 (Model A) 33.8 % n.i. 24.7 % n.s. 5.6 % n.s. n.s. 4.7 % 2.9 %
<0.001 <0.001 0.001 0.021 0.042

no ADP & BIA  0.83 (0.27) 15.81 (3.33) 1.73 (0.74) 12.90 (6.02) -24.17 (9.66) 1.25 (0.42) 72.4 68.5 
3 (Model A) 33.8 % n.i. n.i. 20.0 % 7.9 % 3.0 % 3.0 % 4.7 % n.s.

0.003 <0.001 0.024 0.038 0.016 0.004
no QUAP  1.16 (0.24) 16.46 (2.84) 2.22 (0.69) 1.00 (0.42) 70.7 68.1 

4 (Model A) 33.8 % 26.7 % n.s. n.s. 6.4 % n.i. n.i. 3.9 % n.s.
<0.001 <0.001 0.002 0.020

no IPAQ  0.90 (0.26) 13.72 (2.79) 15.08 (5.73) -27.15 (9.27) 1.14 (0.41) 72.4 69.2 
5 (Model A) 33.8 % 26.7 % n.s. n.s. n.i. 4.4 % 3.7 % 3.8 % n.s.

0.001 <0.001 0.012 0.005 0.008
no IPAQ & QUAP  1.46 (0.26) 16.81 (3.01) 60.5 58.8 

6 (Model A) 33.8 % 26.7 % n.s. n.s. n.i. n.i. n.i. n.s. n.s.
<0.001 <0.001 

no IPAQ & QUAP  1.49 (0.25) 13.73 (2.91) 1.08 (0.45) 63.1 60.7 
7 & ADP (Model A) 33.8 % n.i. 24.7 % n.s. n.i. n.i. n.i. 4.7 % n.s.

<0.001 <0.001 0.021
no IPAQ & QUAP  1.41 (0.27) 14.14 (3.76) 1.05 (0.49) 58.0 55.2 

8 & ADP & BIA  33.8 % n.i. n.i. 20.0 % n.i. n.i. n.i. 4.2 % n.s.
(Model A) <0.001 <0.001 0.038
no Nutri�on  1.26 (0.25) 18.50 (2.85) 2.12 (0.72) 66.9 64.6 

9 (Model A) 33.8 % 26.7 % n.s. n.s. 6.4 % n.s. n.s. n.i. n.s.
<0.001 <0.001 0.005 

no Nutri�on  1.26 (0.25) 18.50 (2.85) 2.12 (0.72) 66.9 64.6 
10 & QUAP  33.8 % 26.7 % n.s. n.s. 6.4 % n.i. n.i. n.i. n.s.

(Model A) <0.001 <0.001 0.005 
no Nutri�on  1.06 (0.27) 16.16 (2.84) 12.89 (6.09) -24.82 (9.90) 67.5 64.6 

11 & IPAQ 33.8 % 26.7 % n.s. n.s. n.i. 3.3 % 3.7 % n.i. n.s.
(Model A) <0.001 <0.001 0.040 0.016 
no Nutri�on  1.46 (0.26) 16.81 (3.01) 60.5 58.8 

12 & IPAQ & QUAP  33.8 % 26.7 % n.s. n.s. n.i. n.i. n.i. n.i. n.s.
(Model A) <0.001 <0.001 
no Nutri�on  1.61 (0.26) 15.46 (2.96) 58.4 56.6 

13 & IPAQ & QUAP  33.8 % n.i. 24.7 % n.s. n.i. n.i. n.i. n.i. n.s.
& ADP (Model A) <0.001 <0.001 
no Nutri�on & IPAQ  1.51 (0.28) 16.60 (3.72) 53.8 51.8 

14 & QUAP & ADP  33.8 % n.i. n.i. 20.0 % n.i. n.i. n.i. n.i. n.s.
& BIA (Model A) <0.001 <0.001 
no Nutri�on  1.27 (0.25) 15.06 (2.74) 2.35 (0.74) -9.09 (3.54) 67.9 65.0 

15 & QUAP & ADP  33.8 % n.i. 24.7 % n.s. 4.7 % n.i. n.i. n.i. 4.8 % 
(Model A) <0.001 <0.001 0.003 0.014 
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Interestingly, even the inversely associated variable time spent sitting contributed to AEE variance, although 
it rather reflects inactivity without substantial energy expenditure. This is, to the best of our knowledge, the first 
study using questionnaire-based PA parameters for DLW-derived AEE prediction.

Surprisingly, carbohydrate intake contributed to AEE variance, although this contribution was rather small. 
We suppose that additional information on PA-related attributes might be covered in this variable, such as that 
more active people differ in their diet regarding carbohydrate composition compared to less active  people35. 
However, the effort to obtain nutritional information was disproportionate to the improvement of explained 
variance in this study. Further, nutritional information is prone to underreporting, which was also observed in 
this study. Therefore, results on nutritional aspects should be interpreted cautiously.

