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Nonproductive exposure of PBMCs to SARS-CoV-2
induces cell-intrinsic innate immune responses
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Abstract

Cell-intrinsic responses mounted in PBMCs during mild and sev-
ere COVID-19 differ quantitatively and qualitatively. Whether
they are triggered by signals emitted by productively infected
cells of the respiratory tract or result from physical interaction
with virus particles remains unclear. Here, we analyzed suscepti-
bility and expression profiles of PBMCs from healthy donors upon
ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the
absence of detectable ACE2 receptor expression, human PBMCs
were refractory to productive infection. RT–PCR experiments and
single-cell RNA sequencing revealed JAK/STAT-dependent induc-
tion of interferon-stimulated genes (ISGs) but not proinflamma-
tory cytokines. This SARS-CoV-2-specific response was most
pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes
displayed a lower ISG signature as compared to bystander cells
of the identical culture. This suggests a preferential invasion of
cells with a low ISG baseline profile or delivery of a SARS-CoV-2-
specific sensing antagonist upon efficient particle internalization.
Together, nonproductive physical interaction of PBMCs with
SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles
stimulate JAK/STAT-dependent, monocyte-accentuated innate
immune responses that resemble those detected in vivo in
patients with mild COVID-19.

Keywords interferon; interferon-stimulated genes; PBMCs; SARS-CoV-2

Subject Categories Immunology; Microbiology, Virology & Host Pathogen

Interaction

DOI 10.15252/msb.202210961 | Received 7 February 2022 | Revised 28 July

2022 | Accepted 28 July 2022

Mol Syst Biol. (2022) 18: e10961

Introduction

The current SARS-CoV-2 pandemic represents a global medical,

societal, and economical emergency of increasing importance. Aris-

ing at the end of 2019 in the Hubei province in China, the causative

agent of the coronavirus disease 2019 (COVID-19), SARS-CoV-2, has

to date infected more than 555 million individuals worldwide

(World Health Organization). Owing to SARS-CoV-2 infection, more

than 6.3 million deaths were reported to date (as of 2022, July 5th).

The predominant symptoms of symptomatic COVID-19 are fever,

cough, and shortness of breath; however, in severe cases, the dis-

ease can progress to pneumonia, acute respiratory distress syn-

drome, and multiple organ failure (Chen et al, 2020; Wölfel

et al, 2020). The management of the pandemic is complicated by a

large interindividual spectrum of clinical courses ranging from

asymptomatic to fatal outcomes, pre- and asymptomatic infectious

phases (Rothe et al, 2020; Jones et al, 2021), and the ongoing emer-

gence of variants with increased transmissibility and/or immune

escape. The reasons for the high interindividual outcome of infec-

tion are insufficiently understood and may include different degrees

of cross-reactive background immunity at the level of humoral

(Anderson et al, 2021; Ng et al, 2020) and T-cell-mediated immu-

nity (Bacher et al, 2020; Braun et al, 2020; Nelde et al, 2021; Schu-

lien et al, 2021), polymorphisms in genes related to innate

immunity (Zhang et al, 2020) and autoimmunity (Bastard

et al, 2020). Currently, specific treatment regimens must be admin-

istered early postinfection. They include the RNA polymerase inhi-

bitor Remdesivir that may reduce hospitalization time but not

mortality (Wang et al, 2020b), the protease inhibitor Paxlovid

(Hammond et al, 2022), the nucleoside analog Molnupiravir and

monoclonal anti-spike antibodies with variant-specific neutraliza-

tion potencies (Weinreich et al, 2021; RECOVERY Collaborative
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Group, 2022). In the late phase of infection, the administration of

the immune modulator dexamethasone (RECOVERY Collaborative

Group, 2021) dampens the hyperactivation of cytokine-driven

immune responses. While several effective vaccines are available,

the necessity for specific treatment options will likely persist given

the expected proportion of the population that will not have access

to vaccines or will refuse vaccination.

To accelerate the establishment of immunomodulatory strategies,

it is crucial to characterize ex vivo systems that correlate with cellu-

lar immunophenotypes of SARS-CoV-2 infection in vivo and that

may contribute to preclinical testing. Furthermore, the usage of

ex vivo platforms allows the systematic and comparative investiga-

tion of human cellular responses to exposure with different repre-

sentatives of the species SARS-related coronaviruses (CoVs),

including SARS-CoV. Peripheral immune cells are major contribu-

tors to human cellular responses upon infection. Given the recruit-

ment of blood mononuclear cells to the lung compartment (Bost

et al, 2020; Delorey et al, 2021; Wendisch et al, 2021), and the

reported presence of viral RNA detectable in the peripheral blood of

up to 10% of severely ill patients (Andersson et al, 2020; Prebensen

et al, 2021), direct contact of PBMCs with infectious SARS-CoV-2

virions or defective viral particles is a likely scenario.

Here, we analyzed susceptibility to infection and cell-intrinsic

innate responses of peripheral blood cells from healthy donors upon

ex vivo exposure to SARS-CoV and SARS-CoV-2. Although both

SARS-related CoVs failed to detectably replicate and spread in

PBMCs, SARS-CoV-2 specifically triggered a JAK/STAT-dependent

innate immune response that was most pronounced in monocytes.

Single-cell, virus-inclusive RNA sequencing revealed relatively inef-

ficient and ACE2-independent uptake of virus particles and a SARS-

CoV-2 exposure-specific gene expression profile. Cellular responses,

consisting of upregulation of the expression of interferon-stimulated

genes (ISGs) but not proinflammatory cytokines, partially recapitu-

late expression profiles obtained by single-cell RNA sequencing of

PBMCs from patients experiencing mild COVID-19 (Arunachalam

et al, 2020; Schulte-Schrepping et al, 2020; Silvin et al, 2020). Our

data demonstrate that cells from the peripheral blood, when under-

going contact with SARS-CoV-2 particles, mount cellular responses

that potentially contribute to the control and/or pathogenesis of

the infection.

Results

Absence of productive infection of human PBMCs by SARS-CoV
and SARS-CoV-2

To address the ability of SARS-related CoVs to infect and propagate

in cells of the peripheral blood, we exposed unstimulated PBMCs

from healthy individuals to purified stocks of SARS-CoV and SARS-

CoV-2, respectively, using equal infectious titers as determined on

Vero E6 cells. As a reference, PBMCs were exposed to supernatants

from uninfected Vero E6 cells (mock-exposed). For both SARS-

related CoV, infectivity in cell-culture supernatants drastically

decreased over time compared with the inoculum, reaching unde-

tectable levels at 3 days postinoculation (Fig 1A), and pointing

towards the absence of de novo production of infectious particles.

