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Key Points

• The SUMO pathway is
activated in MM and its
magnitude associated
with progression and
treatment resistance.

• SUMO inhibition
overcomes
proteasome inhibitor
resistance by blocking
myeloma stress
resilience, irrespective
of p53 state.
Proteasome inhibition is a highly effective treatment for multiple myeloma (MM). However,

virtually all patients develop proteasome inhibitor resistance, which is associated with a

poor prognosis. Hyperactive small ubiquitin-like modifier (SUMO) signaling is involved in

both cancer pathogenesis and cancer progression. A state of increased SUMOylation has

been associated with aggressive cancer biology. We found that relapsed/refractory MM is

characterized by a SUMO-high state, and high expression of the SUMO E1-activating enzyme

(SAE1/UBA2) is associated with poor overall survival. Consistently, continuous treatment of

MM cell lines with carfilzomib (CFZ) enhanced SUMO pathway activity. Treatment of MM

cell lines with the SUMO E1-activating enzyme inhibitor subasumstat (TAK-981) showed

synergy with CFZ in both CFZ-sensitive and CFZ-resistant MM cell lines, irrespective of the

TP53 state. Combination therapy was effective in primary MM cells and in 2 murine MM

xenograft models. Mechanistically, combination treatment with subasumstat and CFZ

enhanced genotoxic and proteotoxic stress, and induced apoptosis was associated with

activity of the prolyl isomerase PIN1. In summary, ourfindings reveal activated SUMOylation

as a therapeutic target in MM and point to combined SUMO/proteasome inhibition as a novel

and potent strategy for the treatment of proteasome inhibitor–resistant MM.
Introduction

Multiple myeloma (MM) is a genetically and clinically heterogeneous plasma cell malignancy.1,2 Genetic
lesions that are associated with MM include loss-of-function of tumor suppressors and cell cycle regu-
lators (p53, CDKN2C, and RB), as well as activation of oncogenic signaling pathways (MYC, RAS, and
NF-κB), leading to aberrant cell cycle checkpoint regulation and increased proliferation.3 Although the
introduction of new drugs improved outcome, MM remains incurable, and most patients die of their
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disease.4 Currently, the common treatment regimens for patients
with MM include proteasome inhibitors, which are routinely com-
bined with dexamethasone, chemotherapy, immunomodulatory
drugs, or CD38-specific antibodies.5,6 Although such regimens can
induce remissions for many years, development of drug resistance
remains a major clinical problem.7,8 Therefore, new therapeutic
strategies to overcome drug resistance are urgently needed.

Posttranslational modification (PTM) of proteins by small ubiquitin-
like modifiers (SUMOs), termed SUMOylation, are involved in
maintenance of genome integrity and in regulation of gene
expression and intracellular and extracellular signaling.9 Similar to
ubiquitination, protein SUMOylation occurs via a tightly controlled
enzymatic pathway controlled by a SUMO-specific E1-activating
enzyme (SAE1/UBA2), an E2-conjugating enzyme (UBE2I), and a
subset of E3 SUMO ligases.10 Importantly, protein SUMOylation is
fully reversible and executed by the SENP (sentrin-specific pro-
teases) family of isopeptidases, making SUMOylation a finely tuned
molecular switch.11,12 To date, only one heterodimeric E1 enzyme
and one E2 enzyme have been identified in the SUMOylation
pathway, suggesting that disruption of either will substantially
inhibit global SUMO conjugation. Members of the p53 family are
essential regulators mediating a plethora of tumor-suppressive
functions; these members can be subdivided in p53, p63, and
p73.13 They can all bind p53 consensus sequences and share
some common targets, but they also have diverse roles in tumori-
genesis.13-15 SUMO E3-like ligases of the PIAS family have been
described as transcriptionally repressing the activity of the p53
tumor suppressor.16 Similar to p53, the other family proteins p63
and p73 are also SUMOylated. SUMOylation of p73 does not
affect its transcriptional activity but rather changes its subcellular
localization17; p63 SUMOylation, however, leads to an impaired
transactivation activity.18,19

