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Abstract

Motivation: Simulations of cancer evolution and cellular growth have proven highly useful to study, in detail, the
various aspects of intra-tumour heterogeneity, including the effect of selection, mutation rates, and spatial constraints.
However, most methods are computationally expensive lattice-embedded models which cannot simulate tumours with a
realistic number of cells and rely on various simplifications. Alternatively, well-mixed stochastic models, while efficient
and scalable, do not typically include spatial constraints and cannot reproduce the rich clonal dynamics observed in
real-world tumours.
Results: We present SMITH, a simple, efficient, and explainable model of cancer evolution that combines the advantages
of well-mixed stochastic models with a new confinement mechanism which limits the growth of clones based on the overall
tumour size. We demonstrate that this confinement mechanism is sufficient to induce the rich clonal dynamics observed
in spatial models, while allowing for a clear geometric interpretation and efficient simulation of one billion cells within
a few minutes on a desktop PC. We explore the extent of stochasticity and rigorously assess the effects of cell turnover,
mutation rate, fitness effects and confinement on the resulting clonal structures.
Availability and Implementation: SMITH is implemented in C# and freely available at
bitbucket.org/schwarzlab/smith together with binaries for all major platforms.
For rich visualisations of the simulated clonal dynamics we provide an accompanying Python package PyFish at
bitbucket.org/schwarzlab/pyfish.
Supplementary information: All supplementary figures are in the supplementary document.

1 Introduction

Carcinogenesis is governed by random mutational processes
influenced by cell-intrinsic and environmental factors and
shaped by selection, which result in the successive accumu-
lation of genetic aberrations. Despite the randomness of the
underlying processes, cancers ultimately converge towards a
common set of phenotypic traits, such as replicative immor-
tality, immune evasion, and invasiveness, commonly known
as the Hallmarks of Cancer (Hanahan, 2022). The progenies
of the tumour-originating cell continue to accumulate mu-
tations past malignant transformation, and this continuous
evolution and selection (Watkins et al., 2020) gives rise to
significant genomic differences between clones inside a tu-
mour, known as intra-tumour heterogeneity (ITH). ITH has
been linked to progression, metastasis, treatment resistance
and overall poor patient outcomes (Marusyk et al., 2012;
Beerenwinkel et al., 2015; Jamal-Hanjani et al., 2017; Tura-
jlic et al., 2018; Watkins et al., 2020). Understanding the
aetiology of ITH is thus key to successful treatment of can-
cer and to prevent resistance development (Marusyk et al.,
2020).

To study ITH and cancer evolution, two orthogonal ap-
proaches are common. Most studies focus on retrospec-
tive inference of the evolutionary history of a tumour from
e.g. sequencing data of clinical tumour specimens. Such
retrospective studies have accurately described the muta-
tional processes shaping cancer genomes and greatly im-
proved our understanding of cancer evolution (Steele et al.,
2022; Drews et al., 2022; Watkins et al., 2020; Turajlic et al.,
2018; Jamal-Hanjani et al., 2017). Alternatively, forward
simulations of cancer evolution allow direct testing of differ-
ent biological hypotheses and modelling assumptions, which
can then be contrasted with empirically observed patterns
of ITH (Beerenwinkel et al., 2015). Due to computational
advances and the increasing availability of data, such for-
ward simulations play an increasingly important role (Noble
et al., 2022; West et al., 2021; Zhao et al., 2021; Watson

et al., 2020; Chkhaidze et al., 2019).

Many computational models have been proposed for sim-
ulating cancer evolution and these models often employ vari-
ants of cellular automata, where cells or groups of cells are
positioned on a 2D or a 3D lattice (Iwasaki and Innan, 2017).
The lattice embedding has the advantage that it directly cre-
ates spatial constraints which enable the simulation of e.g.
biopsy results (Chkhaidze et al., 2019) or the dispersal of
cells in space (Waclaw et al., 2015), or between neighbouring
tissues (Noble et al., 2022). However, the lattice structure
also induces limitations, for example by fixing the number
of neighbouring cells in 3D to either 6, 14, or 26 cells for the
von Neumann, Hexagonal, or Moore neighbourhoods respec-
tively (Iwasaki and Innan, 2017). In addition, competition
for space is difficult to model and computationally complex,
and simplifying rules are frequently employed, such that a
whole row of cells needs to be moved at once (Chkhaidze
et al., 2019), or that dead cells have to disappear from the
lattice (West et al., 2021). These rules often do not re-
flect actual cell mechanisms and are mainly driven by com-
plexity constraints. Despite these optimisations, simulating
individual cells to the size of a real tumour of 1-2 cm in
diameter (Erdi, 2012) comprising around 1 billion cells (Al-
berts et al., 2002; Del Monte, 2009) remains difficult even
on supercomputer architecture (Rosenbauer et al., 2020).
Thus, cells are usually grouped to uniform populations of
glands (Sottoriva et al., 2015), demes (Noble et al., 2022),
or severely limited in size (West et al., 2021).

Conversely, stochastic models of well-mixed populations,
such as the commonly used branching process model of can-
cer (Haccou et al., 2005), are highly scalable, but assume
an exponentially growing population without spatial con-
straints. These unconstrained models only exhibit a limited
amount of clonal dynamics and are characterised by a low
number of driver mutations and low to medium clonal di-
versity (Noble et al., 2022). They have been successfully ap-
plied to modelling clonal haematopoesis, where space is not
a primary limiting factor (Watson et al., 2020), but their ap-
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plicability to solid tumours remains limited. Therefore there
is a general need for efficient and scalable models of tumour
evolution that include spatial constraints.