Treatment of cells with the polymerase inhibitor Remdesivir did not

further reduce infectivity in the supernatant, suggesting that the

infectivity detectable in the mock-treated, virus-exposed cultures

reflects virus input (Fig 1B). By contrast, infection of Vero E6 cells

with the identical SARS-CoV-2 stock gave rise to a productive and

Remdesivir-sensitive infection (Appendix Fig S1). In our experi-

ments, virus-containing supernatant was replaced with a fresh

medium 4 h postinoculation. Nevertheless, low levels of viral RNA

genome equivalents remained detectable in the culture supernatant

until the end of the experiment for both SARS-CoV and SARS-CoV-2

(up to 192 h postexposure; Fig 1C). Viral RNA was abundant also in

supernatants from Remdesivir-treated cultures and cultures exposed

to heat-inactivated SARS-CoV-2 until 192 h postexposure, arguing

for high stability of the residual viral RNA of the inoculum, and

against a constant replenishment of extracellular viral RNA pools as

a reason for the stable RNA quantities (Fig 1D), in line with

reported longevity of the incoming genomic viral RNA (Lee

et al, 2022). Notably, blunting signaling by type I interferons (IFNs)

through the constant presence of the JAK/STAT inhibitor Ruxoli-

tinib failed to enable secretion of infectious particles and viral RNA

in the supernatant, suggesting that JAK/STAT-dependent cell-

intrinsic innate immunity is not the underlying reason for the

absence of detectable virus production (Fig 1A and C).

To elucidate if PBMCs, despite being nonpermissive, are never-

theless susceptible to SARS-related CoV entry and initial RNA repli-

cation, we monitored cell-associated viral RNA species in the

cultures over time. Because adherence of cells was incomplete

before 48 h, we were able to separate adherent and the suspension

cell fractions only starting at 72 h postculture start. Cell-associated

viral genome equivalents (Fig 1E) and subgenomic viral E and N

RNA (Fig EV1), the latter produced during discontinuous viral tran-

scription, remained stable over time, and did not differ quantita-

tively for both SARS-related CoVs. Ruxolitinib treatment did not

detectably enable RNA replication (Figs 1E and EV1), suggesting the

absence of essential cofactors at the level of entry and/or RNA repli-

cation rather than the antiviral activity of IFN-regulated restriction

factors. In line with this idea, we failed to detect the expression of

the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2) in

PBMCs, as judged by immunoblotting, flow cytometry, and Q-RT–

PCR using ACE2-specific antibodies and primer/probes, respectively

(Fig EV2A–C). Also, we failed to detect relevant quantities of NRP-1

expression by flow cytometry (Fig EV2D), which has been sug-

gested as an alternative entry receptor in conditions of low-to-

absent ACE2 abundance (Cantuti-Castelvetri et al, 2020; Daly

et al, 2020). In conclusion, freshly isolated, unstimulated PBMCs

are devoid of expression of ACE2 and putative alternative receptor

NRP-1. Furthermore, they appear to be nonsusceptible and nonper-

missive to infection with either SARS-related CoV, at least ex vivo.

However, the continuous presence of viral RNA associated with

cells and in the culture supernatant suggests that virus particles

attach to and/or internalize into PBMCs in an ACE2-independent

manner and remain cell-associated for up to several days.

Exposure of PBMCs to SARS-CoV-2 and, to a much lower extent
SARS-CoV, triggers a JAK/STAT-dependent cell-intrinsic innate
immune response

To identify potential cell-intrinsic innate immune responses to

SARS-CoV and SARS-CoV-2 exposure, we analyzed IFIT1 and IL6
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mRNA expression over time (Figs 2A and EV3). We selected IFIT1

and IL6 as prototypic target genes that are transcribed by IRF3- and

NF-jB-dependent promoter activation, respectively (Honda & Tani-

guchi, 2006). In contrast to SARS-CoV-inoculated cells, SARS-CoV-2-

exposed cells displayed Ruxolitinib-sensitive, significantly upregu-

lated IFIT1 mRNA expression at 16, 24, and 48 h postinoculation

(Fig 2A). Inhibition of potential low-level SARS-CoV-2 RNA

replication through treatment of cells with Remdesivir, and heat

inactivation of the SARS-CoV-2 stock inoculum did not prevent

induction of IFIT1 mRNA expression (Appendix Fig S2), corroborat-

ing the idea that the latter is triggered by exposure to virions but not

by productive infection. By contrast, IL6 expression was barely

induced after exposure to SARS-CoV and SARS-CoV-2 (Fig EV3).

Together, SARS-CoV-2 exposure specifically triggered IRF3-induced

IFIT1 but not NF-jB-induced IL6 gene expression. We next analyzed

if type I IFN expression preceded IFIT1 mRNA expression in SARS-

CoV-2-exposed PBMCs. Despite a slight trend for elevated IFNA1

and IFNB1 mRNA expression at 16 h, levels failed to reach signifi-

cant upregulation at 4, 16, and 24 h, when compared to mock-

exposed cultures (Fig 2B). However, IFN-a2 and IFN-stimulated IP-

10, MCP-1, and MCP-3 proteins, as opposed to IL-6 and several

other cytokines (Appendix Fig S3) were secreted in the supernatant

of exposed PBMCs in a Ruxolitinib-sensitive manner, with overall

higher levels in SARS-CoV-2- than in SARS-CoV-exposed cultures
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Figure 1. Absence of productive infection of PBMCs by SARS-CoV and SARS-CoV-2.

Untreated or Ruxolitinib (10 lM)-treated PBMCs from four individual donors were exposed to SARS-CoV or SARS-CoV-2 (MOI 0.5). PBMCs inoculated with supernatant
from Vero E6 cell cultures mixed with PBS and OptiPro serum-free medium supplemented with 0.5% gelatine were used as a control condition (Mock). Supernatants
and individual cell fractions were collected at indicated time points postinoculation and analyzed for:
A, B Infectivity in cell-culture supernatants by plaque titration assay.
C, D Viral RNA (genome equivalents/ml) concentrations in cell-culture supernatants by Q-RT–PCR.
E Relative changes of cell-associated viral genomic RNA quantities by Q-RT–PCR and normalized to RNASEP levels.

Data information: Data were generated in four individual experiments using cells from at least four individual donors represented by different symbols, bars represent
the mean, and error bars indicate the SEM. Statistical significance was tested using the paired Student’s t-test comparing mock- and Ruxolitinib-treated samples.
P-values > 0.05 were considered not significant and are not shown in the figure. n.d., not detectable; h.p.e., hours postexposure; RMV, Remdesivir; Ruxo., Ruxolitinib.
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(Fig 2C). Furthermore, bioactive IFN was detected in the super-

natant of corresponding cultures, with highest levels upon SARS-

CoV-2 exposure, while SARS-CoV inoculation induced the release of

bioactive IFN at inferior levels that were statistically indistinguish-

able from those in mock-exposed cultures (Fig 2D). These results

suggest that, although both SARS-related CoV failed to establish a

productive infection in PBMCs, SARS-CoV-2 appears to induce cell-

intrinsic, IFN-mediated, and JAK/STAT-dependent responses in sev-

eral cell types comprised in PBMCs. By contrast, SARS-CoV induced

very mild, if any, innate immune responses.

SARS-CoV-2 exposure causes transcriptional changes in most
cell types

To explore cell-intrinsic responses in individual cell types, we

performed single-cell RNA sequencing of PBMCs exposed to SARS-

CoV and SARS-CoV-2, respectively. We identified the five major cell

types, namely B cells, CD4+ and CD8+ T cells, NK cells, and mono-

cytes (Fig 3A) based on the expression of discriminatory marker

mRNAs (see Materials and Methods). Separated based on experimen-

tal conditions, PBMCs of both donors shared a similar relative cell

type distribution (Fig 3B) and similar cell type-specific transcriptional

profile (Appendix Fig S4), and data of both donors were merged for

the following analyses. In line with our bulk analyses (Fig EV2A–C),

ACE2 mRNA was undetectable, as was TMPRSS2 mRNA (Fig EV2E).

