
SUPPLEMENTAL MATERIALS 

1.0. Methods 

1.1. Participant selection and matching 

Participants were selected from a large pool of RRMS patients and healthy control participants 

enrolled for an ongoing study and scanned using the same MRI sequence protocols. Framewise 

displacement (FD) according to [1] was calculated for each rs-fMRI scan and fifteen potential 

patient scans with mean FD > 0.55mm were excluded. 

To optimize patient-control matching for age and sex differences, we implemented a matching 

algorithm using the MatchIt package (version 3.0.2, https://github.com/kosukeimai/MatchIt) for R 

(version 3.6.3)1. Propensity scores were estimated using a generalized linear model with the default 

logit link function. Matches were determined with greedy nearest neighbor matching, enforcing 

exact sex matching. To optimize the trade-off between pairwise age deviations and sample size, 

we applied a series of different caliper values (c=0.01 to 0.5; Figure 1). Calipers represent a 

liberality parameter defining the number of standard deviations of the distance measure within 

which to draw control units (https://r.iq.harvard.edu/docs/matchit/2.4-

15/Additional_Arguments_f3.html). Accordingly, lower caliper values reflect stricter age 

optimization, leading to lower age deviations but also a smaller final study sample. We here chose 

the pivot point of the age-vs-sample plot as the optimal liberality parameter (arrow in Figure 1), 

as allowing for more pronounced age deviations in the matching after this point only yields small 

increases in the overall sample size while opting for stricter age matching results in a steep drop 

in sample size. 

Finally, some of the control participants contributed more than one scan to the set of possible 

control matches (i.e., longitudinal data for these participants were available). To ensure that a 

particular control participant was only ever matched once, we randomly resampled the subset of 

longitudinal scans and repeated the matching procedure. Over 10000 repetitions, we thus found 

the best matches given the constraint that any control participant was uniquely matched to one 

patient. 

This procedure yielded a final study population of n=202, with perfect sex matching (67 females, 

34 males for both groups) and excellent age matching (healthy controls: mean age 35.04 ± 10.28 

years [range 19.33 – 65.17]; patients: mean age 36.08 ± 10.27 years [range 19.32 – 62.52]; mean 

pairwise age deviation: 1.19 years; t = -0.72, df = 200, p = 0.47). 

 

https://github.com/kosukeimai/MatchIt
https://r.iq.harvard.edu/docs/matchit/2.4-15/Additional_Arguments_f3.html
https://r.iq.harvard.edu/docs/matchit/2.4-15/Additional_Arguments_f3.html


 

Supplementary figure 1. Optimization of sample size and age deviation.  

The plot shows the size of the study sample over the mean absolute age deviation of individual 1:1 matches as a 

function of the caliper values governing the strictness of age matching. The pivot point of this relationship is marked 

by an arrow and was chosen as the optimal liberality parameter for maximizing sample size while limiting age 

deviations. 

 

1.2 Clinical characterization of patient subgroups. 

Patients were split into subgroups of minimal disability (EDSS≥2, n = 39) and no disability 

(EDSS≤1, n = 36) using the upper and lower 30th percentile threshold across the distribution of 

EDSS scores (Supplementary Figure 2).  

 

 



 

Supplementary Figure 2. Distribution of Expanded disability status scale (EDSS) scores for MS patients with 

data available from date of scan acquisition. Following matching, 92 out of 101 patients had EDSS data available. 

Legend denotes patients grouped by disability severity, where "mildly affected" patients were those with an EDSS 

score in the lower 30% (MS-EDSS≤1) and "moderately affected" patients were those with an EDSS score in the 

upper 30% (MS-EDSS≥2) of the entire sample of (N = 92). 17 patients with EDSS score of 1.5 were excluded. 

 

 

Following the calculation of domain clinical outcome z-scores as described in main text section 

2.6 Calculation of multi-domain clinical outcome z-scores, we tested the correlation between 

disability status and the domain impairment indices. Spearman’s rank correlations were computed 

between patients’ EDSS scores and their z-scores for each out the clinical outcome domains, 

revealing a consistently positive relationship between disability based on EDSS and multi-domain 

symptom severity (Supplementary Table 1 and Supplementary Figure 3). 

