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MATERIALS AND METHODS
SEMITONES
Reference cell selection
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Figure S1: Illustration of similarities metrics in a 2-dimensional single-cell embedding. (a) The
influence of the RBF-kernel parameter v on the neighbourhood size considered for enrichment scoring. The
plots show the similarity to a single reference cell when using an RBF-kernel to compute the similarity. (b)
Illustration of the similarity distribution to a single cell when using the cosine kernel to compute the similarity.
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Figure S2: Illustration of the fixed-grid cell selection. Given a 2D cell embedding (a), we fit a grid
with a lattice of size n x n (b) and then select cells closest to the lattice points (c).

Evaluation

Identifying marker genes with SEMITONES

List S1. Cell types selected from the CellMarker database.

AXLA+SIGLEC6+ dendritic cell, Activated B cell, Activated CD4+ T cell, Activated T cell, Angiogenic T
cell, Atypical memory B cell, B cell, B1 cell, Basophil, Bone marrow stem cell, CD14++CD16- monocyte,
CD144-CD16+ monocyte, CD1414+CLEC9A+ dendritic cell, CD16+ dendritic cell, CD1C+__A dendritic cell,
CD1C+_B dendritic cell, CD1C-CD141- dendritic cell, CD4+4 T cell, CD4+ T helper cell, CD4+ cytotoxic
T cell, CD44 memory T cell, CD4+ regulatory T cell, CD44+CD25+ regulatory T cell, CD4-CD28+ T cell,
CD4-CD28- T cell, CD8+ T cell, CD8+ cytotoxic T cell, CD8+ regulatory T cell, Central memory T cell,



Class-switched memory B cell, Classical monocyte, Common lymphoid progenitor, Common myeloid progeni-
tor, Conventional dendritic cell, Cytotoxic T cell, Dendritic cell, Dendritic cell progenitor, Double-negative B
cell, Double-negative memory B cell, Early hematopoietic cell, Effector CD4+ memory T (Tem) cell, Effec-
tor CD8+ memory T (Tem) cell, Effector T cell, Effector memory T cell, Effector regulatory T (Treg) cell,
Fosinophil, Erythroblast, Erythroid cell, Erythroid precursor, Exhausted CD4+ T cell, Exhausted CD8+ T
cell, Exhausted T cell, FOXP3+ natural regulatory T (Treg) cell, Follicular B cell, Follicular T cell, Follicu-
lar dendritic cell, Follicular helper (Tfh) T cell, Foxp3+IL-174+ T cell, Germinal center B cell, Granulocyte,
Granulocyte-monocyte progenitor, Hematopoietic cell, Hematopoietic precursor cell, Hematopoietic progeni-
tor cell, Hematopoietic stem cell, IL-17Ralpha T cell, IgG memory B cell, Immature myeloid cell, Immature
transitional B cell, Immune cell, Induced regulatory T (Treg) cell, Infiltrated mononuclear cell, Inflammatory
cell, Intermediate monocyte, Large granular lymphocyte, Leukocyte, Lymphoblast, Lymphocyte, Lymphoid
cell, Lymphoid stem cell, Lymphoid-primed multipotent progenitor, Lymphoid-primed multipotent progeni-
tor cell, M1 macrophage, M2 macrophage, Macrophage, Marginal zone B cell, Mast cell, Mast cell progenitor,
Megakaryocyte, Megakaryocyte erythroid cell, Megakaryocyte progenitor cell, Megakaryocyte-erythroid progen-
itor, Memory B cell, Memory T cell, Monocyte, Monocyte derived dendritic cell, Mucosal-associated invariant
T cell, Multilymphoid progenitor cell, Myeloid cell, Myeloid conventional dendritic cell, Myeloid dendritic cell,
Myeloid stem cell, Myeloid-derived suppressor cell, Naive B cell, Naive CD4+ T cell, Naive CD8+ T cell, Naive
T cell, Naive regulatory T (Treg) cell, Natural killer T (NKT) cell, Natural killer cell, Natural memory B
cell, Natural regulatory T (Treg) cell, Non-classical monocyte, Non-switched B cell, Non-switched memory B
cell, Plasma cell, Plasmablast, Plasmacytoid dendritic cell, Platelet, Proerythroblast, Red blood cell (erythro-
cyte), Regulatory B cell, Regulatory T (Treg) cell, Responder T cell, Suppressive monocyte, Suppressor T cell,
Switched memory B cell, T cell, T helper cell, T helperl (Thl) cell, T helperl7 (Th17) cell, T helper2 (Th2)
cell, T helper9 (Th9) cell, T1 (Transitional) B cell, T2 (Transitional) B cell, Thymocyte, Transitional B cell,
White blood cell, pro-Natural killer cell (pro-NK cell).