To address the above listed issues, we introduce SMITH
(Stochastic Model of Intra-Tumour Heterogeneity), a fast
stochastic model of cancer evolution with spatial constraints
that can simulate realistically sized tumours of up to one
billion cells. At its base, SMITH employs a classical branch-
ing model of cancer, where cell birth and death are driven
by random processes (Haccou et al., 2005), modulated by
fitness-increasing mutations, and without an explicit repre-
sentation of cell location. Additionally, SMITH introduces
the concept of confinement, a simple mechanism that limits
the growth and turnover of a population of cells based on the
size of that population. We formulate confinement in terms
of the 3D geometry of a tumour, where it serves to sepa-
rate the tumour into a proliferating shell and a static core.
The size of the shell can be adjusted, and confinement thus
provides a natural way to embed both purely well-mixed
and surface-growth-only tumour models into simulations of
cancer evolution, without keeping track of the location of in-
dividual cells or clones. Using SMITH we demonstrate that
confinement alone is sufficient to reproduce clonal dynamics
typical for explicitly spatial simulations and spatially organ-
ised tumours. We explore the dynamics of fitness generat-
ing and accumulating functions and investigate their effect
on cell birth and death and the clonal dynamics of the tu-
mour. Using repeated simulations of tumour growth with
one billion cells we investigate the effect of randomness on
these clonal dynamics and show that even a simple model
with limited stochasticity leads to a wide variety of possible
clonal architectures and dynamics.

2 Methods

The SMITH model stochastically describes the size of tu-
mour cell populations over time, thereby keeping track of
the number of cells, any mutations they might have acquired
and the evolutionary relationship between them. SMITH is
based on a Galton-Watson branching process (Roch, 2015)
and makes use of four key assumptions: (i) a low mutation
probability with a non-negative fitness effect (driver muta-
tions), (ii) a well-mixed population of cells, (iii) a spherical
tumour shape, and (iv) confined growth. Assumptions (i)
and (ii) are common in branching process modelling, and
(iii) describes a well-studied group of tumours (Black and
McGranahan, 2021). The assumption (iv) is specific to our
model and directly changes the dynamics of the system. Un-
der confinement, we split the tumour into two distinct re-
gions: the core which contains ”confined” cells that cannot
undergo cell division and the outer layer, termed ”shell”, in
which the cell turnover takes place.

2.1 Model overview

A tumour as modelled by SMITH comprises three different
types of cells: alive cells, removed cells, and necrotic cells.
A newly created cell is always alive. Upon its death it can
either be degraded (removed) or remains embedded in the
tumour as a necrotic cell, where it continues to contribute
to the overall tumour mass, but does not divide any longer.

Since SMITH does not model cellular position explicitly, it
only keeps track of the number of cells in clones, where each
clone is a collection of cells sharing the same set of muta-
tions. Formally, a clone is a 4-tuple c = (ca, cr, cn, cM ),
where ca, cr, cn ∈ N0 describe the number of alive, removed,
and necrotic cells in that clone respectively and cM describes
the set of mutations shared by all the cells in c. Each mu-
tation from the set of all possible mutations (m ∈ M) is
defined by a unique identifier. The set of possible mutations
M is thereby considered infinite (infinite sites assumption
(Kimura, 1969)), so that every mutation m can only occur
once.

The model is parameterised by the parameter vector
θ = (θturn, θmut, θfit, θconf) ∈ [0, 1]4, which describes the cell
turnover probability, the mutation probability, the average
fitness increase of a mutation, and the confinement value,
and which are described in their corresponding sections be-
low. The SMITH model is further configured by three dif-
ferent modelling options (Methods Sec. 2.4): the fitness dis-
tribution odis from which fitness values of new mutations
are drawn, the mutation effect oeff which determines if a
mutation affects cell birth, death, or both, and the accumu-
lation method oacc which defines how the fitness values of
individual mutations in a clone are aggregated to form the
clone-level fitness value.

To describe the state of the system over time t ∈ N0,
we denote as Ct the set of clones at time step t. All sim-
ulations start from a single clone with a single alive cell
characterised by a single identifying mutation, i.e. C0 =
{(1, 0, 0, {m})}. A simulation is then a transformation of Ct

into Ct+1 under the parameter set θ and with the model
options o. For brevity we sometimes use counts for alive,
removed and necrotic cells across the whole population Ct

via Ct
∗ =

∑
s∈S ct∗ for ∗ ∈ {a, r, n} for the time t.

We use two stopping conditions for the simulation: the
maximum number of time steps max steps and the maxi-
mum population size max pop. The simulation stops at a
step t when t = max steps or (Ct

a+Ct
n) > max pop. We also

require the model to reach a minimum population min pop.
If the simulation terminates while (Ct

a+Ct
n) < min pop and

t < max steps, the result is discarded and the simulation
restarts. All the parameters, options, and conditions can be
found in Table 1.

2.2 Cell turnover

We start with a basic system in homeostasis where the num-
ber of cells is kept constant on average and without novel
mutations or necrosis. We thus define a cell birth and death
process by sampling the number of cells that are born Bb(c

t)
and that have died Bd(c

t) at time step t in clone c from a bi-
nomial distribution with the birth probability pbirth = θturn
and the death probability pdeath = θturn. The new number
of alive and removed cells at time step t+ 1 is then defined

2
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as:

ct+1
r = ctr +Bd(c

t), Bd(c
t) ∼ Bin(cta, pbirth),

(1)

ct+1
a = cta +Bb(c

t)−Bd(c
t), Bb(c

t) ∼ Bin(cta, pdeath),
(2)

ct+1
n = 0, (3)

ct+1
M = ctM . (4)

where ct ∈ Ct denotes the clone c at time step t. The next
state of the simulation is then obtained as Ct+1 = {ct+1 |
ct ∈ Ct}.
Note that if pbirth > pdeath the population size would in-

crease exponentially. In the opposite case, the population
would eventually die out. In this homeostatic model the
birth and death probability are equal to the turnover prob-
ability, therefore the population size remains constant on
average. However, due to stochastic fluctuations, the pop-
ulation will always die out after a large, but finite number
of steps (extinction event). This is common to all frame-
works that include stochastic cell death (Roch, 2015) and
the extinction probability grows with θturn (Supp. Fig. 1).
We avoid the problem in practice by setting a sufficiently
small θturn and a correspondingly large min pop.
In summary, at this stage, our system comprises a single

clone, which is roughly constant in size and shows no clonal
dynamics.