By contrast, the protease-encoding FURIN, BSG, and NRP1 mRNAs

were expressed in all cell types and most abundantly in monocytes

(Fig EV2E). Graphical mapping indicated transcriptomic changes

within individual cell types for SARS-CoV-2-exposed, but not for

SARS-CoV-exposed cultures, compared with mock-inoculated cells

(Fig 3C). Notably, SARS-CoV-2 monocytes clustered separately from

the other conditions in the UMAP despite library batch correction,

implying a pronouncedly altered transcriptome. The T- and NK-cell

clusters slightly and partially shifted, indicating a change in their

◀ Figure 2. Exposure of PBMCs to SARS-CoV-2 and, to a much lower extent SARS-CoV, triggers a JAK/STAT-dependent cell-intrinsic innate immune response.

A–C RNA extracted from Ruxolitinib-treated or mock-treated, and SARS-CoV-, SARS-CoV-2-, or mock-exposed PBMCs was analyzed for (A) IFIT1, (B) IFNA1 and IFNB1,
(C) mRNA expression by Q-RT–PCR at indicated time points. Suspension and adherent cell fractions were analyzed separately, except at the 4 h time point. Values
were normalized to cellular RNASEP expression and are shown as fold change over mock-inoculated conditions. The dotted line indicates the expression level of
mock-inoculated cell cultures and is set to 1. (C) Supernatants from Ruxolitinib- or mock-treated and SARS-CoV-, SARS-CoV-2-, or mock-inoculated PBMCs were
collected 48 h postexposure, and cytokine expression of IFN-a2, IP-10/CXCL10, MCP-1/CCL2, and MCP-3/CCL7 were quantified using a Luminex-based
immunoassay. PHA- or LPS-treated PBMCs were used as a positive control. Bars represent the results of a pool of four individual samples per condition.

D Supernatants collected from SARS-CoV-, SARS-CoV-2-, or mock-exposed PBMCs at indicated time points were analyzed for the release of bioactive IFN using the
HL116 reporter cell assay.

Data information: Data were generated in four individual experiments using PBMCs from four or more individual donors represented by different symbols, bars represent
the mean, and error bars indicate the SEM (A, B, and D). Statistical significance between mock- and Ruxolitinib-treated samples was tested using the paired Student’s
t-test and comparing SARS-CoV with SARS-CoV-2-treated samples from the same donor and time points. P-values < 0.05 were considered significant (*), < 0.01 very
significant (**), or ≥ 0.05 not significant (not shown). n.d., not detectable.
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C Identified cell types according to condition.
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transcriptional profile (Fig 3C). The relative abundance of T cells and

monocytes in SARS-CoV-2-exposed cells as compared to mock-

exposed PBMCs remained constant, as judged by flow cytometric

analysis (Appendix Fig S5). Together, this analysis revealed that

transcriptomic changes occurred in most cell types upon SARS-CoV-2

exposure, particularly in the monocytic fraction.

Exposure to SARS-CoV-2 induces a global innate
immunity-related gene profile in PBMCs with cell
type-specific signatures

We next investigated in more detail the cell type-specific response

to SARS-CoV-2. For each cell type, cells from all three treatments

were subclustered and genes differentially expressed between clus-

ters were used as input for cell trajectory analysis using the Pseudo-

time algorithm from the monocle R package (Trapnell et al, 2014).

We aimed to identify whether cells from different treatments, espe-

cially those exposed to different viruses, developed along the same

trajectory as a result of the exposure or if a different cell fate was

induced (Fig 4A). For all five major cell types, cells inoculated with

SARS-CoV-2 developed towards a separate cell fate and largely

branched off from mock-exposed and SARS-CoV-exposed cells,

which, conversely, shared a common trajectory. Interestingly, B-cell

analysis resulted in four branching points, from which only two (#1

and #3) were specific for SARS-CoV-2-exposed cells, suggesting a

high transcriptional heterogeneity of B cells independently of virus

exposure. Though progression through pseudotime resulted in a dis-

tinct and highly pronounced trajectory of all SARS-CoV-2-exposed

cell types, this effect was most clear in monocytes (Fig 4A). Analy-

sis of expression of specific genes, including ISG15 and IFIT1, con-

firmed that in general, all cell types contributed to gene expression

changes upon SARS-CoV-2 challenge, and monocytes displayed the

most pronounced elevation of expression of both genes (Fig 4B).

Identification of differentially expressed genes (DEGs) in mock-

exposed compared with SARS-CoV-2-inoculated PBMCs revealed a

significant upregulation of gene expression in all cell types, espe-

cially in monocytes (Fig 4C). Interestingly, the majority of DEGs

were identified as known ISGs (defined by the interferome database;

colored in green (interferome.org; v2.01)). Scoring the individual

cell types and conditions by their expression of an IFN-signaling

module revealed a SARS-CoV-2-specific induction of ISGs in all cell

types, though this was most prominent in monocytes (Fig 4D).

Moreover, IFN module scores were colinear with Pseudotime scores

along the SARS-CoV-2 trajectory, supporting the notion that SARS-

CoV-2 exposure induces a development of PBMCs towards an antivi-

ral phenotype. Increased expression of several ISGs, including

ISG15, IFIT1, IFITM3, DDX58, IFIH1, LY6E, MX2, IFI6, BST2, was

detectable predominantly, but not exclusively, in monocytes

(Fig 4E), supporting the hypothesis that monocytes play a key role

in the induction of cell-intrinsic innate immune response to SARS-

CoV-2 stimulation. In line with our previous findings (Fig 2), SARS-

CoV-2- and SARS-CoV-exposed cells scored virtually negative for

the expression of various cytokines, including IL6 (Fig 4E) and IFN

mRNAs (Appendix Fig S6), although they express IFN receptors

(Appendix Fig S6). In conclusion, these data reveal a strong induc-

tion of cell-intrinsic innate immunity in SARS-CoV-2-exposed

PBMCs that manifests predominantly in monocytes.