RESULTS
Identifying marker genes with SEMITONES
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Figure S3: The cluster identities as reported in the original data publication. We visualize the
original cluster identities reported in (1) on the 2-dimensional UMAP produced during processing of the scRNA-
seq data for this study.
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Figure S4: Manually selected reference cell annotations. Cells were selected from the two-dimensional
UMAP embedding using the GUI implemented in SEMITONES.
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Figure S5: Performance evaluation of SEMITONES cell selection across similarity metrics, low-
dimensional embeddings, and compared to alternative selection strategies. (a) The percentage of cell
types, as annotated in the original data publication (1), that was retrieved using the data-driven cell selection
algorithm when using specific similarity metrics over particular feature spaces. A ~-value of 0.8 was used for
the RBF-kernel, as was done for all results presented in the main manuscript. In the main manuscript, we
selected 0.2% of cells using a 25D UMAP. (b) The percentage of cell types that was retrieved using different cell
selection methods. FPS stands for farthest point sampling. Geometric sketching uses the algorithm presented in
(2). Milo indicates using the index cell selection method presented in the differential abundance testing package
Milo (3). The pink indexers show the performance when selecting the furthest cell away from the medoid as
the starting cell. In all cases, 0.2% of cells were selected as reference cells.
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Figure S6: 2-dimensional embeddings obtained using only a few hundred or thousand top scoring
SEMITONES genes. (a) 2-dimensional UMAPs produced with top SEMITONES genes obtained by ordering
genes by the largest number of standard deviations away from the mean of the permutation null distribution.
(b) 2-dimensional UMAPs produced with top SEMITONES genes obtained by KS-testing (see Methods).

List S2. Genes in the top 200 most significant KS-test genes but not in the top 10 most enriched
genes for any reference cell.

TKTL1, RAG2, SPIB, TNFRSF13C, P4HA2, CD19, PTGDR, TBX21, MME, IRF4, CD72, PAX5, SNX22,
MYL4, POU2AF1, FCRL6, XCL2, CD160, EOMES, TNFRSF13B, DNASE1L3, PRSS23, SH2D1B, S1PR5,
BLNK, CRISPLD2, LAMP5, GFI1B, TTC38, BOK, CD40, COL19A1, CYB561A3, CXCL16, C5AR1, CKAP4,
CD300E, CLEC4E, ANGPT1, CLIC3, B3GAT1, CD163, KLHL14, PILRA, LILRA5, STAG3, APMAP, QPCT,
ABCB4, ASGR2, LRP1, FCRL5, SPTA1, RAGI1, SLC7A7, RTN1, APOBEC3A, ZNF385D, BEX1, PPP1R14A,
STABI1, HK3, FAM198B, C190rf38, DYSF, CD93, MAFB, HPGDS, BPI, HLA-DOB, SLC46A2, ASPM, MEGF9,
RXRA, NCF2, TNFAIP2, ZWINT, WLS, CSF1, LINC00937, LRRK2, GNS, KCTD12, G0S2, CRYM, PNOC,
LDLRAD4, CREB5, BRI3, RASD1, ASGR1, CFP, CDHI.
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Figure S7: Density index and silhouette scores of over 50-dimensional reduced embedding of
scRNA-seq healthy heamatopoiesis data. (a) The density index as taken from (4) computed over the
top 50 SVD components when selecting a certain number of top scoring genes using either SEMITONES KS-
testing, Seurat v2’s mvp, Seurat v3’s variable gene selection, or SEMITONES rank-based gene selection. (b)
The silhouette scores computed over the top 50 SVD components using the Fuclidean distance as a distance
metric (as is the default used in sklearn.metrics.silhouette_score), obtained using the top "N selected genes",
using the cluster annotations from the original data publication (1).
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Figure S8: High scoring SEMITONES genes without corresponding literature evidence show
marker like expression profiles. The expression profile of genes that are in the top 10 genes for any
reference for which no literature or database evidence was found.



Neighbourhood-specific cis-regulatory element identification
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Figure S9: Two-dimensional embeddings improve when performing dimensionality reduction
using only SEMITONES selected informative peaks. UMAP representations of scATAC-seq data used
in this study using all peaks (a) versus only the top scoring peaks (b).
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Figure S10: Density index and silhouette scores of over 50-dimensional reduced embedding of
scRNA-seq healthy heamatopoiesis data. (a) The density index as taken from (4) computed over the
top 50 SVD components when selecting a certain number of top scoring peaks using SEMITONES KS-testing,
SEMITONES rank-based gene, or simply taking the top accessible peaks. (b) The silhouette scores computed
over the top 50 SVD components, obtained using the top "N selected genes", using the cluster annotations
from the original data publication (1). (c) The distribution of the percentage of nearest genes to significantly
enriched regions obtained by SEMITONES that are found as a marker in the CellMarker database that are
supported by 3 or more sources (high confidence, orange) or 1 or more sources (all markers, blue).
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Figure S11: Normalized percentage of peaks with a certain annotation. This figure illustrates
the distribution of the percentages of all, significantly enriched and selectively accessible, and significantly
enriched and selectively inaccessible regions with particular HOMER annotations, or an enhancer annotation
in FANTOMS5. Values are normalized for the total number of regions that have a certain annotation.