 

 
Supplementary Table 1.  Spearman’s rank correlations between EDSS scores and domain clinical outcome z-

scores in patients.  

Domain  Rho  puncorr  pFDR  

Vision 0.445  < 0.001  < 0.001  

Motor 0.436  < 0.001  < 0.001  

Fatigue (FSS)  0.591  < 0.001  < 0.001  

Depression 

(BDI-II)   

0.336  0.008  0.008  

Cognition  0.340  0.005  0.006  

Total brain 

atrophy 

0.389  0.001  0.002 

Lesion load  0.568  < 0.001  < 0.001  



 

 

Supplementary Figure 3. Correlations between patient disability ratings and domain clinical outcome z-scores. 

Subplots show Spearman’s rho correlations between Expanded Disability Status Score (EDSS) ratings and clinical outcome 

scores. For every domain represented on the y-axes, we observed a positive relationship with disability ratings. Data of patients in 

the no disability group are shown in yellow and data of patients in the minimal disability group are shown in orange.  



1.3. Component rating and time-course preprocessing 

Resulting spatial group independent components were assessed in order to discard components 

corresponding to physiological, motion-related, or scanner/acquisition-related noise. We 

considered three main factors during this evaluation as detailed in [5]: (1) location of peak voxels 

in the corresponding spatial map; (2) peak frequency content in the power spectral density plot and 

the ratio of high-to-low frequency content; (3) structure of the component timeseries plot. Based 

on criteria described in [5], the following were characteristics of “noise” components: an IC was 

classified as "noise" if its spatial map showed clusters that overlapped with regions known to be 

especially prone to noise or non-neuronal tissue (e.g., white matter, cerebrospinal fluid, vessels), 

contained many small, distributed clusters, clusters especially near the edges of the brain or 

clusters which were ring-like in shape. If the power spectra of an IC did not show predominantly 

low-frequency power or showed a peak or plateau outside of the 0.01-0.1 Hz range, a classification 

as "noise" was given. Additionally, the IC time-course was inspected for regularity in the 

oscillation pattern, especially for sudden jumps in the signal which would suggest motion-related 

noise. Group ICs were manually classified as by two independent raters (AR, NS), and any 

disagreement was resolved through rating by a third independent rater (CF). 

Using the temporal dFNC feature of GIFT, participant’s component time-courses corresponding 

to the remaining “signal” components underwent additional steps of nuisance regression. This 

included despiking to remove sporadically occurring sharp peaks and detrending to remove mean 

and linear trends (e.g., frequency signal drifts) as well as motion correction through regression of 

participant-specific realignment parameters (6 directions) and their derivatives. Finally, the 

component time-courses were bandpass filtered using a fifth-order Butterworth filter to retain 

frequencies between 0.01-0.15 Hz. Fully preprocessed time-courses were then read-out from GIFT 

for later static FC analysis which was performed with custom MATLAB scripts. 

An approximate anatomical label for each group IC was determined by visual inspection.  Each 

component was overlaid on a T1-weighted MNI template in the Oxford Centre for Functional 

Magnetic Resonance Imaging of the Brain Software Library (FSL) tool “FSLeyes”. The built-in 

Harvard-Oxford cortical and subcortical atlases were then used to identify the anatomical label 

corresponding to peak voxel intensity coordinates of each component. Composite spatial maps 

grouped by designated resting-state network and anatomical labels for each component are 

provided in supplemental materials Figure 4 and Table 2.   

 



Supplementary Figure 4. Group independent components rated as "signal" and assigned to resting-state 

networks. 47 signal components out of 100 components resulting from GICA. Components were assigned to 

functional networks according to (Yeo et al. 2011), whose binary network masks are shown in white. Each panel 

corresponds to a functional network and each color corresponds to a component. For visualization purposes, 

components were thresholded to show only the highest 40% of voxel intensity values. Brain plots are displayed in 

radiological convention. 