2.3 Mutations

We next introduce mutations into the homeostatic model.
We assume that each mutation is unique (infinite sites as-
sumption) and therefore each mutation spawns a new clone.
New mutations can only occur during the division step, with
the probability θmut per daughter cell (2θmut per cell divi-
sion). For simplicity we limit the number of mutations to
at most half the daughter cells, so that the size of existing
clones does not decrease due to cell division. As we only
focus on driver mutations in biologically realistic scenarios,
we expect θmut ≪ 1 and thus this limitation does not affect
the simulation in practice. We then extend (2) to:

Bm(ct) ∼ Bin(2Bb(c
t), θmut), (5)

mut(ct) = min(Bb(c
t), Bm(ct)), (6)

ct+1
a = cta +Bb(c

t)−Bd(c
t)−mut(ct). (7)

Mutated cells are removed from the group of new cells (7)
and each of them spawns a new clone each with exactly one
alive cell, such that for each ct ∈ Ct:

children(ct) = {(1, 0, 0, cM ∪ {mi}) | i ∈ {1, . . . ,mut(ct)}},
(8)

where mi is a new, unique mutation. The new clones
are then added to the updated population, i.e. Ct+1 =⋃
{{ct+1} ∪ children(ct) | ct ∈ Ct}.
Our homeostatic system now consists of several clones,

none of which has a fitness advantage over the over. In such a
system the appearance and disappearance of clones is simply
due to stochastic fluctuations and constant accumulation of
new neutral mutations (Fig. 1).
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Figure 1: An illustration of mutation accumulation over
1000 steps with homeostatic population of 100 cells (C0 =
{(100, 0, 0, {m})}) and the mutation probability pmut =
0.25. Each colour represents the size of a population of
a single clone. We can see that the original population
(grey) disappears as a result of mutation accumulation dur-
ing turnover. Some of the newly created clones disappear as
well while others branch into further clones.

2.4 Fitness and model variants

We now abandon the homeostatic scenario by introducing
fitness. Traditionally, mutations are considered to be ei-
ther fitness-increasing drivers or neutral or almost-neutral
passengers. Driver mutations increase the evolutionary ad-
vantage of a cell (Alberts et al., 2002), represented by a pos-
itive change in cellular fitness (Fu et al., 2022; Noble et al.,
2022; Beerenwinkel et al., 2015). Here we focus on how the
growth behaviour changes with fitness increasing mutations
and omit passenger mutations.

The fitness increase F (m) that a new mutation m pro-
vides is drawn from a fitness distribution controlled by the
model option odis ∈ {uni, exp, norm, const}, referring to the
uniform, exponential, truncated normal, and constant distri-
butions, respectively. We here use the term constant distri-
bution as a shorthand for a single-element discrete uniform
distribution. All possible fitness distributions are defined
such that their with mean at θfit:

F (m) ∼


U{θfit, θfit} , if odis = const,

U[0,2θfit], , if odis = uni,

Exp(θ−1
fit ) , if odis = exp,

N[0,∞](θfit,
θfit
2 ) , if odis = norm.

(9)

Here, N[0,∞] represents the truncated normal distribution for
which we set the lower bound at 0. For standard deviation
we use θfit

2 in line with Bozic et al. (2010). Note that for a
lower bound of 0 and σ = µ

2 the expected value is 1.027 ·θfit.
The exact shapes of the individual distributions are shown
in Supp. Fig. 2.

Since a clone inherits the mutations of its parent clone,
the fitness values of multiple mutations have to be combined
through the use of an accumulation function controlled via
the accumulation option oacc. Three accumulation functions
are considered: multiplicative (mul), limited multiplicative
(lim), and additive (add). The limited multiplicative accu-
mulation function has been implemented according to Noble

3
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et al. (2022) and its full formulation is in Supp. Fig. 3. We
obtain the joint fitness for all the mutations in mutations
ctM using the accumulation function

acc(ctM ) =


∏

m∈ctM
(1 + F (m)) , if oacc = mul,

limit(ctM , |ctM |) , if oacc = lim,

1 +
∑

m∈ctM
F (m) , if oacc = add.

(10)

Lastly, we consider three options of applying the fitness ef-
fect to a clone: fitness increases the birth probability (birth);
fitness decreases the death probability (death); or the fit-
ness is split equally between the birth and death probabil-
ity (both), as also used in Watson et al. (2020). We then
calculate the birth(ctM ) and death(ctM ) effect functions as
follows:

birth(ctM ) =


acc(ctM ) , if oeff = birth,
1+acc(ctM )

2 , if oeff = both,

1 , if oeff = death,

(11)

death(ctM ) =


1 , if oeff = birth,

2
1+acc(ctM )

, if oeff = both,

acc(ctM )−1 , if oeff = death.

(12)

The birth and death probabilities are then given as:

pbirth =min
(
1, θturnbirth(c

t
M )
)
, (13)

pdeath =min
(
1, θturndeath(c

t
M )
)
. (14)

The homeostatic scenario is a special case of the above, since
if θfit = 0 then pbirth = pdeath = θturn. Unless stated other-
wise, we use odis = const and oacc = mul as default values
(Table 1).
With the fitness change now included our system describes

a well-mixed population of cells without spatial constraints.