SEMITONES identifies spatially restricted genes
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Figure S12: Spatially restricted genes only identified by SEMITONES. The spatially resolved
expression profile of 4 genes that were identified as being in the top 100 enriched genes by SEMITONES, but
were not identified as significantly spatially variable by the variogram method as implemented in Seurat v3.
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SEMITONES for co-enrichment scoring
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Figure S13: SEMITONES for computation of co-enrichment scores to construct co-enrichment
graphs. (a) An example log-transformed gene expression matrix of cells (cl, ..., ¢15) by genes (g1, ..., gl0).
(b) The co-expression vector of gene gl and gene g2 when using the multiplication strategy to construct co-
expression vectors, comparable to defining an interaction term in a multiple regression model. (c¢) The resulting
co-enrichment score matrix for all genes (gl, ..., g2) that serves as a an adjacency matrix which represents the
co-enrichment graph.

Given vectors that represent some form of co-expression or co-occurrence of features, SEMITONES can also com-
pute co-enrichment scores (see Supplemental Figure 13). For this, one first needs to construct these co-expression
or co-occurrence vectors from the individual feature vectors in the cell by feature matrix. In Supplemental Figure
13ab, we illustrate this for two genes (gl and g2), we simply multiple the individual feature vectors equivalent
to using an interaction term in multiple regression. In SEMITONES, we provide 3 more ways to represent a
set of two or more continuous features (i.e. gene expression vectors) in a single co-expression vector, namely 1)
selecting the highest expression value in the feature set as a representative value per cell, 2) selecting the lowest
expression value in the feature set as a representative value per cell, and 3) using the median expression value
of the feature set as a representative value per cell. For binary feature vectors, like for accessibility profiles
in scATAC-seq, SEMITONES implements a strategy to either take the median value (4), or setting the entry
per cell to 0 (i.e. absent) if neither of the features is detected and to 1 (i.e. present) if either or both of the
features is detected in that cell. Applying SEMITONES to these co-expression or co-occurrence vectors provides
co-enrichment scores for each feature pair in each reference cell. For each reference cell, these scores can be
organized in a gene by gene matrix that serves as an adjacency matrix that represents a co-enrichment graph
(Figure 13c). In the resulting co-enrichment graphs, features (i.e. vertices) are connected by edges weighted by
the co-enrichment scores. Thus, the weight of the edges indicates how strongly the combination of two features
is enriched in a particular neighbourhood, i.e. how selective the combined expression of two genes is for the
reference cell neighbourhood.

To illustrate the application of SEMITONES for co-enrichment scoring and co-enrichment graph construc-
tion, we apply SEMITONES to the healthy
haematopoiesis scRNA-seq data also used in the main body of the SEMITONES manuscript. In the examples
outlined below, we chose to construct co-expression vectors by taking the maximum value of each gene in each
gene set. For ease of interpretation of the results, we only perform enrichment scoring in a single reference cell
per de novo annotated cell state. If there are several reference cells of the same annotation, the cell in which
the primary cell state marker is most highly expressed was selected. Besides, for computational efficiency, we
compute co-enrichment scores for gene sets of genes that are significantly enriched (at 25 standard deviations
away from the mean of the permutation null distribution) in at least one reference cell in the subset, resulting
in 333974 gene pairs. We compute co-enrichment scores for these gene sets in each reference cells, and construct
co-enrichment graphs in which we eliminate any edges with corresponding co-enrichment scores 30 or less stan-
dard deviations away from the mean of the permutation null. To highlight the most important interactions and
to enable comprehensive visualization, we then compute the maximum spanning tree (MST) using networkx
v2.4 (5). The regulatory potential of each gene is characterized by its current flow betweenness centrality which
quantifies how essential a specific gene is for the flow of information in the network. The visualizations are
produced using the Netwulf package in Python (6).
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Inspection of some co-enrichment graphs reveals many known gene interactions from haematopoietic devel-
opment. For example, the co-enrichment graph of naive CD8+ T cells reveals interactions but CD3E, CD3D,
and CD8A genes (see Figure 14a), which code for constituents of the CD3-complex and the cytotoxic T cell
surface marker (CD8). It is suggested that the function of CD8 is to transport the Lck protein to the CD3-
complex during T cell development (7), making it likely that these genes would be co-enriched in naive CD8+
cells. Additionally, the STRING v11 database contains predicted interactions between the protein products
of these genes (8). Likewise, in transitional B cells, we observe strong co-enrichment of /GLL5 and CD79B
(see Figure 14b), which respectively encode the IgS and IgA proteins that are involved in pre-B cell receptor
signalling, a central process in the development of immature B cells (9). Besides, many genes with high current
flow betweenness centrality values in the co-enrichment graph MSTs include known regulators of cell identity.
To illustrate, in erythrocyte co-enrichment graphs, we identify the well known regulators GFI1B and HES6
(10; 11) among the top 10 most central vertices. Individually, these genes rank 31%% and 46" in the erythrocyte
neighbourhood, illustrating how co-enrichment scores help to identify important regulators of cell identity even
when these are not the most selectively expressed genes in a particular neighbourhood. Similarly, the highly
central S100A4 gene in the Th17 co-enrichment graph (see Figure S13c) is only the 524 most enriched gene in
the Th17 neighbourhood. This rank is intuitively coherent with the high expression in cells outside of the Th17
population, in particular in monocytes, myeloid/monocytic dendritic cells (mDC), natural killer (NK) cells,
and all other mature T cell populations. Interestingly, a potential role of S10044 in Th17 cell differentiation
has been suggested before, albeit in Rheumatoid Arhritis mouse models (12). Taken together, these results
exemplify the potential of SEMITONES for the identification biologically meaningful regulatory interactions
from scRNA-seq data.
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Figure S14: Maximum spanning tree representations of co-enrichment graphs constructed by
SEMITONES. (a) The maximum spanning tree (MST) of the naive CD8+ T cell co-enrichment graph. (b)
The MST of the transitional B cell co-enrichment graph. (c) The MST of the Th17 cell co-enrichment graph
shows a central role the the S1004/ gene which has a non-Th17-specific expression pattern. In all graphs, the
vertex size is proportional to their weighted degree.
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MONO_CLAS