Transcriptome differences in viral RNA-positive and
bystander monocytes

Next, we aimed at identifying viral RNA-positive cells and their

specific transcriptional profile that we hypothesized to differ from

cells without detectable viral RNA of the identical culture. SARS-

CoV-2 RNA was detectable in all cell types but predominantly in

monocytes (Fig 5A). Identified viral reads were distributed over the

viral genome sequence, with a high over-representation of the 3’

RNA sequences that all subgenomic and genomic viral RNA have in

common, corresponding to the 3’ part of the N-coding sequence and

polyA tail (Fig 5B). Specifically, in SARS-CoV- and SARS-CoV-2-

exposed PBMC cultures, we identified 99 (2.13%) and 212 (2.88%)

viral RNA-positive cells, respectively (Fig 5C). Among those, we

identified 56 (7.8%) and 173 (15.3%) viral RNA-positive monocytes

among all monocytes, respectively. First of all, no statistically signif-

icant differences in expression of individual genes of RNA-positive

and RNA-negative monocytes were identified. However, the IFN

module score (Fig 4) was slightly, but statistically highly signifi-

cantly, elevated in SARS-CoV-2-exposed monocytes with unde-

tectable viral RNA (Fig 5D and E). Specifically, within the 94 genes

that were expressed marginally more abundantly in cells lacking

detectable SARS-CoV-2 RNA, 18 represented ISGs, including ISG15,

IFITM2, IFITM3, IFI27, and HLA genes that tended to be upregulated

in viral RNA-negative bystander cells. Importantly, the presence of

viral RNA did not specifically associate with the expression of BSG/

CD147 and NRP1, and ACE2 and TMPRSS2 expression was unde-

tectable, suggesting that particles internalize in a manner that is

independent of these proposed and confirmed receptors, respec-

tively. In SARS-CoV-2 RNA-positive cells as compared to SARS-CoV-

2 RNA-negative cells of the identical cultures, among others, CD163

reads tended to be slightly more abundant. Expression of the

hemoglobin-haptoglobin scavenger receptor CD163 has been associ-

ated with the regulation of inflammation (Kowal et al, 2011) and

▸Figure 4. Exposure to SARS-CoV-2 induces a global innate immunity-related gene profile in PBMCs with cell type-specific signatures.

A Pseudotime cell trajectory analysis and GSEA analysis using genes differentially regulated between mock-, SARS-CoV-, and SARS-CoV-2-challenged conditions for
indicated cell types.

B Representative UMAPs showing IFIT1 and ISG15 mRNA expression in the indicated conditions.
C Volcano plot of all DEGs in SARS-CoV-2-exposed cells compared with mock-exposed cells in the indicated cell types. Known ISGs were colored in green based on their

presence in the interferome database (http://www.interferome.org/; v2.01).
D Cell trajectory maps of indicated cell types with cells colored by expression of the genes in an IFN module gene set.
E Dot plot depicting expression of selected ISGs and cytokines. Expression levels are color-coded, and the percentage of cells expressing the respective gene is coded by

symbol size.

Data information: Data shown in this figure are based on the analysis of two donors.
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has interestingly been linked to immunological changes in mono-

cytes and monocyte-derived macrophages from SARS-CoV-2-

infected individuals (G�omez-Rial et al, 2020; Trombetta et al, 2021;

Wendisch et al, 2021). Looking specifically at the CD163HIGH mono-

cyte population, we found that it displayed high expression levels of

genes with profibrotic functions, including VCAN, LGMN, MERTK,

TFGB1, MRC1, TGFBI, and MMP9, and enhanced the expression of

cytokines including CCL2, CXCL8, or IL1B and the cytokine receptor

CCR5 (Fig EV4). Furthermore, SARS-CoV-2 RNA-positive cells dis-

played a preferential upregulation of genes implicated in migration

and integrin binding (FN1, PPBP, THBS1), and differentiation,

including FABP5 and LGMN. Together, cells that internalized SARS-

CoV-2 particles exhibit a slightly distinct gene expression profile

characterized by a consistent reduction in antiviral ISGs and an

upregulation of profibrotic genes as opposed to bystander cells with

undetectable viral RNA.

Finally, we were intrigued whether preactivation would result in

an altered ability of PBMCs to interact with, internalize, and sense

SARS-CoV-2, as opposed to freshly isolated PBMCs from healthy

donors. To mimic the environment of circulating PBMCs of a SARS-

CoV-2-infected individual, we individually pretreated PBMCs with

type I IFN, with supernatant from SARS-CoV-2-infected lung epithe-

lial cell cultures, and with serum obtained at an early stage postin-

fection from mildly COVID-19 diseased individuals (Fig EV5). IFN-
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Figure 5. Viral RNA-positive monocytes trend towards downregulation of ISGs and upregulation of fibrosis-associated genes.

A UMAP highlighting cells in which transcripts of either SARS-CoV RNA (blue) or SARS-CoV-2 RNA (magenta) were identified.
B Virus-specific reads were aligned to the SARS-CoV or SARS-CoV-2 genome. Coverage of the genome is shown in counts per 100 bp.
C Bar graph showing the absolute number (bars) and relative percentage of cells that were identified as virus RNA-positive in SARS-CoV- and SARS-CoV-2-inoculated

cultures, respectively.
D Plot of Log10 average expression of genes showing a Log2(fold change) > 0.2 in viral RNA-positive versus viral RNA-negative monocytes from the SARS-CoV- (left panel)

and SARS-CoV-2- (right panel) inoculated PBMCs with genes showing the highest expression fold change between both conditions.
E IFN Module Score of viral RNA-negative (gray; 715 and 958 cells in SARS-CoV and SARS-CoV-2 exposed cultures, respectively), SARS-CoV-RNA-positive (blue; 56 cells),
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Data information: Data shown in this figure are based on the analysis of two donors.
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a2a pretreatment did not influence the amount of detectable viral

RNA, neither in the cell-associated fraction (Fig EV5A, left panel)

nor in the supernatant (Fig EV5B, left panel), despite expected IFN-

mediated enhancement of IFIT1 (Fig EV5C) but not IL6 mRNA

(Fig EV5D) expression.

Pretreatment of PBMCs with virus-free, cytokine-containing

supernatant derived from SARS-CoV-2-infected Calu-3 cell cultures

resulted in a mild (1.6-fold), but statistically significant increase in

cell-associated viral RNA copies (Fig EV5B, middle panel) when

compared to cells stimulated with supernatant from uninfected

Calu-3 cells, in the absence of changes concerning viral RNA quanti-

ties (Fig EV5A, middle panel) in the culture supernatant, and IFIT1

and IL6 mRNA expression (Fig EV5C and D, middle panels).

Similarly, cultivation of PBMCs in the presence of serum from

COVID-19 patients, as opposed to mock or control serum treat-

ment prior to SARS-CoV-2 exposure, was followed by a 1.8-fold

higher abundance of viral genomic RNA in the cellular fraction

(Fig EV5B, right panel). In summary, these results suggest that

PBMCs that are “primed” by stimulation with a cytokine milieu

that is characteristic of an ongoing systemic SARS-CoV-2 infec-

tion display a slightly increased ability to physically interact with

viral particles, in the absence of detectable changes of IFIT1 and

IL6 mRNA expression.

Discussion

In this study we characterized the response of peripheral immune

cells, at the cell type level and at individual cells´ level, to ex vivo

SARS-CoV-2 exposure as compared to SARS-CoV. While ex vivo

experiments inherently do not recapitulate systemic immune cell

interactions and lack the context of complex tissues´ and organs´

interplay and communication, they uniquely allow the side-by-side

comparison of two genetically closely related but functionally differ-

ent viruses under standardized conditions. Furthermore, they allow

assessing the direct consequence of virus exposure on individual

cell types.