2.5 Confinement

We now introduce quasi-spatial constraints into our model
of a well-mixed population of cells.
Driver mutations inevitably lead to exponential growth

in the absence of limiting factors. In cancer, these factors
include e.g. lack of access to blood vessels and nutrient limi-
tations or spatial constraints (Folkman, 1971). We represent
these constraints in an abstract manner using the confine-
ment parameter θconf , which limits the turnover of cells by
the size of the tumour (Fig 2). Confinement acts in two
ways. First, it limits the number of cells that can divide
based on the size of the tumour. Second, it prevents some
cells from disappearing after cell death, instead turning them
into necrotic cells instead which continue to contribute to the
size of the tumour.
To formulate the confinement, we create a geometrical rep-

resentation of the tumour as a sphere (Fig 2a). We fix the
spatial scale of our model such that each individual cell has
unit volume and the volume of the whole tumour at the time
t is equal to the number of its alive and necrotic cells Ct

a+Ct
n.

The tumour is thus divided into two regions, a proliferating
shell and a quiescent core. Cells in the shell can divide and
get removed when they die. Conversely, cells in the core
cannot divide due to lack of space or resources, and turn
into necrotic cells upon death. We denote shell-V(Ct) the

volume of the shell and core-r(Ct) the radius of the core for
the population contained in Ct. Under the assumption of a
perfect sphere, we can compute the fraction frac(Ct) of the
tumour volume occupied by the shell, relative to the shell
volume shell-V(Ct) and the radius of the core core-r(Ct)
as follows:

frac(Ct) =


0, if Ct

a = 0,

1, else, if θconf = 0,

max
(

shell-V(Ct)
Ct

a
, 1
)
, else, where:

(15)

shell-V(Ct) = Ct
a + Ct

n − 4

3
π
(
core-r(Ct)

)3
(16)

core-r(Ct) = max

((
3

4

Ct
a + Ct

n

π

) 1
3

− θ−1
conf , 0

)
(17)

Note that the width of the shell is given by θ−1
conf , meaning

that lower confinement values lead to a larger shell and sub-
sequently a larger proportion of proliferating cells (Fig 2b).
In particular, for θconf → 1 we approximate the bound-
ary of the sphere, i.e. its surface, while for θconf → 0 the
whole sphere is considered the shell, irrespective of its size.
We can therefore easily emulate surface growth conditions
(θconf = 1), volume growth conditions (θconf = 0), or any
mixture of the two, without explicitly tracking the position
of individual cells. Combining the above we then obtain the
final model:

ct+1
r = ctr +

[
Bd(c

t)frac(Ct)
]
, (18)

ct+1
n = ctn +

[
Bd(c

t)(1− frac(Ct))
]
, (19)

pbirth = min
(
1, θturnbirth(c

t
M )frac(Ct)

)
, (20)

ct+1
a = cta +Bb(c

t)−Bd(c
t)−mut(ct), (21)

where [·] refers to rounding to the nearest integer. While for
the birth probability (20) directly depends on the fraction
(15) to ascertain that even newly spawned single-cell clones
can divide, the death probability (14) does not depend on
the fraction. There the fraction only separates removed from
necrotic cells.

As only the oacc = lim option has an upper boundary,
a situation where birth(cM ) > θ−1

turn is possible. Conse-
quently, due to the upper boundary pbirth ≤ 1, the confine-
ment may play a role in establishing the upper limit for fit-
ness. However, for the default values θfit = 0.2, θturn = 0.01,
this only becomes a factor when |cM | > 25, while even in
most extreme cases we do not expect more than 20 driver
mutations for biologically plausible parameter values.

Note that if we set θconf = 0, the model is equal to the one
in Sec. 2.4, with also θfit = 0 to Sec. 2.3, and with θmut = 0
to Sec. 2.2.

2.6 Parameter space

We aim to simulate realistically-sized tumours with the
population size ∼ 109 cells, corresponding to a tumour of
> 1cm3 in size (Alberts et al., 2002; Del Monte, 2009). We
set the minimum population size min pop for a simulation
to be considered to 1000 cells. The max pop is then derived
from min pop as 1000 ·220 ∼ 109, hence population doubling
occurs 20 times starting from min pop.

4
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Figure 2: Confinement: a) Confinement splits the tumour into a proliferating shell (free cells) and a core with radius
rcore, composed of confined and necrotic cells. Different colours represent populations of clones. Each cell is expected to
take a unit volume in the densely packet tumour. The probability of a cell diving is then a combination between its fitness
and the probability of it being in the shell. Similarly, the dead cells are either removed or become necrotic based on the
shell fraction. b) Illustration of the frac function across the range of the confinement values and population sizes. For
this plot we set Ca = Cn.

To calibrate overall cellular turnover, we created a home-
ostatic model without mutations and a starting popula-
tion size of 100 cells and evaluated the turnover probabil-
ity in the following steps: θturn ∈ {0.1, 0.05, 0.01, 0.005}
(Supp. Fig. 1). We found that for θturn = 0.01 there was
no extinction event within max steps = 1000 for any of the
1000 replicates and we thus selected this as a turnover value
for all further simulations to balance granularity of the sim-
ulation and execution time.
We fixed the limiting variable for the maximum number of

generations max steps to 106, such that without a mutation
the initial cell divides on average 106 ·0.01 = 104 times. For a
proliferating cell where typical division cycle is 24h (Alberts
et al., 2002), this would correspond to ∼ 27 years of real
time. In all subsequent simulations the execution reached
the maximum population size before reaching the maximum
number of generations.
We explore the choice of values for the confinement θconf ,

mutation probability θmut and average fitness increase θfit
parameters in the Results section (Section 3.1).