To date, PIN1 is the only known peptidyl-prolyl cis–trans isomerase
that can specifically recognize and isomerize phosphorylated-
serine/phosphorylated-threonine-proline motifs and thus change
the stability of its target proteins.20 Dependent on the molecular
context, PIN1 acts either as an oncogene or a tumor suppressor.
PIN1 modulates many target proteins and also controls a variety of
biological processes, including apoptosis.21 For example, PIN1 has
been shown to modulate p53, which was required for activation of
the proapoptotic protein BAX.22 PIN1 itself is also subject to
various posttranslational modifications, and SUMOylation of PIN1
has been shown to impair its activity.23

Due to the wide array of effects elicited by SUMOylation, it is not
surprising that deregulation of SUMOylation has been associated
with tumorigenesis, tumor progression, and adverse patient out-
comes in MM; SUMO inhibition may thus potentially represent a
novel approach in cancer treatment.10,24-26 These and further data
have led to the development of SUMO inhibitors such as sub-
asumstat (TAK-981).27 Subasumstat blocks the enzymatic cascade
of SUMOylation by forming an irreversible SUMO-subasumstat
adduct, which prevents the transfer of SUMO from the E1 ligase
complex to UBC9. Subasumstat has shown preclinical activity in
multiple malignancies, including colorectal carcinoma and lym-
phoma,27 and is currently being evaluated in clinical trials for
hematologic diseases (#NCT03648372 and #NCT04776018).

The current study identified synergistic effects between sub-
asumstat and carfilzomib (CFZ) in MM, including in CFZ-resistant
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MM. Combination treatment resulted in proteotoxic and geno-
toxic stress and induced apoptosis in MM model cell lines inde-
pendent of the cellular TP53 state but dependent on PIN1. A
combinatorial treatment of subasumstat and CFZ therefore con-
stitutes a potential novel therapeutic strategy for patients with MM.
Material and methods

Cell lines and culturing

AMO1, OPM2, JJN3, and NCI-H929 cells were obtained from the
DSMZ (Braunschweig, Germany). MM1S cells were purchased
from ATCC (Manassas, VA). Cells were cultured in RPMI 1640
(21875034; Thermo Fischer Scientific, Waltham, MA) supple-
mented with 10% fetal bovine serum (A4766801; Thermo Fischer
Scientific) and 1% penicillin/streptomycin (15140122; Thermo
Fischer Scientific). All cell lines were cultured at 37◦C and 5%
carbon dioxide in a humidified incubator. All cell lines tested
negative for mycoplasma contamination, as described elsewhere,28

and underwent repeated short tandem repeat profiling for
authentication. Generation of CFZ-resistant cell lines is described
in the supplemental Material and Methods.

Fluorescence-activated cell sorting analysis

Flow cytometry analysis was performed following standard pro-
tocols. Cell suspensions, treated as indicated, were directly labeled
with fluorescently labeled antibodies against the following surface
proteins: CD38 (allophycocyanin), CD138 (phycoerythrin), and
Annexin V (fluorescein isothiocyanate). For primary MM patient
samples, red blood cells were lysed for 20 minutes in ACK buffer
(A1049201; Thermo Fischer Scientific) before antibody labeling.

Data were acquired by using a Beckman Coulter CytoFLEX flow
cytometer and analyzed by using FlowJo software version 10.1
(Becton, Dickinson and Company, Ashland, OR).

Compounds

Subasumstat (TAK-981) was provided by Takeda Pharmaceutical
Company Limited (Cambridge, MA). CFZ (S2853), bortezomib
(S1013), pomalidomide (S1567), doxorubicin (S1208), and dexa-
methasone (S5956) were purchased from Selleck Chemicals
(Houston, TX). Sulfopin was purchased from MedChemExpress
(Monmouth Junction, NJ).