Our results indicate that SARS-CoV-2 and SARS-CoV share the

inability to detectably infect PBMCs. Previous studies with SARS-

CoV and MERS-CoV yielded partially conflicting results regarding

the susceptibility of human PBMCs to infection. Ex vivo, one publi-

cation reported the absence of SARS-CoV replication in PBMCs

(Castilletti et al, 2005), while another work suggested susceptibility

and permissiveness of PBMCs to SARS-CoV infection with a high

interdonor variability (Ng et al, 2004). Another report suggested

inefficient de novo SARS-CoV production in CD14-purified mono-

cytes, despite detectable virus particle uptake, presumably through

phagocytosis (Yilla et al, 2005). In vivo, in situ hybridization and

electron microscopy analyses reported the presence of SARS-CoV

material in lymphocytes and monocytes derived from infected

patients (Gu et al, 2005). MERS-CoV was suggested to efficiently

replicate in ex vivo-infected monocytes (Chu et al, 2014) but to only

abortively infect human T cells (Chu et al, 2016). Of note, the con-

firmed receptor for SARS-CoV-2 cell entry (Hoffmann et al, 2020)

has been reported to be virtually absent in PBMCs (Song et al, 2020;

Xiong et al, 2020; Zou et al, 2020; Xu et al, 2020b), a finding that is

in line with our own inability to detect ACE2 mRNA and ACE2 pro-

tein expression in PBMCs by various methods. Therefore, we

hypothesize that virus particles attach and/or internalize in an

ACE2-independent manner, resulting in viral RNA associated with

and/or internalized into cells. Interestingly, prestimulation of

PBMCs in a cytokine-containing milieu using virus-free supernatants

from infected lung epithelial cell cultures and sera from COVID-19

patients sensitized cells for a slightly more efficient uptake of parti-

cles. Given that receptor-independent phagocytosis is a hallmark of

monocytes, our observation that the majority of the viral reads were

retrieved in monocytic cells underlines this idea. Furthermore, as

SARS-CoV ORF7a is a virion-associated protein (Huang et al, 2006)

and SARS-CoV-2 ORF7a was reported to efficiently interact with

PBMC-derived monocytes (Zhou et al, 2021), ORF7a may contribute

to the attachment to monocytes. Interestingly, the binding capability

of SARS-CoV ORF7a protein was reported to be significantly weaker

as compared to SARS-CoV-2 ORF7a (Zhou et al, 2021), which is

consistent with the observed two-fold reduced proportion of virus

RNA-positive monocytes in SARS-CoV-exposed PBMCs as compared

to SARS-CoV-2.

In vivo, a multitude of cytokines, including IL-1b, IL-1RA, IL-7,
IL-8, IL-9, IL-10, CXCL10, IFN-c, and TNF-a are upregulated in the

plasma of COVID-19 patients, especially in cases with the severe

outcome (Huang et al, 2020). By contrast, mild COVID-19 associates

with effective type I IFN responses, including expression of type I

IFNs themselves and IFN-stimulated genes, which are probably

essential to clear the virus infection and orchestrate adaptive immu-

nity accordingly (Arunachalam et al, 2020; Schulte-Schrepping

et al, 2020; Stephenson et al, 2021). To date, it remains largely

unclear which cell populations are the drivers of these individual

responses. Productively infected epithelial cells in the respiratory

tract may initiate some of these responses directly; alternatively, or

in addition, immune cells may be stimulated by signals released by

productively infected cells or by virions and/or viral proteins

directly. Studies on the consequence of the physical interaction of

SARS-CoV-2 with infection-refractory primary immune cells, as

opposed to susceptible cell types in the respiratory tract, are largely

missing. Of note, cytokines levels and composition differ in serum

and bronchoalveolar lavage fluid of patients with COVID-19 (Xiong

et al, 2020), suggesting that productively infected epithelial tissue

in the respiratory tract and nonsusceptible peripheral immune cells

initiate different cytokine responses. Proinflammatory monocytes

that infiltrate the lung have been proposed to represent major cyto-

kine producers in the lung microenvironment (Liao et al, 2020). In

line with this idea, SARS-CoV-2-susceptible infected cell lines and

primary cells (Blanco-Melo et al, 2020) display imbalanced host

responses, with strong cytokine and ablated ISG responses, when

compared to other respiratory virus infections. Also, studies per-

formed in the SARS-CoV-2 Syrian hamster model uncovered an

early and strong cytokine response in the myeloid compartment of

the lung (Nouailles et al, 2021). Here, our data provide the first

insights into the response of refractory PBMCs upon exposure to

virus particles in the absence of co-stimulating infected cell types.

The lack of expression of proinflammatory cytokines, including IL-

6, TNFa, and IL-1 in SARS-CoV-2-exposed PBMCs, is in line with the

idea that these cytokines are mainly derived from the respiratory

tract representing the site of productive infection, and it may par-

tially explain the absence of lymphocyte depletion in our experimen-

tal setting that is observed in vivo (Huang et al, 2020; Qin

et al, 2020; Wang et al, 2020a). In our ex vivo PBMC setting, which
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is devoid of productive infection, SARS-CoV-2 and, to a much lower

extent, if at all, SARS-CoV particles induced innate immune

responses in the absence of coculture with infected epithelial cells,

indicating that direct exposure to virions can trigger responses in

PBMCs.

Immune responses were initiated in different cell types with a

focus on monocytes and were characterized by ample induction of

expression of IFIT1 and several other ISGs, as opposed to proinflam-

matory cytokines, including IL6 mRNA expression. Our data suggest

that this response may be triggered, at least to a certain extent, in a

virus replication-independent manner. Despite our failure to detect

IFNA1 mRNA expression at the time points investigated, which

might be related to its transient presence, the Ruxolitinib-sensitive

induction of IFIT1 mRNA expression, the secretion of IFN-a and

IFN-induced cytokines, and bioactive IFN strongly suggest an under-

lying IFN-signaling-dependent mechanism. This observation is well

in line with ex vivo data from PBMCs derived from COVID-19

patients showing highest, monocyte-specific induction of IFN-

mediated responses that are inversely proportional to the degree of

disease (Arunachalam et al, 2020; Schulte-Schrepping et al, 2020;

Stephenson et al, 2021), and the absence of proinflammatory cyto-

kine expression (Arunachalam et al, 2020; Xu et al, 2020a; Stephen-

son et al, 2021). Because our cellular model lacks the complexity of

interactions occurring in vivo between circulating immune cells and

tissue-resident cells, including those of the productively infected res-

piratory tract, we hypothesize that it approaches the situation in

mildly infected individuals with a transient, rapidly controlled phase

of virus replication involving a limited amount of virus-induced cell

damage and immune dysregulation.

Comparison of cells with and without detectable SARS-CoV-2

RNA revealed quantitative differences regarding gene expression.

Genes associated with fibrosis, migration, and integrin binding

were mildly upregulated in cells with detectable viral RNA when

compared to bystander cells, defined as cells of the SARS-CoV-2-

exposed cell culture, which lacked detectable viral reads. Interest-

ingly, monocytes developing profibrotic functions have recently

been established in the context of COVID-19 in vivo and to be

marked by high expression of CD163 (Wendisch et al, 2021). The

literature suggests that CD163 expression in monocytes and

macrophages is tightly regulated by pro- and anti-inflammatory

cytokines (reviewed in Etzerodt & Moestrup, 2013) but is also

inducible following Toll-like receptor (TLR) signaling, indicating

multiple mechanisms of CD163 regulation (Weaver et al, 2007).