2.7 Population metrics

To evaluate the individual simulation runs and to compare
their clonal behaviour to prior work as well as experimen-
tal data, we implement three metrics: the mean number of
drivers per cell, the clonal diversity index, and the clonal
fluctuation score which characterises clonal diversity over
time.
To speed up computation of summary statistics we only

consider clones larger than a minimum fraction cutoff of the
population (C̃t = {ct ∈ Ct | cta ≥ Ct

a · cutoff}) and only
calculate the metrics at every time step at which the popu-
lation of alive cells doubles. The Fish plots (e.g. Fig. 3 a-c)
are not affected by the cutoff, but only display clones that
reached at least 1% of the population at some point.
The mean number of drivers per cell d̄t tracks the muta-

tional burden of the growing tumour and is defined as

d̄t =
∑
s∈C̃t

(|cM | · cta) · (C̃t
a)

−1. (22)

The clonal diversity index Dt reflects the total number of
clones and their size and is based on the inverse Simpson
index defined as

Dt =

 ∑
ct∈C̃t

p(ct)2

−1

, (23)

where p(ct) = (cta) · (C̃t
a)

−1 is the fraction of the total pop-
ulation of clone i at time step t. As shown in Noble et al.
(2022), this measure has a lower boundary of 1 and is robust
to the presence or absence of small populations. If there are
k clones with equal population sizes, then p(ct) = k−1 for

all ct ∈ C̃t and Dt =
(∑

ct∈C̃t k−2
)−1

= k.
Since Dt is a static measure of clonal diversity at time

point t, we also consider the clonal fluctuation score Dfluc

as the difference between the mean absolute slope minus the
mean slope of the clonal diversity over time:

Dfluc =
1

tmax − tmin

∑
t

(|D′(t)| −D′(t)) . (24)

If the clonal diversity is monotonously increasing, then
Dfluc = 0.
Estimates for the population metrics can be retrieved

from Noble et al. (2022) who calculated metrics for single-cell
experiments of spatially organised tumours to be in the fol-
lowing ranges: clonal diversity Dt ∈ [1, 12] and mean num-
ber of drivers per cell d̄t ∈ [3, 14]. The latter was confirmed
with a measured values of d̄t ∈ [5, 15] (Bozic et al., 2010).
Unfortunately, due to the lack of longitudinal data for can-
cer, there are no current estimates for the clonal fluctuation
score.

2.8 SMITH implementation

SMITH has been implemented in C# as an open-source
package under the MIT license and is available at
bitbucket.org/schwarzlab/smith with pre-compiled bi-
naries for Windows, Linux, and MacOS. The exact code
used for producing the results and figures in this manuscript
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parameters options conditions
θturn 0.01 odis const min pop 1000
θconf 0.1 oacc mul max pop min pop · 220
θmut 10−4 oeff birth max steps 106

θfit 0.2 cutoff 0.001

Table 1: Overview of all relevant model parameters and vari-
ables. Note that only the parameters affect the behaviour
of the model. The variables only control the length of the
execution and the output.

is available at doi.org/10.5281/zenodo.6885041. The
Fish (Muller) plots were implemented in the accompa-
nying open-source Python library PyFish, available at
bitbucket.org/schwarzlab/pyfish, through PIP, and on
Bioconda.
Using SMITH, simulating a population with 109 cells took

approximately a minute on a single-threaded CPU using less
than 1GB of memory.

3 Results

3.1 Confinement replicates dynamics of
spatial models

Previous research has shown that non-spatial models pro-
duce tumours with a low number of drivers (between 1–4),
and limited clonal diversity of 3 or fewer clones of roughly
equal size (Noble et al., 2022), in line with observations
in non-spatial tumours such as acute myeloid leukaemia
(AML). In contrast, spatially organised tumours generally
demonstrate far greater clonal diversity (Dt ∈ [1, 12]) and a
larger number of drivers (d̄t ∈ [3, 14]), an observation that
could so far only be recreated by explicitly spatial models of
tumour evolution (Noble et al., 2022).
We hypothesised that our confinement mechanism alone

should be sufficient to reproduce the clonal diversity and
high number of drivers observed in spatially organised tu-
mours. To test this, we first conducted a grid search of vary-
ing values of the confinement parameter θconf , the mutation
probability θmut and the average fitness increase θfit. Each
of the parameters was varied over the log-scaled range of
θconf ∈ [0, 1], θmut ∈ [2.5 ·10−5, 4 ·10−4] and θfit ∈ [0.05, 0.8].
Driver mutations were set to a constant fitness increase
(odist = const), acting on the birth probability (oeff = birth),
and fitness values of multiple mutations were accumulated
using multiplication (oacc = mul). We conducted 50 simu-
lations for each value combination and inspected the clonal
architectures with respect to the three evolutionary metrics:
mean number of driver mutations, clonal diversity index,
and clonal fluctuation score (Methods and Supp. Fig. 5,6).
For visualisation and analysis, we use the marginal effects of
each parameter across the full range of all other parameters.
For the precise values for each combination please refer to
Supp. Fig. 5.
In the absence of confinement (θconf = 0), all cells in

the tumour can divide and we observed a behaviour rem-
iniscent of well-mixed non-spatial cell populations (Fig. 3a,
Supp. Fig. 4a). Overall genetic diversity was low (median
clonal diversity ∼ 5.4, 25-75 quantiles: 3.3-8.4), only few
driver mutations occurred (median of 3.5, 25-75 quantiles:

2.8-4.5), and virtually no clonal fluctuations were visible
(median of 0.1, 25-75 quantiles: 0.0-0.2) (Fig. 3d-f). Due to
the fitness increasing effect of mutations on the birth rate,
the early appearing clones remained in the population until
the end of the simulation was reached at 109 cells. Note that
the observed value for the diversity is slightly higher than
observed in similar non-spatial models (Noble et al., 2022)
which is explained by the choice of our fitness function and
elaborated in Sec 2.4.