The relevance of resting heart rate in AEE prediction might be questionable, because, if selected, it contributed 
only marginally to AEE variance. Nevertheless, it is an easy-to-measure parameter and might indicate overall 
fitness levels with lower heart rates in fitter  people36. Unfortunately, we could not find studies using resting heart 
rate for DLW-derived AEE prediction.

The variables sex, handgrip strength and energy intake were not selected for AEE prediction during stage II 
selection step, although they showed moderate associations in the univariate models. We suppose that the inclu-
sion of FFM or height already reflected these associations, that is based on the strong association of sex with FFM, 
height37, handgrip strength38, and energy intake (as surrogate for TDEE)39,40. In comparable studies using stepwise 
selection regression, sex was not selected when height or FFM was included in the  model27,30.

The main strengths of this study were the sophisticated reference method (DLW), and the large number of 
potential candidate variables to predict AEE, most of which were considered for the first time. Furthermore, the 
grouping of variables by examination module or context enabled AEE prediction in different variable settings, 
allowing to select appropriate models depending on the availability of predictors. For example, in the German 
National Cohort study, information on 7-day-accelerometry, BIA, anthropometry, and  GPAQ41 (which is similar 
to  IPAQ14) were collected from a large population-based  sample6. Some participants had additional PA informa-
tion from QUAP, or nutritional information from food-frequency-questionnaires6. Thus, the developed AEE 
prediction models could be applied to this sample to obtain AEE estimates to further investigate associations 
with biomarker concentrations or chronic disease risks.

Another important strength is the 24-h assessment of free-living PA by accelerometry for 2 weeks that 
provides a reliable estimate of habitual PA in  adults42. Both the measurement of PA by accelerometry and the 
measurement of TDEE by DLW method were performed simultaneously, so that recorded PA should be reflected 
in the calculated AEE. Non-wear times of the accelerometer during waking hours amounted to about 15 min 
per day (median) according to wearing diary. This is very low and therefore not to be expected to influence the 
accelerometer-derived PA outcome.

Further, the ActivE study population covered a large range of age and BMI for both sexes, which creates more 
heterogeneity and variability in the data to promote generalizability of study findings. With 49 participants, as 
determined from sample size calculation, the analytic sample size was adequate and comparable to previous 
studies of similar study design and  aim27,29,43.

On the other hand, one main limitation is the imbalance between the number of candidate variables and 
observations. To overcome this, first, we applied conceptual and statistical (pre)-selection of candidate variables. 
Second, we chose rigorous p-value limits (p < 0.05) for stepwise selection regression to promote selection of vari-
ables with stronger effects and to prevent  overfitting44. Third, in sensitivity analyses using bootstrap sampling, 
the selected predictors were confirmed.

Another main limitation is that the developed prediction models were not externally validated. Further, the 
sample size of our study is rather small—despite statistically adequate–, and the population includes only healthy 
volunteers. Thus, the population is not representative, and transferring our results to the general population or 
other specific groups must be conducted with caution.

Figure 1.  Examples of AEE prediction models when information about accelerometry, ADP, QUAP and 
nutrition is available (Example I, Table 4 model No. 5), and when only information about accelerometry 
and BIA is available (Example II, Table 4 model No. 13). More details in Supplementary Table S5. ADP air-
displacement plethysmography, AEE activity-related energy expenditure, BIA bioelectrical impedance analysis, 
FFM fat-free mass, cpm counts per minute, PA physical activity, VM vector magnitudes.
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Another limitation is the use of the proprietary accelerometer output ‘activity counts’ provided by the soft-
ware, which generally differs across monitors and manufacturers, and therefore lacks  comparability8,45,46. Thus, 
the developed prediction models are basically limited to ActiGraph’s® GT3X + derived activity counts. Measure-
ments from other devices would have to be validated before using the prediction models. Ideally, a comparable 
measure, such as raw acceleration data, should be used for model development, whereby all filter and process-
ing steps of the acceleration signals should be considered in a transparent and comprehensible way. This will 
increase the complexity of the  analysis47, but it will likely improve the comparability between future studies in 
instances where different devices were used, and would thereby potentially allow for a broader application of 
our developed prediction models.

Further limiting is that one accelerometer placed at the hip cannot capture all human activities  properly4, 8. 
Consequently, an inaccurate assessment of some activities could lead to underestimation of PA and might have 
attenuated the association to energy  expenditure8.

Conclusion
We developed models to predict free-living AEE based on accelerometry information and various additional pre-
dictors. Considering all potential variables, we found a model that included VM counts, FFMADP, time in moderate 
PA and walking, and carbohydrate intake, and explained 70.7% of variance in free-living AEE. AEE prediction 
models developed in reduced sets of available variables explained 53.8–72.4% of AEE variance, depending on 
the number of selected predictors. The results of our analysis may be used for AEE prediction in studies using 
accelerometry.

Data availability
The data that support the findings of this study are available from the authors but restrictions apply to the avail-
ability of these data, and so are not publicly available. Interested researchers (who meet criteria for access to 
confidential data) may contact the corresponding author of our manuscript for access to the datasets generated 
or analyzed during the current study.
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