Our ex vivo exposure approach does not mirror the cytokine-

containing environment monocytes and macrophages of SARS-

CoV-2-infected individuals are exposed to, which might, among

other reasons, explain the overall mild induction of CD163 in this

cellular compartment observed in our data as opposed to data

from COVID-19 patients (G�omez-Rial et al, 2020; Wendisch

et al, 2021). Our single-cell RNA-sequencing dataset, however,

allows us to speculate about another potential layer of SARS-CoV-

2-induced CD163 upregulation in monocytes in the absence of

proinflammatory cytokines as a consequence of virus uptake and

innate sensing of viral compartments through pattern recognition

receptors, such as TLRs.

Bystander cells displayed enhanced ISG expression, suggesting

that sensing of viral PAMPs in cells, which internalized virion parti-

cles (identified by detectable viral reads) is largely dampened by the

delivery of virion-packaged antagonists, whereas cells internalizing

virions at a level below our detection limit remain sensing-

competent and alert bystander cells, resulting in an elevated IFN

module score in the latter. A potentially additional phenomenon is

that virion-packaged antagonists lower the overall base-line IFN/ISG

level in invaded cells, conversely resulting in a comparably elevated

IFN module score in bystander cells. We favor this model because

in our experimental set-up, we identified changes of the IFN module

score at the single-cell level as a consequence of virus exposure.

Interestingly, and in analogy to our findings, uptake of SARS-CoV

by CD14-purified monocytes was found to correlate with a low-to-

absent baseline level of IFN expression (Yilla et al, 2005). However,

virus preparations were not cleared from contaminating cytokines

originating from the producer cell during virus stock production,

and whether the low IFN state was a cause or consequence of SARS-

CoV-2 exposure was not investigated in that particular study (Yilla

et al, 2005), making it difficult to draw analogies to our findings.

Indeed, our data cannot exclude the potentially additionally con-

tributing reciprocal scenario of a more efficient and more probable

internalization specifically into cells with a low ISG profile, which,

however, would imply the existence of an essential, IFN-sensitive

step in the uptake of virions that we deem unlikely given the

receptor-independent uptake and the nonreproductive nature of the

particle uptake. Indeed, IFN treatment prior to SARS-CoV-2 expo-

sure failed to change quantities of viral RNA uptake upon IFN stim-

ulation as judged in a bulk approach. Multiple SARS-related CoV-

encoded IFN antagonists, including structural components of the

incoming virion that do not require productive infection for expres-

sion and function, dampen innate immune responses when ectopi-

cally expressed, including membrane and nucleocapsid proteins (Lei

et al, 2020). In addition, virion components including ORF3- and

ORF6-encoded proteins (Bai et al, 2021; Cheng Huang et al, 2007;

Ito et al, 2005) have type I IFN evasion properties (Lei et al, 2020;

Li et al, 2020; Schroeder et al, 2021). Interestingly, among those,

ORF6 from SARS-CoV-2 was described to be inferior in counteract-

ing phospho-IRF3 nuclear translocation in infected cells, compared

with SARS-CoV ORF6, resulting in higher ISG induction (Schroeder

et al, 2021). Therefore, incoming viral RNA sensing may be less

efficiently prevented by SARS-CoV-2 ORF6 as compared to SARS-

CoV ORF6. Finally, the large absence of a detectable ISG expression

profile in SARS-CoV-exposed PBMCs is consistent with a previous

report analyzing abortively infected monocyte-derived macrophages

(Cheung et al, 2005).

By contrast, endemic human CoVs, including 229E, have been

shown to actively enter and replicate in blood-derived monocytic

cells and macrophages (Desforges et al, 2007; Funk et al, 2012),

in line with the detectable expression of the cellular 229E-specific

receptor CD13/APN (Yeager et al, 1992; Funk et al, 2012) and

triggering a strong infection-induced type I interferon responses in

the monocytic cell compartments (Cheung et al, 2005; Desforges

et al, 2007). In contrast to 229E, ex vivo exposure of monocytes or

macrophages to SARS-CoV-2 triggers a type I IFN-dependent

response in the absence of productive infection (this manuscript;

Zheng et al, 2020; Zankharia et al, 2022); however, in vivo studies

clearly demonstrate the contribution of monocytes and macro-

phages to the SARS-CoV-2-induced disease progression as a conse-

quence of the constant exposure to cytokines and viral PAMPs,

eventually resulting in a gradually increasing dysregulated myeloid
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cell compartment (Schulte-Schrepping et al, 2020; Kosyreva

et al, 2021; Leon et al, 2022). By contrast, the high IFN induction

of the low pathogenic HCoV 229E early upon infection, is thought

to be beneficial for a rapid, immune-mediated viral clearance,

whereas the highly pathogenic HCoVs SARS-CoV and SARS-CoV-2

encode numerous viral antagonists to evade innate signaling,

eventually resulting in blunted activation of the host cellular

immunity and delayed viral clearance in vivo (Fung & Liu, 2019;

Kim & Shin, 2021).

Together, our study provides an analysis of gene expression in

PBMCs exposed ex vivo to SARS-CoV and SARS-CoV-2 at the cell

type and individual cell level. Our data suggest that direct stimula-

tion of monocytes through physical contact with SARS-CoV-2 parti-

cles is followed by strong ISG induction, despite the absence of

detectable productive infection.

Materials and Methods

Cell lines and primary cells

Vero E6 (ATCC CRL-1586) cells, Calu-3 (ATCC HTB-55) cells, and

HEK293T (ATCC CRL-3216) cells were cultivated in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% heat-

inactivated fetal calf serum, 1% nonessential amino acids (Thermo

Fisher Scientific), and 1% sodium pyruvate (Thermo Fisher Scien-

tific) in a 5% CO2 atmosphere at 37°C. Cell lines were routinely

monitored for the absence of mycoplasma and paramyxovirus

simian virus 5.

Withdrawal of blood samples from healthy humans and cell iso-

lation was conducted with approval of the local ethics committee

(Ethical review committee of Charit�e Berlin, votes EA4/166/19 and

EA4/167/19). Human PBMCs were isolated from buffy coats by

Ficoll–Hypaque centrifugation. PBMCs were cultured at 2 × 106/ml

in RPMI 1640 containing 10% heat-inactivated fetal calf serum

(Sigma Aldrich), 1% penicillin–streptomycin (Thermo Fisher Scien-

tific), and 2 mM L-glutamine (Thermo Fisher Scientific). The experi-

ments conformed to the principles set out in the WMA Declaration

of Helsinki and the Department of Health and Human Services Bel-

mont Report.

Viruses

SARS-CoV isolate HKU-39849 (accession no. JQ316196.1, Zeng

et al, 2003; van den Worm et al, 2012) and the SARS-CoV-2 BetaCoV/

Munich/ChVir984/2020 isolate (B.1 lineage, EPI_ISL_406862, Wölfel

et al, 2020) were used.