GMP

CD4_MEMORY
CD4_MEMORY

MPP

pDC

MP

IMMATURE MONO_CLAS
GP

IMMATURE MONO_CLAS
ERYTHROCYTE
CD4_TH17

IMMATURE MONO_CLAS
PRE_B
CD8_EFFECTOR_MEMORY
CD8_NAIVE
CD4_MEMORY
CD4_MEMORY
B_TRANSITIONAL

CD4 _TH17
CD8_TERM_EFFECT
CD8 CENTRAL_MEMORY
CD4 _TH17

B_NAIVE

CD4_MEMORY
MONO_CLAS
CD8_NAIVE

CLP

GMP

pDC

HSC

HSC

Supplemental Table 1. Top 10 most highly enriched genes.

Top 10 most highly enriched genes

MS4A1, LINC00926, BANK1, CD79A, HLA-DQB1,FCER2, HLA-DQA1, CD22, FCRL2, ADAM28
VCAN, LYZ, FCN1, S100A9, S100A8, CD36, GRN, FOSL2, CST3, MNDA

MPO, ELANE, PRTN3, PRSS57, AZU1, MGST1, C1QTNF4, MS4A3, CTSG, NUCB2
ADTRP, KLF2, JUNB, LTB, AP3M2, IL7R, TPT1, LEPROTL1, TRABD2A, EEF1A1

LTB, JUNB, KLF2, AP3M2, TNFAIP3, LEPROTL1, TPT1, ADTRP, EEF1A1, CD3E
SPINK2, EGFL7, CD34, CDK6, PRSS57, MDK, LAPTM4B, BAALC, C1QTNF4, AC002454.1
LILRA4, CLECAC, IL3RA, SMPD3, SERPINF1, PLD4, PTPRS, SCT, PTCRA, IRF7
RETN, RNASE2, LYZ, GRN, LGALS1, S100A8, SRGN, CAPG, AZU1, MS4A6A
S100A12, PLBD1, S100A8, S100A9, PADI4, RBP7, FCN1, FOLR3, CDA, HP

CTSG, PRTN3, ELANE, AZU1, MPO, RNASE3, COL23A1, PRSS57, CLEC11A, MS4A3
S100A12, PLBD1, S100A8, S100A9, FCN1, PADI4, FOLR3, VCAN, RBP7, CDA

AHSP, HBB, CA1, HBQ1, RHAG, GYPA, NMU, HBA1, EPCAM, KCNH2

LTB, TNFRSF4, TNFAIP3, KLF2, JUNB, AQP3, CD3D, GPR183, IL32, ICOS

S100A8, S100A9, S100A12, FCN1, VCAN, FOLR3, PLAUR, LYZ, PLBD1, CTSD
KIFC1, TOP2A, NUSAP1, BIRC5, RRM2, MYBL2, AURKB, UBE2C, MKI67, CDC20
GZMK, DUSP2, CCL5, CD8A, CST7, GZMA, CMC1, CCL4, CD8B, GZMM

CD8B, CD8A, NELL2, CD3D, LEPROTL1, LEF1, MGAT4A, CD3E, EEF1A1, CCRY
KLF2, LTB, TPT1, CD3E, LEPROTL1, EEF1A1, CD3D, CD7, JUNB, CD3G

KLF2, LTB, LEPROTL1, TPT1, CD3E, EEF1A1, JUNB, CD7, ADTRP, CD3D

DTX1, IGLL5, BMP3, TCL1A, CD79B, APBB2, BCL7A, NEIL1, TCL1B, HRK

TNFRSF4, IL7R, LTB, IL32, ITGB1, TRADD, AQP3, TNFAIP3, JUNB, KLF2

NKG7, GZMH, CCL5, GZMA, CD8A, CST7, CMC1, CCL4, KLRG1, CTSW

GZMK, CCL5, DUSP2, LYAR, ZNF683, 1L32, CD8A, CD8B, CXCR3, IL7R

TNFRSF4, IL32, ITGB1, LTB, AQP3, IL7R, CRIP2, TNFRSF18, RORA, CD3D
LINC00926, FCER2, MS4A1, CD79A, TCL1A, BANK1, FCRL1, HLA-DQB1, HVCN1, HLA-DQA1
LTB, KLF2, JUNB, CD3E, TPT1, LEPROTL1, CD7, CD3D, EEF1A1, FHIT