In vivo xenograft experiment

Xenograft experiments were performed as previously described.29

In summary, 1.0 × 107 MM cells were resuspended in serum-free
medium, mixed with Matrigel Basement Membrane Matrix (Corn-
ing, Corning, NY) at a 1:1 ratio, and injected subcutaneously into
the flanks of female NOD.CB17/AlhnRj-PrkdcSCID/Rj mice 8 to 10
weeks of age (Janvier Labs, Le Genest-Saint-Isle, France). After
tumor engraftment, mice were randomly assigned to be adminis-
tered CFZ (2 mg/kg) IV, subasumstat (25 mg/kg) IV, a combination
of both, or vehicle control twice per week. Treatment was per-
formed for a total of 7 days. Tumor growth was monitored by
caliper measurements. Mice were housed under specific
pathogen-free conditions, and animal experiments were conducted
in accordance with the local ethical guidelines and approved by the
responsible regional authorities (District Government of Upper
Bavaria; application no. ROB-55.2-2532.Vet_02-17-230).
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Primary MM patient material

Primary human MM bone marrow samples were obtained from the
Department of Hematology, Oncology and Cancer Immunology of
Charité University Medicine. All patients gave written informed
consent, and protocols were approved by the local ethics com-
mittee of Charité (vote #EA2/142/20). Bone marrow cells were
used directly to perform short-term ex vivo treatments with CFZ
and subasumstat as indicated.

Proteomics, transcriptomics, cell viability, and

immunoblotting

Detailed procedures are provided in the supplemental Material and
Methods.

Statistical analysis

Statistical analyses were performed by using GraphPad Prism
(GraphPad Software, San Diego, CA). Error bars shown in the
figures represent the standard deviation. For each experiment, the
statistical test that was used is indicated in the figure legend.

Results

SUMO pathway is activated in proteasome inhibitor–

resistant MM cells

Dysregulation of the SUMO pathway has been associated with
aggressive cancer biology and poor prognosis.10,24 Using publicly
available transcriptome data of MM patient samples and healthy
donors,30 we found increased expression of the SUMO core
components SAE1, UBA2, UBE2I, SUMO1, SUMO2, and
SUMO3 in patients with MM compared with CD138+ cells from
healthy donors (supplemental Figure 1A). Hierarchical clustering
was performed based on the SUMO core components on 2
different data sets,31,32 which revealed SUMOhigh and SUMOlow

subgroups (Figure 1A; supplemental Figure 1B). Here, SUMOhigh

status was associated with significantly lower probability of overall
survival (Figure 1B; supplemental Figure 1C). In addition, gene
expression of the 2 components of the heterodimeric SUMO-
activating E1 complex alone, SAE1 and UBA2, was also associ-
ated with significantly lower probability of overall survival
(supplemental Figure 1D). Furthermore, immunoblotting analysis
revealed that primary MM patient cells showed increased protein
SUMOylation status compared with CD138+ cells of healthy
donors (Figure 1C; supplemental Figure 1E). To further evaluate a
potential dysregulation of the SUMO pathway during progression
of MM, we interrogated transcriptome data from patients sequen-
tially biopsied at first diagnosis and after relapse33 (supplemental
Table 1). Reactome database34 signatures containing compo-
nents of the SUMO machinery were significantly upregulated upon
relapse, indicating a possible role for SUMOylation in MM pro-
gression and drug resistance (Figure 1D).

To inform whether SUMO pathway activity was associated with
resistance to proteasome inhibitor treatment, we next analyzed
data from an RNA interference screen that was designed to identify
genes or proteins associated with resistance or sensitivity to
CFZ.35 Gene set enrichment analysis showed that interference
with SUMOylation-associated genes increased sensitivity to CFZ
treatment (Figure 1E). AMO-1 and JJN3 MM cells that were
rendered proteasome inhibitor–resistant through exposure to
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
increasing CFZ concentrations showed enhanced levels of
SUMOylated proteins (Figure 1F; supplemental Figure 2A).