Virus was grown on Vero E6 cells and concentrated using

Vivaspin� 20 concentrators with a size exclusion of 100 kDa (Sarto-

rius Stedim Biotech) in order to remove cytokines of lower molecu-

lar weight, including IFNs. Virus stocks were stored at �80°C,

diluted in OptiPro serum-free medium supplemented with 0.5%

gelatine and PBS. Titer was defined by plaque titration assay. Cells

inoculated with culture supernatants from uninfected Vero cells

mixed with OptiPro serum-free medium supplemented with 0.5%

gelatine and PBS, served as mock-infected controls. All infection

experiments were carried out under biosafety level three conditions

with enhanced respiratory personal protection equipment.

Plaque titration assay

The amount of infectious virus particles was determined via

plaque titration assay. Vero E6 cells were plated at 3.5 × 105 cell/

ml in 24-well and infected with 200 ll of a serial dilution of

virus-containing cell-culture supernatant diluted in OptiPro serum-

free medium. One hour after adsorption, supernatants were

removed and cells overlaid with 2.4% Avicel (FMC BioPolymers)

mixed 1:1 in 2x DMEM. Three days postinfection, the overlay

was removed, cells were fixed in 6% formaldehyde and stained

with 0.2% crystal violet, 2% ethanol, and 10% formaldehyde.

Plaque forming units were determined from at least two dilutions

for which distinct plaques were detectable.

Virus exposure of PBMCs

Thirty minutes prior to virus exposure, PBMCs were left mock-

treated or treated with Ruxolitinib (10 lM) or Remdesivir

(20 lM). Treatment was maintained for the duration of the entire

experiment. Virus challenge occurred by inoculation of 0.4 × 106

cells/ml in RPMI cell-culture medium supplemented with 2%

FCS. Four hours postchallenge, cells were centrifuged and super-

natants were collected (referred to as inoculum). Cells were resus-

pended in RPMI cell-culture medium supplemented with 10% FCS

and plated at 0.4 × 106 cell/1.5 ml in 12-wells. In addition, post-

wash samples were collected. For further sampling, cell-culture

supernatant was centrifuged, the supernatant was collected and

mixed with OptiPro serum-free medium supplemented with 0.5%

gelatine for titration on Vero E6 cell or mixed with RAV1 buffer

for viral RNA extraction and stored at �80°C until sample pro-

cessing. Suspension cells and adherent cells were lysed in Trizol

reagents and subjected to total RNA extraction. In PBMC prestim-

ulation experiments, cells were prestimulated for 18 h, stimuli

were removed by washing with PBS, and cells were inoculated

with SARS-CoV-2 for 24 h as described above. For stimulation,

cells were mock-treated or treated with 100 IU/ml IFN-a2a
(Roferon), cultured in the presence of supernatants from mock- or

SARS-CoV-2-infected Calu-3 cells, either crude or processed by

Vivaspin� 20 filtration to obtain the cytokine-containing, but a

virus-free fraction of the supernatant, or cultured in the presence

of 10% serum collected from three mildly diseased COVID-19

patients (WHO 3; see Appendix Table S1) or healthy control sera.

Three hospitalized COVID-19 patients’ sera and clinical data were

collected at Charit�e—Universit€atsmedizin Berlin in the context of

the PaCOVID-19 Study (Kurth et al, 2020). Patients were recruited

between March and November 2020. All patients provided a posi-

tive SARS-CoV-2 by RT–PCR from respiratory specimens. The

study was approved by the ethics committee of Charit�e (EA2/

066/20). Written informed consent was obtained from all patients

or legal representatives.

Reagents and inhibitors

Ruxolitinib was purchased from InvivoGen and used at 10 lM con-

centration. Remdesivir (Gilead Sciences) was kindly provided by the

Department of Infectious Diseases and Respiratory Medicine,

Charit�e – Universit€atsmedizin Berlin. IFN-a2a (Roferon) was

obtained from Roche.
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Quantitative Q-RT–PCR

Viral RNA was extracted from cell-culture supernatants using the

NucleoSpin RNA virus isolation kit (Macherey-Nagel) according to

the manufacturer’s instructions. Total RNA extraction from cells

and DNase treatment were performed with Direct-zol RNA extrac-

tion kit (Zymo Research). Viral genome equivalents were deter-

mined using a previously published assay specific for both SARS-

CoV and SARS-CoV-2 E gene (Corman et al, 2020). Subgenomic E

gene expression was analyzed using the same probe and reverse

primer combined with a forward primer, which is located in the

SARS-CoV-2 leader region (sgLead-CoV-F: CGA TCT CTT GTA GAT

CTG TTC TC; Wölfel et al, 2020). Subgenomic N gene expression

was quantified with the following primers and probe: nCoV sgN

Fwd: 5’-CGA TCT CTT GTA GAT CTG TTC TC-3’, nCoV sgN Rev:

5’-CAG TAT TAT TGG GTA AAC CTT GG-3’ and nCoV sgN prb:

5’-56-FAM/ CAG TAA CCA GAA TGG AGA ACG CAG /3BHQ-1-3.

To analyze human gene expression, extracted RNA was subjected to

cDNA synthesis (NEB, Invitrogen). Quantification of relative mRNA

levels was performed with the LightCycler 480 Instrument II (Roche)

using Taq-Man PCR technology. For human IFIT1 and IFNB1, a pre-

made primer-probe kit was used (Applied Biosystems, assay IDs:

Hs01911452_s1; Hs01077958_s1, respectively). For human ACE2

(ACE2-F: TGCCTATCC TTCCTATATCAGTCCAA, ACE2-R:GAGTA

CAGATTTGTCCAAAATCTAC, ACE2-P: 6-FAM/ATGCCTCCCTGCT

CATTTGCTTGGT/IBFQ), IL-6 (IL-6-F: GGATTCAATGAGGAGACT

TGC, IL-6-R: CACAGCTCTGGCTTGTTCC, IL-6-P: 6-FAM/AATCAT

CAC/ZEN/TGGTCTTTTGGAGTTTGAGG/IBFQ), and IFNA1 (IFNA1-

F:GGGATGAGGACCTCCTAGACAA, IFNA1-R:CATCACACAGGCTT

CCAAGTCA, IFNA1-P:6-FAM/TTCTGCACCGAACTCTACCAGCAGC

TG/BHQ), customer-designed oligonucleotides were synthesized by

Integrated DNA Technologies (IDT). Relative mRNA levels were

determined using the DDCt method using human RNASEP (Applied

Biosystems) as the internal reference. Data analysis was performed

using LightCycler Software 4.1 (Roche).

Immunoblotting

Cells were washed once with ice-cold PBS and lysed in 60 ll RIPA
Lysis Buffer (Thermo Fisher Scientific) supplied with 1% protease

inhibitor cocktail set III (Merck Chemicals) for 30 min at 4°C. Cell

debris was pelleted for 10 min at 13,000 g and 4°C, and the super-

natant was transferred to a fresh tube. Protein concentration was

determined with Thermo Scientific’s PierceTM BCA protein assay kit

according to the manufacturer’s instructions. Protein lysates were

mixed with 4 X NuPAGE LDS Sample Buffer (Invitrogen), supplied

with 10% 2-mercaptoethanol (Roth), and inactivated for 10 min at

99°C. Proteins were separated by size on a 12% sodium dodecyl

sulfate polyacrylamide gel and blotted onto a 0.2 lm PVDF mem-

brane (Thermo Scientific) by semi-dry blotting (BioRad). Human

ACE2 was detected using a polyclonal goat anti-human ACE2 anti-

body (1:500, R&D Systems), a horseradish peroxidase (HRP)-

labeled donkey anti-goat antibody (1:5,000, Dinova), and Super

Signal West Femto Chemiluminescence Substrate (Thermo Fisher

Scientific). As a loading control, samples were analyzed for

b-Actin expression using a mouse anti-b-actin antibody (1:5,000,

Sigma Aldrich) and an HRP-labeled goat anti-mouse antibody

(1:10,000, Dianova).