VCAN, S100A9, S100A8, FCN1, LYZ, S100A12, CD36, CD14, PLAUR, MNDA

CD8B, CD8A, NELL2, REG4, CD248, CD3D, CD7, CD3E, MGAT4A, LEPROTL1

DNTT, CYGB, IGLL1, VPREB1, ADA, UMODL1, EBF1, ZCCHC7, LAT2, HMGB1
ELANE, PRTN3, MPO, AZU1, CTSG, MS4A3, PRSS57, CIQTNF4, MGST1, NUCB2
SCT, IRF8, CCDC50, TCF4, UGCG, IL3RA, ITM2C, LGMN, LILRA4, APP

AVP, CRHBP, EGFL7, MDK, DDX3Y, MEG3, CD34, SPINK2, RBPMS, NPR3

PRSS1, SPINK2, PRSS3, EGFL7, AVP, CD34, BAALC, CRHBP, TSC22D1, LAPTM4B
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14595
15070
15131
15806
15914
15952
16578
17140
17720
18416
19106
19931
21039
21476
23908
24119
24344
24711
25197
25398
26206
26333
26382
26667
26730
27046
27075
27644
27729
28078
28213
29149
29287
29666

HSC

BASO

HSC

CMP

GMP

MPP

MPP

MPP

MEP

MEP

CLP

mDC
CD4_TH17
MONO_NONCLAS
MONO_CLAS
NK
IMMATURE MONO_CLAS
MONO _INT
mDC
CD4_NAIVE
B_MEMORY
MONO_CLAS
CD8_MAIT
CD8 _MAIT
MONO_CLAS
NK

NK
CD4_NAIVE
B_NAIVE
CD4_NAIVE
CD8_NAIVE
T REG
IMMATURE MONO_CLAS
CD4_NAIVE

Supplemental Table 1. Top 10 most highly enriched genes.

EGFL7, SPINK2, AVP, CD34, MDK, CRHBP, ZFAS1, NPR3, LAPTM4B, CDK6

CLC, HDC, PRG2, MS4A2, MS4A3, LMO4, TPSAB1, EPX, GATA2, SLC45A3

AVP, CRHBP, MEG3, SPINK2, ANKRD28, C6orf48, NRIP1, MYCT1, CYTL1, HTR1F
CNRIP1, GATA2, ITGA2B, CYTL1, GATAL, PRKAR2B, FCERI1A, KLF1, PBX1, C20rf88
MPO, C1QTNF4, PRSS57, NUCB2, IGFBP7, FABP5, MGST1, NAP1L1, NPW, IGLL1
SPINK2, EBPL, C60rf48, CDK6, NAP1L1, ZFAS1, NACA2, CYTL1, BTF3, ANKRD28
SPINK2, C60rf48, CRHBP, AVP, NACA2, EBPL, HOPX, ANKRD28, ZFAS1, CYTL1

SPINK2, AC002454.1, C1QTNF4, IGFBP7, NAP1L1, NUCBZ2, IGLL1, CDK6, FABP5, EBPL
UBE2C, CENPF, CKS1B, TOP2A, HMMR, NUSAP1, CKS2, CDKN3, TYMS, CKAP2L

HBD, APOC1, CNRIP1, KLF1, FHL2, NECAB1, PRKAR2B, ITGA2B, GATA1, APOE
AKAP12, ARPP21, VPREB1, DNTT, CD9, VPREB3, HMHB1, LINC01013, LINC00114, CD79B
FCERI1A, IGSF6, CTSV, ENHO, ANXA2, H2AFZ, LGALS1, HLA-DPA1, CLSPN, TUBA1B
IL7R, TNFRSF4, IL32, AQP3, LTB, ITGB1, RORA, TRADD, TNFRSF18, TNFRSF25
CDKN1C, HES4, C1QA, MS4A7, FCGR3A, TCF7L2, HMOX1, LYPDZ2, IFITM3, CSF1R
CD14, CTSS, SERPINAL, LGALS2, TYMP, MNDA, S100A9, VCAN, SAT1, NEAT1
FGFBP2, GNLY, GZMH, KLRF1, PRF1, GZMB, KLRD1, NKG7, SPON2, FCGR3A
S100A12, S100A9, S100A8, CD14, VCAN, SLC11A1, MNDA, RGS2, NAMPT, CTSS
LGALSZ2, CTSS, TYMP, NEAT1, CD14, SERPINA1, SAT1, S100A9, FGL2, TYROBP
CLEC10A, ENHO, CD1C, PKIB, FCER1A, CD1E, HLA-DQA1, HLA-DQB1, HLA-DRB5, CPVL
LEF1, TCF7, IL7R, CD3G, NOSIP, CD3E, PIK3IP1, CD3D, AES, TPT1

MS4A1, IGLL5, CD79A, BANK1, LINC00926, HLA-DQB1, HLA-DQA1, FCER2, P2RX5, BLK
CD14, VCAN, S100A9, S100A8, S100A12, MNDA, CTSS, SLC11A1, TYMP, FCN1

KLRB1, SLC4A10, GZMK, LTK, NCR3, KLRG1, DUSP2, LYAR, PRR5, RORC

KLRB1, GZMK, SLC4A10, KLRG1, LTK, DUSP2, NCR3, LYAR, GZMA, CCL5

CD14, CTSS, S100A9, MNDA, VCAN, SLC11A1, S100A8, TYMP, SERPINA1, S100A12
GNLY, KLRF1, PRF1, KLRD1, NKG7, GZMH, CTSW, GZMB, FGFBP2, GZMA