In summary, these results point to a prominent role of SUMOylation
in MM and link activity of the SUMO pathway to proteasome
inhibitor resistance.

Synergy of SUMO and proteasome inhibition in MM

cell lines

Because we identified high expression of components of the
SUMO machinery and a hyperSUMO state in MM patient samples,
we next tested the efficacy of the small molecule SUMO E1
inhibitor subasumstat in MM cell lines. Subasumstat potently
inhibited SUMOylation, evidenced by the decrease of SUMO2/3
protein modification upon treatment of MM cells, and, accordingly,
the pool of free SUMO2/3 increased (Figure 2A). To test the
growth inhibitory effect of subasumstat as a single agent, we
treated a panel of MM cell lines with different expression levels of
the SUMO core machinery (Figure 2B-C). Strikingly, JJN3 cells,
which exhibited very high SUMOylation, were most sensitive to
subasumstat treatment. We next investigated which proteins
are differentially expressed and which signaling pathways cause
the subasumstat-mediated loss of viability in MM cells. We there-
fore generated a proteome of the p53 mutant cell line OPM2 after
16 hours of subasumstat treatment and observed an induction of a
DNA repair signature (Reactome)34 and an apoptosis signature
(C2, Molecular Signatures Database)36 (Figure 2D).

Because increased SUMOylation was associated with proteasome
inhibitor resistance (Figure 1F), we chose to explore potential syn-
ergistic action between pharmacologic inhibition of SUMOylation
and the established proteasome inhibitors CFZ and bortezomib.
Applying sensitivity data to SynergyFinder37 and CompuSyn (Chou-
Talalay method),38 we identified dose-dependent synergistic effects
in all testedMMcell lines after subasumstat and proteasome inhibitor
combination treatment (Figure 3A-B; supplemental Figure 2B-C).
Importantly, this effect was observed in TP53 wild-type, TP53
mutant, and TP53 null cells (Figures 2B and 3C; supplemental
Figure 2D). Irrespective of efficacy of single CFZ or subasumstat
treatment, all MM cell lines tested exhibited a significant response to
the combination treatment (Figure 3C; supplemental Figure 2E).Cell
lines of other entities also displayed a synergistic effect, except for
the CML cell line K562 (supplemental Figure 2F).

Resistance to proteasome inhibitors is a major clinical challenge in the
treatment of patients with MM.39 To test if resistance to CFZ can be
overcome by simultaneous subasumstat treatment, we combined
subasumstat and CFZ in CFZ-resistant JJN3 and AMO1 cells
(supplemental Figure 2G). Here, we observed a significant drop in
viability upon combination treatment (Figure 3D). To investigate
whether the uniform synergy observed upon subasumstat and pro-
teasome inhibitor treatment was a class effect, we also tested com-
binations of subasumstat with other drugs used to treat MM,
specifically dexamethasone and doxorubicin, and the immunomodu-
latory drug pomalidomide. Here, results were more ambiguous; that
is, in some cell lines a subasumstat-based combination worked anta-
gonistically and in others synergistically (supplemental Figure 2H-I).

In summary, subasumstat single-agent treatment reduced the
viability of MM cell lines and was highly synergistic with proteasome
inhibitors independent of the cellular TP53 status.
SUMO AND PROTEASOME INHIBITION IN MULTIPLE MYELOMA 471
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expression of the SUMO core machinery and express wild-type p53
(p53wt). To globally analyze subasumstat- and CFZ-mediated
changes in RNA and protein expression levels, we performed RNA-
sequencing as well as quantitative proteomics after CFZ and
subasumstat single and combination treatment (Figure 4A-B). Tran-
scriptome analysis indicated enriched apoptosis signatures in all 3
cell lines (Figure 4A). In addition, activation of the unfolded protein
response (UPR) and cellular stress response pathways were
detected (supplemental Figure 3A-B). In the combination treatments,
significantly more genes were regulated compared with the single
treatments, supporting an increased cellular stress response
(supplemental Figure3C).Quantitative proteomics analysis indicated
CFZ-triggered endoplasmic reticulum stress and UPR response
(Figure 4B). A significant upregulation was observed of proteins
involved in theUPRpathway in thecombination treatment (Figure4C;
supplemental Figure 3D). Other proteins involved inUPR (CREB3L2,
DNAJB1, and GADD45A) were also significantly upregulated upon
combination treatment compared with CFZ single treatment.

