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ABSTRACT

Identification of cell identity markers is an essen-
tial step in single-cell omics data analysis. Current
marker identification strategies typically rely on clus-
ter assignments of cells. However, cluster assign-
ment, particularly for developmental data, is nontriv-
ial, potentially arbitrary, and commonly relies on prior
knowledge. In response, we present SEMITONES,
a principled method for cluster-free marker identi-
fication. We showcase and evaluate its application
for marker gene and regulatory region identification
from single-cell data of the human haematopoietic
system. Additionally, we illustrate its application to
spatial transcriptomics data and show how SEMI-
TONES can be used for the annotation of cells given
known marker genes. Using several simulated and
curated data sets, we demonstrate that SEMITONES
qualitatively and quantitatively outperforms existing
methods for the retrieval of cell identity markers from
single-cell omics data.

INTRODUCTION

Over the last decade, single-cell omics methods have become
a commonly used tool across biological domains. Among
other modalities, single-cell methods provide a snapshot of
the transcriptomic state or genome accessibility state in in-
dividual cells using single-cell RNA-sequencing (scRNA-
seq) or assays for genome accessibility such as transposase-
accessible chromatin (scATAC-seq), respectively. Addition-
ally, spatial transcriptomics methods that capture the gene
expression profile at a specific location within a tissue have
been gaining popularity in recent years. Taken together,
these data types provide a valuable resource for unravel-
ling cell identity, lineage relationships, and the regulation
thereof.

Alongside the development of single-cell omics assays, a
wealth of specialized tools for the analysis of the resulting
data have been developed. Currently, marker features are
most often detected by differential testing between compu-
tationally inferred clusters of cells. The inherent assump-
tion underlying differential testing-based marker identifi-
cation is that cells of the same identity are accurately as-
signed to the same clusters (1). In practice, however, clus-
ter assignment is nontrivial and heavily dependent on pre-
processing steps and clustering algorithm parameterization
(2). Besides, the concept of distinct cell types is not compat-
ible with systems in which cells lie along a continuous de-
velopmental trajectory, like haematopoiesis (3,4) or whole-
organism development (5), rendering the clustering of cells
into distinct cell types less meaningful. Trajectory or pseu-
dotime inference and analysis provide an alternative to clus-
tering for such systems, but here, too, the uncertainties of
cell assignments to branches or pseudotime installments are
not commonly taken into account when inferring marker
features. Thus, reservations considering group assignments
of cells before marker identification persist. In this context,
we argue that the definition of a marker feature as a fea-
ture that is differentially expressed between clusters of cells
is too restrictive. Instead, we propose that a good marker is
any feature that characterizes a group of highly similar cells.
In other words, marker features are those features that are
selectively detected or undetected in a particular cell neigh-
bourhood.

To formalize the notion of a marker feature as a feature
that is characteristic for any given group of highly simi-
lar cells beyond the concept of cell types or clusters, we
developed a method for the cluster-independent identifica-
tion of marker features from single-cell omics data called
SEMITONES (Single-cEll Marker IdentificaTiON by En-
richment Scoring). The method allows for the identification
of both local markers, i.e. features that are only detected
in a small group of highly similar cells, and global mark-
ers, i.e. features that are detected in a larger group of cells
covering several cell states. The identification of such mark-
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ers might help to identify changes in e.g. gene expression
or chromatin accessibility that occur during cell identity
acquisition. We demonstrate that SEMITONES identifies
cell identity markers in published healthy haematopoiesis
scRNA-seq and scATAC-seq data (3), spatially resolved
gene expression data, and simulated scRNA-seq data, and
compare SEMITONES to several popular marker identifi-
cation methods using published and simulated scRNA-seq
data. The results illustrate that SEMITONES accurately
and efficiently identifies marker genes and regulatory re-
gions from single-cell omics data.

MATERIALS AND METHODS

SEMITONES

In the SEMITONES framework, marker features are de-
fined as features, e.g. genes or open chromatin regions, that
are selectively detected in subsets of highly similar cells. To
identify these markers, SEMITONES employs a three-step
workflow (see Figure 1). In this workflow, SEMITONES
first selects a set of cells that are representative of the entire
cell population, called reference cells (see Figure 1A). Next,
SEMITONES calculates an enrichment score for each fea-
ture in each cell using a linear regression framework (see
Figure 1B). These enrichment scores are high (positive) for
selectively detected features, around zero for uninformative,
globally detected or undetected features, and low (negative)
for selectively undetected features (see Figure 1B). Finally,
SEMITONES performs a statistical test using an empirical
null distribution to assess the significance of these enrich-
ment scores (see Figure 1C). The SEMITONES software is
freely available from GitHub (https://github.com/ohlerlab/
SEMITONES) under the GPL-3.0 license. This repository
also includes tutorials for the main SEMITONES function-
alities described below.