 

 

 

 

 

 

 



Supplementary Table 2 - Expanded component statistics and brain region labels. Table includes (left to right) 

component number, brain region label associated with peak voxel coordinates based on the Harvard-Oxford cortical 

and subcortical structural atlases, maximum voxel intensity, MNI coordinates of peak voxel, and number of voxels 

in the component. 

Ventral attention network 

24 Frontal operculum cortex (left) 8.563 [-46 18 -4] 1358 

41 Supramarginal gyrus, anterior division (right) 6.628 [60 -26 26] 1507 

44 Supramarginal gyrus, anterior division (left) 4.518 [-62 -34 26] 2663 

45 Paracingulate gyrus (bil.) 7.487 [-2 8 48] 1707 

46 Cingulate gyrus, anterior division (bil.) 5.809 [-2 32 22] 2016 

74 Insular cortex (bil.) 8.427 [-46 10 -8] 1699 

Dorsal attention network 

39 Precuneus cortex (bil). 12.545 [0 -64 62]  832 

49 Supramarginal gyrus, anterior division (bil.) 5.511 [54 -22 52] 2918 

51 Angular gyrus (bil.) 5.549 [-54 -62 18] 2459 

55 Postcentral gyrus  13.211 [-2 -48 74] 718 

75 Superior parietal lobule (left) 8.565 [-36 -56 64] 1280 

80 Superior parietal lobule (right) 9.994 [36 -50 64] 927 

91 Middle frontal gyrus (bil.) 6.659 [-50 4 54] 1553 

94 Lateral occipital cortex, superior division (right) 6.951 [38 -70 38]  1608 

95 Lateral occipital cortex, superior division (left) 7.605 [-28 -72 52] 1777 

Somatomotor network 

5 Precentral gyrus (bil.) 8.252 [56 -2 30] 2208 

12 Precentral gyrus (right) 9.161 [36 -20 70] 1544 

14 Precentral gyrus (left) 8.101 [-36 -22 72] 1886 

15 Planum Temporale (bil.) 7.171 [58 -20 14] 2887 

37 Precentral gyrus (bil.) 8.937 [-2 -32 76] 1653 

68 Juxtapositional Lobule Cortex (formerly Supplementary 

Motor Cortex) (bil.) 

6.500 [-2 -14 52] 2241 

89 Postcentral gyrus (bil.) 8.683 [-24 40 76] 1483 

Visual network 

42 Cuneal cortex (bil.) 7.589 [0 -80 34] 2283 

70  Lateral Occipital Cortex, inferior division (bil.) 5.933 [-32 -90 2] 2668 

72 Lingual gyrus (bil.) 6.270 [8 -70 -6] 2838 

81 Lingual gyrus (bil.) 5.351 [24 -42-10] 3222 

88 Temporal occipital fusiform cortex (bil.) 6.509 [-46 -62 -18] 2329 

96 Lateral occipital cortex, superior division (bil.) 4.614 [30 -76 22] 3276 

97 Intracalcarine cortex (bil.) 8.916 [0 -86 0] 1790 

98 Intracalcarine cortex (bil.) 6.936 [-8 -70 12] 2657 

Default mode network 

22 Hippocampus (bil.) 7.525 [22 -16 -12] 1361 



29  Frontal pole 10.404 [-2 56 2] 1076 

30 Superior temporal gyrus, posterior division (bil). 5.0727 [60 -28 0] 4226 

31 Angular gyrus (right) 7.040 [56 -46 16] 1769 

40 Precuneus cortex (bil.) 9.330 [-2 -54 36] 1323 

47 Angular gyrus (left) 7.119 [-52 -58 38] 1838 

50 Frontal pole 9.372 [-2 60 24] 1266 

53 Angular gyrus (right) 7.748 [50 -54 40] 1483 

84 Precuneus cortex (bil.) 8.750 [-4 -68 42] 1659 

Subcortical network 

3 Basal ganglia (bil.) 7.253 [-26 8 -2] 2322 

Cerebellar network 

20 Cerebellum (bil.) 4.364 [-30 -70 -32] 5660 

27 Cerebellum (bil.) 5.488 [-2 -62 -22] 3817 

Fronto-parietal control network 

11 Frontal pole 7.942 [32 62 8] 1602 

23 Supramarginal Gyrus, posterior division (right) 7.665 [50 -38 56] 1342 

52 Middle frontal gyrus (left) 6.604 [-52 16 30] 1945 

58 Middle frontal gyrus (right) 6.634 [50 18 32] 1871 

69 Lateral occipital cortex, superior division (bil.) 8.311 [-36 -66 56] 1376 

 