To compare the obtained proteome and transcriptome data, proteins
that are induced in all 3 cell lines (log2 fold change>0.5) were filtered
out. In addition, we added genes that can be synergistically activated
from the transcriptome data and comparedwhich candidates can be
induced at both the transcriptional and protein levels isolated. This
comparison resulted in a total of 19 genes/proteins (Figure 4D).
These 19 candidates were then examined in all 3 indicated cell lines
for their significant expression in the combination treatment. Ten
overlapping candidates were identified, all of which are part of the
UPR pathway and can be significantly induced synergistically.

Because we found that proteins of the DNA damage response
(DDR) pathway as well as apoptosis-related proteins were upre-
gulated in subasumstat-treated cells (Figure 2D), and we found a
massive increase of the UPR (Figure 4B-D), western blot analysis
was performed on selected markers for the DDR, the UPR, and
apoptosis in JJN3, OPM2, and AMO1 cells (Figure 4E). Indeed,
combination treatment with CFZ and subasumstat clearly
enhanced the effect on these processes compared with the single
treatments, evidenced by induction of γH2AX (DDR), phosphory-
lation of CHK1 (DDR), XBP1 (UPR), cleaved poly(ADP-ribose)
polymerase (apoptosis), and cleaved caspase-3 (apoptosis).
Annexin V staining revealed that dual subasumstat and CFZ
treatment significantly increased the percentage of apoptotic cells
compared with the single treatments (Figure 4F).

In summary, combination treatment with subasumstat and CFZ
enhanced cellular stress responses and resulted in subsequent
induction of cell death.

Sulfopin antagonizes subasumstat andCFZ treatment

The initiation of apoptosis occurs through various signaling path-
ways and is often regulated by members of the p53 protein fam-
ily.13,40 Because the OPM2 and JJN3 cell lines lack intact p53, but
significant p53 hallmark signatures were observed in transcriptome
data of the combination treatments (Figure 5A; supplemental
Figure 4A), we assumed a possible association of SUMOylation
of p53 family regulators. One important regulator of the p53 family
is the prolyl isomerase PIN1, which has been shown to be
responsible for efficient promoter loading of p53 target genes.41 In
breast cancer cells, it has been shown that in the presence of
mutant p53, the transcriptional function of p63 is regulated by
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
PIN1.42 PIN1 SUMOylation is induced by proteotoxic stress
(Figure 5B)43 and is associated with decreased activity.44 Because
we observed activation of p53 target genes and this activation can
be PIN1 dependently regulated, we investigated whether p53
target gene–associated apoptosis could be abrogated by inhibition
of PIN1. We therefore combined the specific PIN1 inhibitor sulfo-
pin45 with subasumstat. Indeed, antagonistic effects were obse-
rved in the combination treatments in OPM2 cells (Figure 5C-D). In
addition, combination of subasumstat, CFZ, and sulfopin could
abrogate caspase-3 cleavage and diminish CHK1 phosphorylation
(Figure 5E; supplemental Figure 4B).

Taken together, we show on the one hand that combination
treatment of subasumstat and CFZ leads to a p53-associated
response in p53-deficient cells. On the other hand, we show that
PIN1 inhibition in combination with SUMO inhibitor treatment has
an antagonistic effect and points to a previously unknown potential
resistance mechanism in MM.