GNLY, FGFBP2, GZMH, KLRF1, PRF1, KLRD1, NKG7, GZMB, FCGR3A, SPON2

LEF1, TCF7, CCRY7, NOSIP, PIK3IP1, CD3E, TPT1, CD3G, LEPROTL1, EEF1A1

IGLL5, CD79A, TCL1A, MS4A1, FCRLA, CD79B, LINC00926, HLA-DQB1, FCER2, FAM129C
IL7R, LEF1, PIK3IP1, TCF7, LINCO0861, NOSIP, CAMK4, CCR7, NDFIP1, LEPROTL1
CD8B, CD8A, NELL2, CCR7, LEF1, APBA2, CD3D, CARS, LEPROTL], PIK3IP1

IL32, TNFRSF4, CCR10, DUSP4, ITGB1, FOXP3, CD3D, CORO1B, SIT1, AQP3

S100A12, S100A8, S100A9, RBP7, VCAN, PLBD1, CD14, SLC11A1, CYP1B1, MNDA
ILYR, LEF1, LINCO0861, TCF7, LRRN3, PIK3IP1, CAMK4, NDFIP1, NOSIP, MAL
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29821
30019
30460
31097
31499
31568
32206
34390

CD4_NAIVE
MONO_INT

NK

PLASMA

MONO_INT
CD8_CENTRAL_MEMORY
CD4_TERM_EFFECT
CD4_NAIVE
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LEF1, CD3G, TCF7, NOSIP, CD3D, CCR7, CD27, CD3E, LDLRAP1, LAT

LGALS2, CTSS, FGL2, SERPINAL, NEAT1, TYMP, CPVL, SAT1, CLEC7A, CD14

GNLY, FGFBP2, KLRF1, GZMH, PRF1, KLRD1, NKG7, GZMB, SPON2, FCGR3A
TNFRSF17, GPRC5D, DERLS, IGF1, GLDC, HRASLS2, SPACAS, SDC1, MZB1, TXNDC5
LGALS2, CPVL, FGL2, SERPINAL, CTSS, NEAT1, TYMP, MARCO, CST3, SAT1

GZMK, DUSP2, IL32, LYAR, IL7R, CXCR3, CCL5, CD3D, CD3E, B2M

NKG7, GZMH, GZMA, GNLY, CTSW, PRF1, CCL5, CST7, FGFBP2, KLRD1

LEF1, TCF7, NOSIP, CD3G, CCR7, LDLRAP1, PIK3IP1, CD3E, CD3D, GIMAP7

Page 3



Table S2. Reference marker genes used for reference cell annotation.

Annotation Primary markers Additional markers
HSC AVP [1]* CRHBP [2]°

MPP SPINK? [3]°

CMP GATA2 [4]°

MEP CNRIP1 [5]¢

Erythrocyte HBB [6]¢ AHSP, CA1 [6]¢
GMP CTSG [7]¢

Basophil HDC [8]° CLC [8]°

MPP RETN [9]°

Immature monocyte S100A9 [10]° S100A12, S100A8 [10]°
Classical monocyte VCAN [8]° CD14 [8]°
Intermediate monocyte SATI1 [11T°

Non-classical monocyte CIQA [8]°

CLP (pro-B) AKAP12 [12]°

Pre-B VPREBI [13]°

Transitional B DTX1 [14]°

Naive B TCL1A [8]° FCER?2 [8]°

Memory B MSA4A1 [8]° Absence of TCL1A
Plasma TNFRSF17 [15]¢ GPRC5D [16]®
Naive CD4+ LEF1 [8]

CD4+ LTB [8]° Absence of TNFRSF4 [8]¢
Th17 TNFRSF4 [8]°

CD4+ TE GZMH [8]° Express CD4 [8]°
Treg DUSP4 [8]°

Naive CD8 NELL?2 [8]°

CD8+ MAIT SLC4A10 [17]

CD8+CM CCL5 [8]¢ Express IL-32 and IL7R [8]°
CD8+ EM DUSP2 [8]°

CD8+ TE NKG7 [8]° CD8 [8]°

NK GNLY [8]°

pDC LILRA4 [8]°

mDC ENHO [8]°

‘Differentially expressed in scRNA-seq clusters.
Bulk RNA quantification of FACS-sorted cells.

‘Literature review.

“Differentially expressed in scRNA-seq of FACS-sorted cells.
“The Monaco scaled dataset from the Human Blood Atlas.
‘mRNA-abaundance measured in human cell lines.

¢Analysis of the Genotype Tissue Expression (GTEx) data base.
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Table S3. Annotations and evidence for the marker gene status for genes that are ranked in the top 25 enriched genes in
at least one reference cell by SEMITONES.