HL116 cell-based detection of bioactive IFNs

Cell-culture supernatants of individual cell lines were titrated on

HL116 cells that express the luciferase gene under the control of the

IFN-inducible 6–16 promoter (Uz�e et al, 1994). Cells were PBS-

washed, and luciferase expression was quantified using Cell-Culture

Lysis Buffer and the Luciferase Assay System (both Promega). The

concentration of IFN was quantified using an IFN-a2a (Roferon)

standard curve.

Cytokine profiling

Supernatants from untreated or Ruxolitinib-pretreated and mock-,

SARS-CoV-, or SARS-CoV-2-inoculated PBMCs from four donors

were collected 48 h postexposure. As a positive control, PBMCs

were treated with 1 lg/ml Lipopolysaccharide (LPS, Sigma Aldrich)

or 1 lg/ml Phytohaemagglutinin (PHA, Sigma Aldrich) for 48 h. For

each condition, samples from four donors were pooled. Cytokines

were quantified using a Human/Cytokine/Chemokine/Growth Fac-

tor Panel A 48-Plex Premixed Magnetic Bead Multiplex Assay

(Merck Millipore), using the Luminex MAGPIX System according to

the manufacturer’s instructions. Calibration and verification checks

were met for all of the analytes. All analytes had standard curves

with R2 values > 0.9, except for FGF-2, GM-CSF, IL-9, IL-27, MCP-3,

MIP-1b, and PDGF-AA/BB, which had standard curves with R2

values > 0.75.

Single-Cell RNA-seq

Single-Cell RNA-seq libraries were prepared with the 10× Geno-

mics platform using the Chromium Next GEM Single Cell 3’

Reagent Kits v.3.1 following the manufacturer’s instructions. Sam-

ples were multiplexed using TotalSeq-A Antibodies purchased

from BioLegend (A0256, A0258, and A0259). Antibody staining

and the subsequent library preparation were performed following

the manufacturer’s instructions. Quality control of the libraries

was performed with the KAPA Library Quantification Kit and Agi-

lent TapeStation. Libraries were sequenced on a HiSeq4000 using

the following sequencing mode: read 1: 28 bp, read 2: 91–100 bp,

Index i7: 8 bp. The libraries were sequenced to reach ~20,000

reads per cell.

Single-Cell RNA-seq data analysis

BCL files from the sequencing protocol were processed using the

Cell Ranger pipeline v 3.1.0 (10× Genomics) and further analyzed

using the Seurat v3.1.4 package (Butler et al, 2018) in R v3.6

(https://www.r-project.org/). Preprocessing of the data was per-

formed using the recommended SCTransform procedure and the

IntegrateData with PrepSCTIntegration workflows to eliminate

batch effects. A comprehensive description of the code used in the

analysis of data is available at https://github.com/GoffinetLab/

SARS-CoV-2_PBMC-study. Cell types were identified based on

marker gene expression (Schulte-Schrepping et al, 2020): B cells

(CD3D�, MS4A1+), CD4+ T cells (CD3D+, CD8A�), CD8+ T cells

(CD3D+, CD8A+), NK cells (CD3D�, CD8A�, NKG7+, GNLY+),

Monocytes (CD3D�, CD14+, FCGR3A+). Reads aligning to the

SARS-CoV or SARS-CoV-2 genome were identified by alignment to
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a combined SARS-Cov (AY310120.1, GenBank) and SARS-CoV-2

(NC_045512.2, GenBank) reference using the same Cell Ranger

pipeline and visualized in a coverage plot using pyGenomeTracks

(Lopez-Delisle et al, 2021).

Cell trajectory analysis

Cell trajectory analysis was performed using the Monocle v2.14.0

package (Trapnell et al, 2014) according to the guidelines set out by

the developers. Different cell types were subclustered and processed

as mentioned above. A resolution parameter of 0.3 was used for

clustering. DEGs between clusters were determined using Seurat’s

FindAllMarkers function (Wilcoxon rank-sum test); of these, genes

with a Bonferroni-corrected P-value of < 0.05 were imputed as

ordering genes to generate the minimum spanning tree using the

DDRTree algorithm. Code available at https://github.com/Goffinet

Lab/SARS-CoV-2_PBMC-study.

IFN module score

The IFN-signaling pathway gene set [R-HSA-913531] from the Reac-

tome database (Gillespie et al, 2022) was retrieved from the Molecu-

lar Signatures Database (MSigDB; Liberzon et al, 2015). Cells were

scored on their expression of these genes using the AddModuleScore

function in Seurat, which is referred to as the IFN module score as

the pathway includes genes canonically differentially regulated in

response to interferon signaling.

Flow cytometry analysis

PBS-washed cells were PFA-fixed and immunostained for individual

surface protein expression using the following antibodies: Anti-

CD3-FITC (#561807; BD Biosciences), anti-CD4-APC (#555349;

BD Biosciences), anti-CD14-PE (#561707; BD Biosciences), anti-

CD19-FITC (#21270193; ImmunoTools), anti-NRP1/CD304-APC-

R700 (#566038, BD Biosciences), anti-PD-1/CD279-PE (#21272794;

ImmunoTools), and anti-TIM-3/CD366-FITC (#345022; Biolegend).

To determine ACE2 cell surface expression, cells were immunos-

tained with a goat anti-human ACE2 antibody (#AF933, R&D

Systems) followed by immunostaining with a secondary antibody

donkey anti-goat Alexa Fluor 488 (#A-11055, Thermo Fisher).

ACE2-positive HEK293T cells were generated by transduction of

cells with retroviral vectors generated by transfection of HEK293T

cells with MLV gag-pol (Bartosch et al, 2003), pCX4bsrACE2 (Kami-

tani et al, 2006), and pVSV-G (Stewart et al, 2003). A FACS Lyric

device (Becton Dickinson, Franklin Lakes, NJ, USA) with BD Suite

Software was used for analysis.

Data presentation and statistical analysis

If not stated otherwise, bars show the arithmetic mean of the indi-

cated amount of repetitions. Error bars indicate SEM from the indi-

cated amount of individual experiments. The thumbnail image was

generated with Biorender. If not stated otherwise, statistical signifi-

cance was calculated by performing the Student’s t-test using

GraphPad Prism. P-values < 0.05 were considered significant and

marked accordingly: P < 0.05 (*), P < 0.01 (**), or P < 0.001 (***);

n.s. = not significant (≥ 0.05).

Data availability

The raw sequencing datasets generated during this study are avail-

able at the NCBI Gene Expression Omnibus GSE197665 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197665).

Expanded View for this article is available online.
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