Combined subasumstat and CFZ treatment inhibits

MM tumor growth in vivo and induces apoptosis in

primary MM cells

We next investigate the effects of dual proteasome and SUMO
inhibition in JJN3 and OPM2 in vivo xenograft models. Although
sublethal doses of single CFZ and single subasumstat treatment
showed only a limited effect on tumor growth, significantly reduced
tumor volumes were observed in the combination treatment group
(Figure 6A). Of note, subasumstat treatment did not show
measurable side effects upon short-term treatment, as judged by
body weight assessment of the mice. Treatment with CFZ led to
weight loss in a number of mice, which was seemingly not
enhanced by the combination with subasumstat (Figure 6B).

We then treated primary MM patient cells (supplemental Table 2)
ex vivo and determined the fraction of apoptotic cells by Annexin V/
fluorescein isothiocyanate staining after 24 hours in CD38+/
CD138+ MM cells (supplemental Figure 5). In 5 of 7 patient
samples (relapsed and newly diagnosed) measured, cells treated
with both CFZ and subasumstat exhibited increased apoptosis
compared with the single treatments (Figure 6C).

In summary, in vivo treatment of MM xenografts confirmed the effi-
cacy of the subasumstat and CFZ combination, and we nominate
this combination for further evaluation in prospective clinical trials.
Discussion

SUMOylation is a posttranslational modification that affects onco-
genic pathways and acts as a safeguard to maintain cellular
functions in cancer cells.11 This has led to the development of
specific SUMO inhibitors such as subasumstat, which has entered
clinical trials.27 Here, we show that SUMOylation is hyperactivated
in proteasome inhibitor–resistant patient MM samples and that high
expression of core components of the SUMO machinery correlate
with inferior prognosis. We show that combining the SUMO
inhibitor subasumstat with CFZ efficiently kills MM cells in vitro and
blocks tumor growth in vivo.

Proteasome inhibition is an effective and universally applied therapy
in MM, and it has become a backbone of MM treatment. Inhibition
of the proteasome results in proteotoxic and genotoxic stress,
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driving apoptosis of MM cells.39 We show here that the combi-
nation of subasumstat and CFZ induced elevated UPR and DDR,
which ultimately triggered apoptosis in MM cells. Because loss of
p53 function is linked to drug resistance and disease
Figure 4. Subasumstat and CFZ combination increases cellular stress response

dimethyl sulfoxide (DMSO), 250 nM subasumstat, 5 nM CFZ, or the combination thereof

Bottom: Gene set enrichment analysis using the fgsea package of the combination treatmen

from the molecular signature database. fgsea P values and adjusted P values (P-adj; false d

DMSO, 250 nM subasumstat, 5 nM CFZ, or the combination thereof and analyzed by qua

DMSO-treated OPM2 cells are displayed. (C) Graphical representation of quantitative pro

subasumstat and CFZ over DMSO-treated control (Ctrl) cells. Proteins are ranked in a volca

(log2 fold change [log2FC], x-axis). (D) Top: Significantly synergistically induced genes fro

combination treatment of subasumstat and CFZ (log2FC > 0.5; indicated in panel C) were

all 3 indicated cell lines. Bottom: Heatmap of the fold change of treatment vs control of th

AMO1. (E) Immunoblots on JJN3, OPM2, and AMO1 cell lysates treated for 4 hours with

gH2AX (S139), p-CHK1 (S345), and pan-CHK1 to determine DDR, XBP1 (unfolded prot

PARP) and cleaved caspase-3 (Cl. Casp-3) have been analyzed. β-Actin served as loading

cells stained with Annexin V and 4′,6-diamidino-2-phenylindole to measure apoptosis after

thereof. P values were determined by one-way analysis of variance. *P ≤ .05, **P ≤ .01, **
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progression,46 we investigated cell lines with genetic alterations in
p53 and found that the combination of CFZ and subasumstat
consistently induced apoptosis irrespective of the p53 status.
SUMO conjugation is typically triggered in response to genotoxic
and apoptosis. (A) Top: OPM2, JJN3, and AMO1 cells were treated for 4 hours with

and subsequently analyzed by RNA-sequencing (n = 3 biological replicates).