Gene Annotation Rank Evidence? Reference
A2M-AS1 NK and memory T cells 21 Yes [1]
AC002454.1  MPP, CMP, CLP 2 Yes [2]
AC084018.1 CD4 naive, CD8 naive 25 No

AC104699.1 Plasma cell 13 Yes [2]
AEBP1 Transitional B 20 No

AMPD1 Plasma cell 22 Yes [3]
ANGPTI1 HSC, MPP 18 Yes 4]
ANK1 Erythrocyte 17 Yes [5]
ANKRD28 HSC, MPP, CMP 5 Yes 4]
ANKRDS55 CD4 naive 17 Yes [3]
AP3M?2 CD4 memory 4 Yes [3]
APBB2 Transitional B 6 No

APOCI1 MEP, Erythrocyte 2 Yes [6]
AURKB Cycling cells 7 No a
AZU1 GP (neutrophil) 4 Yes [3]
BIRCS Cycling cells 4 No a
BMP3 Transitional B 3 Yes [71°
C1QA Non-classical monocytes 3 Yes [3]
C1QB Intermediate and non-classical monocyte 16 Yes [3]
C1QTNF4 HSC, MPP, GMP 2 Yes [2,4,8]°
C200rf27 GP, Monocyte, mDC 17 Yes [3]
CTort57 pre B 21 No

CARS CDS8 naive 8 No

CCNA2 Cycling cells 22 No a
CCNB2 Cycling cells 13 No a
CDC20 Cycling cells 10 No a




Table S3. continued

Gene Annotation Rank Evidence? Reference
CDH7 MPP 23 Yes [9]%
CDK6 HSC, MPP, CMP, CLP 4 Yes [4]
CENPA Cycling cells 11 No :
CENPF Cycling cells 2 No 2
CKAP2L Cycling cells 10 No :
CKS1B Cycling cells 3 No ?
CLC Eosinophil/Basophil/Mast cell-lineage 1 Yes [3]
CLDN3 Cycling cells 18 No ?
CLEC11A Monocyte progenitor 9 Yes [3]
CLECI14A Pro B 15 No

COL23A1 GP (neutrophil) 7 No

CRHBP HSC/MPP 2 Yes [10]
CRIP2 CD4 memory, B memory 7 Yes [3]
CRYGD HSC, MPP, CLP 11 Yes [11]
CTSL Non-classical monocytes 18 Yes [3]
CTSV pDC (progenitors) 3 Yes [3]
CYGB CLP, pro B 2 Yes [2]
CYTLI1 HSC, MPP, CMP 4 No

DACT1 CD4 naive, CD4 memory 12 Yes [3]
DTX1 Transitional B 1 Yes [12]
DUSP26 Pro B 12 No

E2F1 Pre B 18 Yes [13]
E2F2 Cycling cells 15 No :
EEF1A1 CD8 naive, CD4 naive/CD4 memory 6 Yes [3]
EMID1 CMP 15 Yes [14]
ENHO mDC 2 Yes [3]
EPCAM Erythrocyte 9 Yes [15]




Table S3. continued

Gene Annotation Rank Evidence? Reference
EXD3 Eosinophil, Basophil, Mast cell-lineage 14 No

FAM178B Erythrocyte 17 Yes [2]
FAMS&3F Eosinophil/Basophil/Mast cell-lineage 11 Yes [3]
FAM92B Plasma cell 12 Yes [15]
FES MP/Classical monocytes 15 Yes [3]
FHL2 MPP, MEP, Erythrocyte 5 No

FMNL2 Intermediate and non-classical monocyte 21 Yes [3]
FOLR3 MP 6 Yes [3]
FXYD2 NK/CD8 memory 18 Yes [3]
GATA1 CMP, MEP 5 Yes [16]
GNGl11 MEP 22 Yes [17]
HBA2 Erythrocyte 20 Yes [5]
HBD Erythrocyte 1 Yes [5]
HBQI1 Erythrocyte 4 Yes [5]
HEMGN MPP 25 Yes [18]
HES4 Non-classical monocytes 2 Yes [3]
HIST1H2AC Transitional B 18 No

HLA-DQA2 mDC 14 Yes

HLF HSC 15 Yes [19]
HMHBI1 Pro B 7 No

HMMR Cycling cells 5 No :
HOXA9 MPP 18 Yes [20]
HRASLS2 Plasma cell 6 Yes [21]
HTRI1F HSC, MPP 10 Yes [4]
IGFBP2 CMP 11 Yes [22]
IGSF10 HSC, MPP, MEP 23 Yes 2]
KCNH2 Erythrocyte 10 Yes [2]




Table S3. continued

Gene Annotation Rank Evidence? Reference
KCTDI12 mDC, Classical and intermediate monocyte 13 Yes [3]
KIAA0087 CLP 14 Yes 2]
KIAA0930 Moncoyte, mDC 21 Yes [3]
KIF15 Cycling cells 25 No ?
KLF1 MEP, Erythrocyte 4 Yes [23]
KREMEN?2 Transitional B 25 No

LINCO00114 Pro B 9 No

LINCO00582 Plasma cell 14 Yes [2]
LINCO00861 CD4 naive, CD8 naive 3 No

LINC00926 B cell 1 Yes [2,24,25]
LINCO01013 Pro B 8 Yes [26]
LINCO01133 Erythrocyte 15 Yes [27]
LMO4 Eosinophil/Basophil/Mast cell-lineage 6 Yes [28]
LTBP1 Eosinophil/Basophil/Mast cell-lineage 21 Yes [3]
LYPD2 Non-classical monocytes 8 Yes [3]
MALATI1 Lymphocyte-enriched 22 No