Increasing the confinement parameter to θconf = 0.1 lim-
its cell division to the outer 10 cell layers (Methods) in a
spherical tumour model (Fig. 3b, Supp. Fig. 4b). As a re-
sult we observed an overall increase in the mean number of
drivers (median 8.1, 25-75 quantiles: 6.9-9.6) and a substan-
tially higher clonal diversity (median 8.0, 25-75 quantiles:
4.8-12.6), in keeping with the literature about observations
in spatially organised tumours (Noble et al., 2022). We also
observed an increase in the clonal fluctuation score (median
of 0.7, 25-75 quantiles: 0.4-1.2) (Fig. 3d-f). We argue that
this increase in both driver accumulation and diversity is
due to an increased evolutionary pressure caused by com-
petition for space, imitated by our confinement mechanism,
which slows the growth of existing clones and allows for new
clones to appear and founder clones to disappear in favour
of late, high-fitness clones.

Using the maximum confinement (θconf = 1) limits cell
division to the outermost layer of a spherical tumour (Meth-
ods, Fig. 3e, Supp. Fig. 4c). As a result, we observed a stark
increase in the mean number of drivers (median 15.9, 25-75
quantiles: 13.3-19.7) whereas the clonal diversity remains
similar at a median value of 8.0 (25-75 quantiles: 4.9-12.5).
We also observe a further increase in the clonal fluctuation
score (median of 1.5, 25-75 quantiles: 1.0-2.3) (Fig. 3d-f).
Across the full parameter range, confinement leads to an
approximately logarithmic increase in the number of drivers
(Fig. 3d). While initially, this also leads to an increase in
clonal diversity (Fig. 3e), the increase in evolutionary pres-
sure by higher confinement values also increases the likeli-
hood of clonal sweeps, where a clone quickly outcompetes
its neighbours and captures the whole population, reducing
clonal diversity once again. This effect is clearly visible in
the increase of the clonal fluctuation score (Fig. 3f), but
leads to clonal diversity remaining static beyond moderate
values of confinement (Fig. 3e).

As expected, we find that increasing the mutation prob-
ability θmut simply accelerates clonal evolution, leading
to a logarithmic increase in all our analytical metrics
(Supp. Fig. 6-left column). As all clones grow exponentially,
increasing the rate at which new mutations appear allows the
new clones to faster reach the same population as clones from
the previous generation, increasing the rate of accumulation
of new drivers and likelihood of clonal sweeps. In contrast to
the mutation probability, we find that increasing the average
fitness advantage of a driver mutation (θfit ∈ [0.05, 0.8]) de-
creases the the clonal diversity and clonal fluctuation scores
(Supp. Fig. 6e,h). The mean number of drivers is only
weakly affected by changes to the average fitness advantage
with median values all in the range of 7.7-8.9 (Supp. Fig. 6b).
For a value of θfit = 0.05 gaining an additional driver in-
creases the fitness of the clone by a factor of 1.05 (Eq. 10).
The newly created clone therefore possesses fitness similar
to its predecessor, allowing for co-existence and the observed
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Figure 3: Simulations with confinement: a-c) Selected fish plots for minimum, intermediate, and maximum confinement
values. a) In the absence of confinement (θconf = 0), corresponding to well-mixed volume growth, we find a limited amount
of clonal diversity and few drivers. b) For intermediate confinement (θconf = 0.1) we find an increase in the number of
co-existing clones as well as an increase in the number of drivers. c) For the maximum confinement (θconf = 1) we observe
increase in clonal sweeps, increasing the number of mutations, but not the diversity. d-f) Increasing the confinement
continuously increases the final number of mean drivers per cell and the clonal fluctuation, while the clonal diversity
plateaus around θconf = 0.1. For every confinement value the data is aggregated over all values of the mutation probability
and the mean fitness increase.

high clonal diversity. For the much higher value of θfit = 0.8,
gaining an additional driver almost doubles the fitness of
the clone (factor of 1.8), which then rapidly outgrows the
existing population, leading to a less diverse tumour with a
ladder-like evolutionary tree. This is supported further by
the behaviour of the mean drivers per cell with varying aver-
age fitness values (Supp. Fig. 6b), as the median value of the
mean drivers per cell remains unchanged but the standard
deviation falls from 7.1 for θfit = 0.05 to 2.7 for θfit = 0.8

By comparing the observed test metrics to ones calcu-
lated for real tumours as shown in Sec. 2.7, we choose
the final parameter set θmut = 10−4, θfit = 0.4 and
θconf = 0.1. The selected θmut has been used in other
publications: θmut ∈ [10−3, 10−4] in (Fu et al., 2022) and
θmut ∈ {10−4, 10−5, 10−6} in (Noble et al., 2022). The cho-
sen confinement value of 0.1 leads to a mixture of surface
growth and volume growth, where the ten topmost layers of
the spherical tumour can divide. For an overview of the final
parameters and variables see Table 1.

In summary, in the absence of any confinement SMITH
recreates previous findings of well-mixed models that resem-
ble non-spatial tumours such as leukemia. In contrast, out
results show that confinement alone is sufficient to create the
rich clonal dynamics otherwise only seen in explicitly spatial
simulations and in spatially organised tumours.

3.2 Clonal dynamics are complex and vari-
able over time

Most simulation studies so far have focused on interpreting
the simulation endpoint after a certain number of genera-
tions and have largely avoided investigations into the vari-
ability of repeated simulations conducted with the same set
of parameters. To address this and to learn about the
progression of the clonal dynamics over time (Fig. 4a-c,
Supp. Fig. 7), we queried repeated simulation runs at fixed
time points indicated by each doubling of the population
size and investigated the trajectories of our metrics over
time, motivated by the observation that across cancer types
the doubling time remains roughly constant (Talkington and
Durrett, 2015).