t (4 hours) vs DMSO control shows enriched apoptosis signatures of the Hallmark set

iscovery rate [FDR]) are indicated. (B) Top: OPM2 cells were treated for 4 hours with

ntitative proteomics. Bottom: Enriched Gene Ontology signatures in CFZ vs

teomics data of OPM2 cells that are treated for 4 hours with a combination of

no plot according to their statistical P value (y-axis) and their relative abundance ratio

m transcriptomic data (log2FC > 0, panel A) and proteins significantly induced in the

extracted, and matching genes and proteins (n = 19) were subsequently analyzed in

e identified indicated messenger RNA expression in the cell lines JJN3, OPM2, and

250 nM subasumstat, 5 nM CFZ, or the combination thereof. Protein expression of

ein response), and the apoptosis markers cleaved poly(ADP-ribose) polymerase (Cl.

control. (F) Fluorescence-activated cell sorting analysis of JJN3, OPM2, and AMO1

treatment for 48 hours with 250 nM subasumstat, 5 nM CFZ, or the combination

*P ≤ .001, ****P ≤ .0001. ER, endoplasmic reticulum. Suba, subasumstat.

SUMO AND PROTEASOME INHIBITION IN MULTIPLE MYELOMA 477

http://qptm.omicsbio.info/


B C

0

5

10

15

20

#
 M

ice

Weight loss 10%
No weight loss

ns

CFZ
Suba+ –

––
–

+
+
+

A

NOD.CB17/AlhnRj-Prkdcscid

s.c. transplantation
1 107 JJN3 or OPM2 cells

i.v. treatment:
Vehicle,
CFZ (2mg/kg),
Suba (25mg/kg),
CFZ (2mg/kg)+Suba
(25mg/kg)

1

Treatment
#1

7 days

Tumor
engraftment

Treatment
#2 Analysis

Tu
m

or
 vo

lum
e 

(fo
ld 

ch
an

ge
, r

ela
tiv

e 
to

 d
0)

0 2 4 6 8
0

20

40

60

80

Days

Vehicle

Suba
CFZ

Suba+CFZ

*

*

0 42 8

*

*

**

6
0

40

80

120

Days

Tu
m

or
 vo

lum
e 

(fo
ld 

ch
an

ge
, r

ela
tiv

e 
to

 d
0)

JJN3 OPM2

–
+ –
– + +

+–

0

10

20

30

40

%
 A

nn
ex

in 
V+

 M
M 

ce
lls

Patient
#1

Patient
#2

Patient
#3

Patient
#4

Patient
#5

–
+ –
– + +

+–
–

+ –
– + +

+–
–

+ –
– + +

+–
–

+ –
– + +

+–

1st diagnosis Relapse

CFZ
Suba

Figure 6. Efficacy of combined SUMO and proteasome inhibition in vivo and in primary MM cells. (A) Average tumor volume over time in nude mice injected with

1 × 107 JJN3 or OPM2 cells. After tumor engraftment, mice were treated with either vehicle, subasumstat (25 mg/kg), CFZ (2 mg/kg), or the combination thereof for 7 days.

P values were determined by unpaired t test. (B) Histogram showing the number of mice that lost >10% body weight (but <20%, which was the exclusion criterion) for each

treatment group during the in vivo xenograft experiment. (C) Bar diagram of Annexin V staining of 5 primary MM patient samples treated with dimethyl sulfoxide, 250 nM

subasumstat, 5 nM CFZ, or the combination thereof. *P ≤ .05, **P ≤ .01. d0, day 0; Suba, subasumstat.
or proteotoxic stress, indicating that the pathway contributes to
cellular stress resilience.47-49 We therefore postulate that inhibition
of SUMOylation exacerbates the apoptotic effects of proteasome
inhibition in MM cells, culminating in synergistic lethality.