 

1.4. Dynamic functional network connectivity 

Additional sliding window correlation parameters set within the GIFT toolbox included: a 

rectangular window convolved with a Gaussian kernel of s = 3 to create tapered edges; L1 

regularization, repeated 10 times to estimate regularization strength (GIFT manual, 

https://trendscenter.org/trends/software/gift/docs/v4.0b_gica_manual.pdf). L1 regularization in 

GIFT entails computing inverse covariance matrices with the estimated Lasso penalty parameter 

using the graphical lasso algorithm [6]. Finally, this step is followed by conversion of window-

wise covariance matrices to correlation matrices. 

We used a window size of 22TRs (49.5s), and a slide length of 1TR (2.25s), following 

methodological recommendations from [7]. Thus, each participant’s time-courses (containing 255 

time points) were segmented into sequential windows (95.45% overlap, 233 windows total), and 

window-wise connectivity matrices were computed, resulting in 233 47x47 dFC matrices for each 

participant. 

 

1.5. Clustering into temporal connectivity states 

Clustering analysis was performed using the “Post-Processing” feature of the Temporal dFNC 

toolbox in GIFT. Window-wise correlation matrices for all participants were concatenated and 

https://trendscenter.org/trends/software/gift/docs/v4.0b_gica_manual.pdf


used as input for k-means clustering. The k-means clustering algorithm is an unsupervised machine 

learning algorithm that relies on several user-specified inputs and will cluster a dataset into k-

number of groups, regardless of the underlying data structure. Thus, a data-driven approach as 

implemented in GIFT was used to determine the optimal number of states into which the total 

group dFNC data would be clustered. So called “cluster estimation” in GIFT is performed by 

iteratively running the k-means algorithm, specifying a different number of clusters that increases 

on each iteration. The results of this step are evaluated by plotting a set of cluster validity indices 

(CVI), which reveal an optimal number of clusters based on the CVIs mathematical solution (e.g., 

global minimum). After determining the optimal number of clusters for the dataset, by default 

within the GIFT toolbox the k-means algorithm is run first on the subset of windowed dFNC 

matrices with the highest standard deviation. The output centroid positions from this step are then 

used as initiation positions for a second run of k-means clustering using the entire (all participants, 

all windows) dFNC data as input.  

For the most part, default settings for k-means clustering specified in the GIFT toolbox were used 

in the present study. However, the distance metric was alternatively set to ‘city-block’   based on 

evidence from [8] that this distance measure is preferable for high dimensional datasets as opposed 

to the default Euclidean distance. The number of replicates was set to 10, and the maximum 

number of iterations to allow for convergence was set to 1000.  

 

1.6. Dynamic metrics 

Modularity 

The community Louvain algorithm as implemented in the Brain Connectivity Toolbox outputs the 

optimized community-structure statistic and is based on the notion that a network's optimal 

structure is achieved when it is subdivided into non-overlapping modules, or groups of nodes, such 

that the number of within-module connections are maximized, and the number of between-module 

connections are minimized [9]. 

Characterizations of connectivity states across all participants 

In addition to group differences in dynamic metrics within each state, we also calculated the effect 

of state itself on the variance of each dynamic metric. To this end, we used Kruskal-Wallis (KW) 

omnibus tests where each dynamic metric was treated as a response variable and state as a 5-level 

explanatory variable. In cases where the null hypothesis of the KW test was rejected, post-hoc 

Dunn’s tests were used to compute pairwise comparisons and adjustment of the false discovery 

rate was applied. This is an analogous statistical approach as described in the main text for testing 

the within-state group effect on a dynamic metric. 