We observed that the mean drivers per cell grows steadily
with increasing population size (Fig. 4a), demonstrating that
newly appearing clones eventually overtake the population.
Clonal diversity initially surges until the population size of
∼ 220(∼ 106) cells is reached, after which the increase decel-
erates and finally reaches a plateau around 227(∼ 108) cells
(Fig. 4b). Below 216 cells there is on average less than 1.5
drivers per cell, as the first clone is dominant in the popula-
tion. Only when the tumour is large enough for new clones
to appear and once these clones start competing with the
first clone do we also see an increase in diversity.

Conversely, we observe a continuous increase in the clonal
fluctuation score with increasing size of the tumour (Fig. 4c),
suggesting continued clonal dynamics throughout the life-
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Figure 4: Population metrics over time (parameters according to Table 1): a-c) Both the mean number of drivers
per cell and the clonal fluctuation increase continuously with the growing population size throughout the simulation. In
contrast, the clonal diversity plateaus for large population sizes. d-f) Selected Fish plots for simulations with the same
parameter set. We see clear heterogeneity in the population dynamic despite the limited amount of stochasticity. d) This
example exhibits low clonal diversity throughout its evolution. e) Here we observe a burst in diversity halfway through
the simulation followed by a clonal sweep of the blue clone. f) In this final example, the simulation is dominated by a few
clones until the final fifth of the simulation, where a burst of new clones leads to a high final diversity.

time of a tumour, even when the clonal diversity has reached
its maximum. To investigate the dynamics of the clonal fluc-
tuation score in more detail, we looked at individual trajec-
tories of the clonal diversity score over time for different sim-
ulation runs with the same set of parameters. We found that
the trajectories leading to the final values are very diverse
(Supp. Fig. 8) and we observed several distinct patterns. For
example, some simulated tumours maintained an overall low
diversity due to repeated clonal sweeps and a correspond-
ingly low fluctuation score overall (Fig. 4d). Other tumours
demonstrated a continuous rise and fall in diversity, where
clonal expansions and clonal sweeps acted interchangeably,
leading to an overall high fluctuation score (Fig. 4e) and
medium average clonal diversity. On the other end of the
spectrum we observed a monotonous increase in the number
of coexisting clones, leading to a high clonal diversity with
simultaneously low clonal fluctuations (Fig. 4f).

Interestingly, clonal sweeps, which are an important char-
acteristic of tumour evolution (Black and McGranahan,
2021), and which naturally emerge in our confinement-based
model, have not previously been described even in explic-
itly spatial simulations (Noble et al., 2022; Fu et al., 2022;
Chkhaidze et al., 2019; Sottoriva et al., 2015).

In summary, while we observe a common trend towards
higher number of drivers and plateauing clonal diversity with
increasing size of the tumour, we also observe extensive het-
erogeneity in the trajectories of clonal diversity and fluctu-
ations over time, governed by alternating periods of clonal
sweeps and diversification.

3.3 The effect of the fitness function on
clonal evolution

Prior work has claimed that the choice of the fitness function
does not have significant bearing on the outcome of the sim-
ulation (McFarland et al., 2013; Chkhaidze et al., 2019; West
et al., 2021). To test this claim, we implemented four fitness
distributions (constant, uniform, normal, and exponential)
with the same mean fitness advantage and compared them
with respect to our clonal dynamics metrics (Methods).

We found that the choice of fitness distribution substan-
tially affects the outcome of our simulation (Fig. 5). For ex-
ample, the constant fitness gain used above yields the max-
imum number of mean drivers per cell (median 7.3, 25-75
quantiles: 7.0-7.7, Fig. 5a) as well as the highest amount
of clonal diversity (median 9,3, 25-75 quantiles: 5.6-15.1,
Fig. 5b) and clonal fluctuation (median 0.3, 25-75 quantiles:
0.2-0.4, Fig. 5c). In contrast, normal and uniform distri-
butions showed substantially lower values compared to the
constant fitness function (median 6.5 and 6.7 mean drivers
per cell, median 5.3 and 4.8 clonal diversity and median 0.2
and 0.3 clonal fluctuation for normal and constant distribu-
tions respectively), while the exponential distribution dis-
tinctly exhibited the lowest number of clonal diversity (me-
dian 3.0), fluctuation (median 4.9) and number of drivers
(median 0.5).

The difference between the constant fitness gain and the
three other fitness distributions can be explained by the fact
that two clones with the same number of drivers have the
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Figure 5: Effect of the model fitness options: a) Except for the normal and the uniform distribution, all distribution
options lead to a differing range of mean drivers per cell with the constant function leading to the highest number of
drivers. b) The constant function leads to a significantly higher clonal diversity compared to the other distributions.
c) The exponential distribution leads to a significantly lower clonal fluctuation compared to the other distributions. *:
p < 0.05, **: p < 0.005, ***: p < 0.0005, n.s.: not significant.

same fitness and therefore do not have an evolutionary ad-
vantage over each other, allowing for coexistence. In con-
trast, using non-constant fitness functions invariably leads to
expansions of a small number of clones with a comparatively
high fitness advantage. In particular, when using the long-
tailed exponential distribution, a vastly more potent muta-
tion will occasionally appear, sweeping through the popula-
tion. As a side effect, the simulation with an exponential
function is considerably shorter as these super-clones divide
faster than those with mean fitness values (Supp. Fig. 9j).

In addition to the fitness distribution itself, the fitness
increase per generation is modulated by the accumulation
function used to aggregate the fitness values of multiple mu-
tations, and whether a fitness change affects the birth rate or
death rate of cells or both. We tested the effects of three dif-
ferent accumulation functions (additive, multiplicative, and
multiplicative with an upper bound) on the cellular birth
rate, death rate, or both (Sec. 2.4).