Molecular homeostasis from apoptosis-associated proteins and its
PTM is critical for tumor cell survival and therapy resistance.
Despite a lack of p53 function, p53 signatures were observed in all
cell models tested. All p53 family members (p53, p63, and p73) are
able to bind p53 consensus sequences to induce p53 target gene
expression.40 TP53 mutations are seen in only 13% of patients
with MM and are associated with worse overall survival.50 Activity
of p53 family proteins is regulated by different factors affecting
PTM. The prolyl isomerase PIN1 has become a focus of cancer
research in recent years, and a first specific PIN1 inhibitor (sulfo-
pin) with antitumor activity in preclinical in vivo models could be
developed.45 PIN1 causes stabilization of phosphorylated target
proteins (including p53 family proteins) through proline
478 HEYNEN et al
isomerization.51 Depending on the cellular p53 status, PIN1 seems
to regulate p63 activity in variable ways.42 PIN1 is required for
efficient binding of p53 on target genes.41 In addition, PIN1
enhances TAp63a-mediated apoptosis52 and is required for p73-
dependent apoptosis.53 In the p53mut cell line OPM2, we found
that PIN1 inhibition abrogates the apoptotic effects of subasum-
stat. This points to a previously unknown resistance mechanism
that may be relevant for future treatment strategies in MM, but it
needs to be further investigated in future studies.

Resistance to proteasome inhibition arises almost invariably after
prolonged treatment and is a major limitation in the management of
patients with MM. Thus, there is an urgent clinical need of novel
therapies restoring proteasome inhibitor sensitivity in relapsed
patients.5 For instance, the associated “BRCAness” induced by
proteasome inhibition may be exploited by combination with addi-
tional DDR-inhibiting agents such as poly(ADP-ribose) polymerase
inhibitors.54 We detected increased levels of SUMOylation in MM
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4



cells that were resistant to proteasome inhibition. This is in line with
the finding that inhibition of SENP2, a negative modulator of
SUMOylation, promotes bortezomib resistance and increases
SUMOylation.55 Fine-tuning of intracellular SUMOylation by the
deSUMOylase SENP6 was recently shown to determine chromatin
organization and DDR,56 and alterations in SENP6 contributed to
increased genomic instability and lymphomagenesis in B-cell lym-
phoma.57 Because SUMOylation of proteins regulates the DDR and
other cellular stress response proteins,47,48 we hypothesize that MM
cells activate the SUMO machinery to cope with proteasome
inhibitor–induced proteotoxic and genotoxic stress, resulting in
proteasome inhibitor tolerance. As a consequence, concurrent
inhibition of SUMOylation could effectively counter proteasome
inhibitor resistance, suggesting that SUMO inhibition could be
effective as a combination therapy in patients who have developed
resistance to proteasome inhibition.

Dexamethasone-resistant MM cells can be resensitized when
combining dexamethasone with subasumstat,58 supporting the
notion of SUMOylation as a safeguard to buffer the cellular stress
response. Although we observed inconsistent results in terms of
synergy when combining dexamethasone with subasumstat, this
shows that subasumstat may have beneficial effects beyond the
combination with proteasome inhibitors, supporting its potential for
the management of MM. SUMO inhibition counteracts not only the
tumor cell–intrinsic induction of cell death59 but also immune
evasion (eg, by activating cytotoxic T cells).60 This leads to massive
tumor cell reduction in pancreatic ductal adenocarcinoma,61 which
is known as an immune desert, making this therapy extremely
promising. Further studies will show whether such a mode of action
could also be transferred to MM. In addition, by cellular indexing of
transcriptomes and epitopes by sequencing, we recently showed
that subasumstat had only moderate effects on physiological cell
populations and displays favorable tolerability.62

In summary, we found that combination of the SUMO inhibitor
subasumstat and proteasome inhibitors acts synergistically in MM
models by interfering with the cellular stress response, which ulti-
mately triggers intrinsic tumor cell death. A combination of classical
proteasome inhibitor–containing regimens with inhibition of the
SUMO pathway could be a promising approach to address the
frequently emerging therapy resistance in MM.
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