 

 

 

 



2.0. Results 

2.1. State effects on dynamic metrics 

In summary, all pairs of states had significantly different average connectivity, as well as fraction 

time – except for states 4 and 5. State 1 had a significantly higher dwell time than all other states 

and state 4 had a significantly higher dwell time than state 2, while other comparisons of dwell 

time were not significant. States 1 and 3 had significantly higher modularity than states 2, 4, and 

5, while states 2 and 4 had significantly higher modularity than state 5. Supplementary figure 4 

depicts the difference between states for each dynamic metric computed across all participants. 

 

Supplementary figure 4. State effects on dynamic metrics across the full sample of participants. Violin plots 

show state-wise distributions of dynamic metrics across all participant data.  Transition matrix (top right) maps the 

direction and magnitude of Z-statistic and asterisks indicate significance level of differences in number of transitions 

between each pair of states. * = pfdr < 0.05, ** = pfdr < 0.01, *** = pfdr < 0.001. 

 

 

2.2. Static network-wise overall connectivity (NWOC) 

We performed control analyses using static FC data to compute NWOC to assess whether the inter-

NWOC FPN differences and clinical correlations detected with dynamic FC were also a feature of 

static NWOC. As with dynamic NWOC, no within-network connectivity differences between 

groups were found. Unlike with dynamic FC, there was no significant group effect on static inter-

NWOC between the FPN and the rest of the brain (𝜒2 = 5.636, p = 0.060). An insignificant trend 

in the same direction as seen with dynamic NWOC was found, such that patients with higher 

disease severity trended towards increased FPN inter-network connectivity compared to less 

affected patients (Z = -1.845, pFDR = 0.0976) and HCs (Z = -2.276, pFDR = 0.0691).  



However, to remain consistent with the approach taken in across-state NWOC analyses, we further 

explored the individual network pairs between FPN and other networks for group effects. 

Interestingly, as in across-state NWOC calculations, there was a significant group effect on static 

NWOC between FPN-SMN (𝜒2 = 9.470, p = 0.009) and FPN-BG (𝜒2 = 7.691, p = 0.021). 

Additionally, a significant group effect on FPN-vATT static NWOC (𝜒2 = 6.084, p = 0.048) was 

observed – a finding that was not detected using calculations with the dynamic FC matrices. 

Multiple pairwise comparisons revealed that patients with EDSS≥2 had a significantly increased 

FPN-SMN static NWOC compared to patients with EDSS≤1 (Z = -2.744, pFDR = 0.018) and HCs 

(Z = -2.694, pFDR = 0.011). On the other hand, patients with EDSS≥2 had a significantly decreased 

FPN-BG static NWOC compared to patients with EDSS≤1 (Z = 2.628, pFDR = 0.026) and HCs (Z 

= 2.209, pFDR = 0.041). These results were in-line with those of across-state NWOC. We also 

observed that patients with EDSS≥2 had significantly increased FPN-vATT static NWOC 

compared to HCs only (Z = -2.457, pFDR = 0.042). 

 

2.3 Frontoparietal network across-state overall connectivity with the basal ganglia 

We performed an additional correlation analysis between patients’ EDSS ratings and their 

frontoparietal network (FPN) across-state overall connectivity (ASOC) with the basal ganglia 

(BG). Using Spearman’s rank correlation, we observed a significant inverse relationship between 

FPN-BG overall connectivity and EDSS scores (Rho = -0.3844, p < 0.001; Supplementary Figure 

5).  

 

 

 

 

 

 



 

Supplementary Figure 5. Frontoparietal network overall connectivity with basal ganglia varies with 

disability status. 

FPN-BG overall connectivity is inversely related to EDSS ratings in patients with MS, assessed with 

Spearman’s correlation. Data of patients with EDSS≤1 is shown in yellow. Data of patients with EDSS≥2 

is shown in orange. The marginal density plots on the right y-axis depict the distributions of FPN-BG 

overall connectivity for each patient group.  
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