We find that, in contrast to the choice of the fitness dis-
tribution, the choice of accumulation function and its ef-
fect on cell birth or death does not have a significant im-
pact on the clonal diversity (Supp. Fig. 9e,f). However, we
did observe a difference in the amount of drivers per cell
(Supp. Fig. 9b), where the multiplicative accumulation func-
tion generates the highest number of drivers (median 7.3,
quantiles: 7.0-7.7) followed by the multiplication with an
upper bound (median 6.9, quantiles: 6.7-7.2) and finally the
additive accumulation function (median 6.0, quantiles: 5.8-
6.2). Multiplicative accumulation leads to a higher fitness
for the same number of drivers compared to the other two
accumulation methods, which results in a higher turnover
rate and therefore a higher chance to acquire new drivers.

We also found changes in fitness that affect the cell birth
probability to lead to the highest number of mean drivers
per cell (median 7.3, 25-75 quantiles: 7.0-7.7), followed by
fitness changes that affect both birth and death probability
(median 6.6, 25-75 quantiles: 6.4-6.8) (Supp. Fig. 9c). Fit-
ness changes that affect only the death probability lead to
the lowest number of mean drivers per cell (median 5.5, 25-
75 quantiles: 5.4-5.6). This choice also has a weak effect on
the clonal fluctuation score (Supp. Fig. 9h,i). The most ag-
gressive variants (multiplicative, birth) seem to exhibit the

lowest fluctuation. This can be explained by the fact that
the most aggressive variants reach the target population size
in considerably fewer steps (Supp. Fig. 9k,l), and have there-
fore less time to fluctuate. In this sense the clonal fluctuation
seems to be quite robust with respect to the overall number
of simulation steps and with lower turnover parameter the
difference would likely become insignificant.

In summary, We find that the choice of fitness distribu-
tion, but not the choice of accumulation function or where
the fitness change is applied (birth, death or both), widely
affects the clonal dynamics of the simulated tumour mass, in
contrast to existing reports, and should be chosen carefully
when making modelling decisions.

4 Discussion

We have presented SMITH, a stochastic model of tumour
evolution which implements confinement, a novel mecha-
nism adding spatial constraints to the non-spatial branch-
ing process model of cancer. Confinement induces evolu-
tionary pressures through competition for space by splitting
the tumour into a proliferating shell and a static inner core.
It thereby generates clonal dynamics traditionally only ob-
served in explicitly spatial models and spatially organised
tumours. While splitting a tumour into a replicating and
non-replicating part has been previously used in algebraic
descriptions of tumour cell population size (Paterson et al.,
2016; Dassios et al., 2012), to the best of our knowledge
SMITH is first to integrate such a principle into an evolu-
tionary model.

Naturally, multiple different formulations of the confine-
ment mechanism are conceivable. The one presented here
has the advantage of allowing for a direct geometric interpre-
tation in terms of tumour shell volume under the assumption
of a tumour as a perfect sphere. While not all real-world tu-
mours are spheroids, other formulations based on different
shapes are easily implementable, e.g. to accommodate dis-
coidal or segmental shapes (Byrd et al., 2020). In particular,
in Talkington and Durrett (2015) the authors claim a growth
rate with an exponent of 2

3 as typical for solid tumours. The
exponent of 2

3 also (when multiplied by an appropriate con-
stant) projects a volume of a 3D object onto its surface, and
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really any function that projects a 3D object onto its surface
area could be considered.

A major advantage of the confinement approach is com-
putational speed, which is several orders of magnitude
faster than explicitly spatial models of tumour growth.
Such explicitly spatial models are commonly run on high-
performance computers in parallel, with cell populations in
millions of cells or lower (Rosenbauer et al., 2020). In con-
trast SMITH performs a single simulation up to 109 cells in
minutes on a desktop computer, enabling detailed analysis of
the variability of evolutionary trajectories under a variety of
different parameterisations. This efficiency naturally comes
at the expense of complexity and as such SMITH currently
does not capture some features of real-world tumours, such
as cell migration or interactions with the immune system or
tumour microenvironment.

We purposefully kept the stochasticity of our model low
and limited to fluctuations in population size and the tim-
ing of new mutations. Despite this limited stochasticity, we
observed for a single set of parameters a wide variety of het-
erogeneous evolutionary trajectories, where tumours would
switch between periods of relative stasis and clonal diversi-
fications in a seemingly erratic manner. Based on these re-
sults we argue that predictions of the future of an evolving
tumour based on its past and present, an important topic for
current cancer evolution research, might prove to be more
challenging than anticipated.

When building models, specific modelling choices are ide-
ally based on real-world data. While our estimates for cell
turnover and mutation rates are well in keeping with the lit-
erature, there is no clear consensus on how fitness changes
are distributed, how fitness values should be accumulated
across multiple mutations, and how these choices affect the
birth and death rate of cells. We tried to explore these
choices in concert and, in contrast to previous findings (Mc-
Farland et al., 2013), we observed that the shape of the fit-
ness distribution has a substantial impact on the results of
the simulation, in particular when comparing long-tailed and
short-tailed distributions. Additional research in these areas
will be needed and ought to be complemented by experimen-
tal data.

In summary, we have shown that our simple, high-
performance simulation model provides an effective way of
observing the fundamentals of cell-based exponential growth
with fitness-increasing mutations and spatial constraints.
SMITH thereby produces results in close agreement with
observations on real-world tumours including recapitulation
of specific clonal dynamics such as interchanging periods of
clonal sweeps and diversification previously unseen in non-
spatial models of tumour evolution. In future work, more
complex variations of this model are conceivable by adding
biologically relevant mechanisms such as interactions with
non-malignant cell populations and cell exchanges between
multiple tumour masses to mimic metastatic seeding.
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