MDK HSC, MPP 4 Yes [11]
MEG3 HSC, MPP 3 Yes [29]
MICALL2 GP (neutrophil) 21 No

MIR181A1THG MPP, CLP, proB, preB 24 No

MMP2 HSC, CMP 19 No

MSI2 HSC, MPP, CLP 17 Yes [4]
MSRB3 HSC, MPP, CMP 11 Yes [4]
MYCT1 MPP/CMP 8 Yes [30]
MYL4 Transitional B 21 No

MYLK Pro B 16 No

MYOI1C Transitional B 17 No




Table S3. continued

Gene Annotation Rank Evidence? Reference
NEATI1 Monocyte 4 Yes [25]
NECABI MEP, Erythrocyte 6 No

NMEI1 CMP, MEP, CLP 17 No

NMU Erythrocyte 7 Yes [31]
NPM3 HSC, MPP, CMP, CLP 25 No

NPR3 HSC, MPP 8 Yes [4]
NPW GMP/GP 9 No

NREP MPP, CMP, CLP 13 Yes [32]
NUSAP1 Cycling cells 3 No :
OR10J3 Eosinophil/Basophil/Mast cell-lineage 12 Yes [3]
P4HA2 Pro B, Pre B 19 No

PBX1 MPP 9 Yes [33]¢
PDZD8 MPP, MEP, GMP 14 No

PKIB mDC 4 Yes [3]
PKLR Erythrocyte 24 Yes [5]
PLK1 Cycling cells 14 No 2
PPIR17 Non-classical monocyte 19 Yes [3]
PRKAR2B MEP, Erythrocyte 6 Yes [34]
PROC pDC 18 Yes [3]
PRRT4 GP (neutrophil) 15 No

PRSS1 HSC, MPP 1 Yes [3]
PRSS3 HSC 3 No

PRSS57 GP (neutrophil) 3 Yes [35]
RABI13 HSC, MPP 17 Yes [36]
RAB32 GMP, Monocyte, mDC, Eosinophil/Basophil/Mast cell-lineage 14 Yes [3]
RAGI1 Pro B, Pre B 13 Yes [37]
RAG2 Pre B 24 Yes [38]




Table S3. continued

Gene Annotation Rank Evidence? Reference
RAMP1 MPP, CMP, CLP 25 Yes [39]
RBPMS2 MEP, Erythrocyte 12 No

REG4 CD8 naive 4 Yes [3]
RHAG Erythrocyte 5 Yes [40]
RRAS Non-classical monocyte 17 Yes [3]
RRM2 Cycling cells 5 No ?
RTN1 Monocyte, mDC 18 Yes [3]
SCGB3A1 Naive CD8, Memory CD4, Non-classical monocyte 22 Yes [3]
SCNNI1B Plasma cell (plasmablast) 20 Yes [3]
SCT pDC 1 Yes [3]
SERPINB10 GMP 19 Yes [41]
SFRP5 Naive B 14 Yes [3]
SH2D4B ProB 14 No

SHD pDC 15 Yes [3]
SLC8A1-AS1  ProB 17 No

SLPI GP (neutrophil) 25 Yes [3]
SMIM1 MEP, Erythrocyte 23 Yes [42]
SMIM10 MEP, Erythrocyte 13 Yes [2]
SNHGS HSC, MPP 18 Yes [17]
SPACA3 Plasma cell (plasmablast) 7 Yes [3]
SPAG4 Cycling cells 23 No :
SPC25 Cycling cells 19 No 2
SPINK?2 HSC, MPP, CMP, CLP 1 Yes [4]
STABI1 Classical and intermediate monocyte 11 Yes [3]
TCL1B Transitional B/Naive B 9 Yes [3,43]¢
TFPI MPP 22 Yes [44]
TFR2 MEP, Erythrocyte 18 Yes [45]




Table S3. continued

Gene Annotation Rank Evidence? Reference
TK1 Cycling cells 15 No :
TM4SF1 MPP 18 No

TMEM14C MEP, Erythrocyte 11 Yes [46]
TMEMS56 MEP, Erythrocyte 12 Yes [2,15]
TMSBI5A Pre B 24 No

TOP2A Cycling cells 2 No 2
TPM1 MEP, Erythrocyte 12 Yes [47]
TPX?2 Cycling cells 12 No 2
TTLL7 Eosinophil/Basophil/Mast cell-lineage 22 Yes [3]
UBE2C Cycling cells 1 No 2
UMODLI1 CLP 6 No

UROD MEP, Erythrocyte 20 Yes [5]
WASF1 Transitional B 24 No

ZFAS1 HSC, MPP, CMP, GMP 6 No

ZNF703 Non-classical monocyte 24 Yes [3]
ZNFD385D MEP 14 Yes [21f

# Cell cycle genes are never considered marker genes
®Small pre-B cells

¢ Non-cyling HSC

4 Mouse

¢ Zebrafish

" CMP and platelets
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