Reference cell selection

The default cell selection method in SEMITONES, de-
scribed in Algorithm 1, aims to select a group of cells that
are highly dissimilar to one another (see Figure 1A). To this
end, we iteratively select the most dissimilar cell to the pre-
viously selected cell. At each iteration, k nearest neighbours
to the last selected cells are removed from consideration to
prevent the algorithm from simply selecting highly dissimi-
lar cells at two extremes of the similarity space. The number
of neighbors to be removed from consideration at each iter-
ation (k) is determined based on the number of cells in the
sample (N) and the number of cells to be selected (n). The in-
put to the algorithm is cell by feature matrix, X, over which
cell-to-cell similarities may be computed. For the applica-
tions reported in this paper, similarity is computed using a
radial basis function (RBF-)kernel over a multidimensional
uniform manifold approximation and projection (UMAP)
embedding, where the UMAP components are the features
that describe each cell. The RBF-kernel has an interpreta-
tion as a similarity measure since the kernel value decreases
as the Euclidean distance between two vectors increases.
The kernel has one free parameter, � , which can be inter-
preted as the inverse of the neighbourhood size wherein two
vectors may be considered similar (see Supplemental Figure

S1a). The algorithm is initialized by creating a set of selected
cells s and a set of cells to be removed from consideration e,
each containing the starting cell i. Next, the distances of cell
i, represented by the feature vector xi, to all cells in the sam-
ple (X) are computed, the most dissimilar cell is appended
to the set e and s, and the k-nearest neighbors to i are ap-
pended to the set e. If several most dissimilar cells exist, one
of these cells is selected at random. This process is repeated
until n cells are selected or, if accounting for rounding-up
errors, when there are less than k cells left to be selected.
Upon convergence, the algorithm outputs a vector of row
indices corresponding to the selected cells.

Algorithm 1. SEMITONES reference cell selection.

Besides this default algorithm, SEMITONES provides a
graphical user interface that can be used to select cells of
interest directly from a scatter plot of a 2D cell embedding,
e.g. UMAP or t-distributed Stochastic Neighbor Embed-
ding (t-SNE). Additionally, SEMITONES provides a fixed-
grid-based selection method by which cells closest to the
lattice points of a 2D rectangular grid with a user-defined
number of lattice points (see Supplemental Figure S2). In
this method, the minimum distance between each pair of
selected cells is controlled by a parameter d to prevent the
selection of disproportionate numbers of cells at the edge of
the 2D embedding. This final approach is particularly suit-
able when 2D cell coordinates are provided, as is the case
for spatial transcriptomics data. All three methods are pro-
vided in the SEMITONES cell selection module.

Enrichment scoring

In the context of SEMITONES, a feature is considered a
marker if that feature is preferentially detected or unde-
tected in a subset of highly similar cells. From this defini-
tion, we derive that marker features harbour a robust linear
relationship with the similarity to a reference cell (see Figure
1B). To identify such features, SEMITONES calculates en-
richment scores using a simple linear regression framework
(Equation 1). Here, yc is a vector containing the similarity to
a reference cell c using any suitable metric, for which we use
an RBF-kernel over the multidimensional UMAP-space, as
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Figure 1. SEMITONES workflow. (A) A 2D embedding of all cells where dark grey dots are the selected reference cells and c1 is the selected reference cell.
(B) Linear regression of the similarity to the reference cell (c1) and the gene expression quantifies how specifically a gene is expressed in the reference cell
neighbourhood. Here, β̂ is proportional to the enrichment score and will be high for neighbourhood-specific genes (orange) and low for neighbourhood-
unspecific genes (purple). (C) SEMITONES tests for significance by computing a null distribution of enrichment scores from random feature vectors
obtained through permutation of the original feature vectors. Significance is declared at n standard deviations away from the mean of this empirical null
distribution (or the corresponding P-value).

we did during cell selection. The vector xf represents the
value of the feature f in each cell. For scRNA-seq or spa-
tial transcriptomics data, this is the gene expression vector.
For scATAC-seq, xf is an accessibility vector. The regres-
sion coefficient ˆβc, f , estimated using ordinary least squares,
characterizes the strength of the linear relationship between
yc and xf. Thus, the value of ˆβc, f is interpreted as a score of
the enrichment of some feature f in some reference cell c.
This enrichment score represents how much more likely it
is to find high values for f at the top of list ranked by their
similarity to a cell c than at the bottom of said list. Ulti-
mately, features only detected in cells similar to c will get a
high positive enrichment score, features with non-selective
detection scores around 0, and features only detected in cells
dissimilar to c get low negative scores (Figure 1B).

yc = xf × ˆβc, f + εc, εc ∼ N
(
0,σ 2) (1)

Significance testing

Although the ranking of genes by their enrichment score
in a particular reference cell is the most straightforward
way to identify marker genes, SEMITONES also provides
a test to identify statistically significantly enriched genes.
For this, we shuffle all feature vectors, resulting in ran-
domized feature vectors that resemble the original data.
Next, enrichment scores are computed for all randomized
feature vectors with respect to each reference cell, result-
ing in an empirical null distribution for each reference cell
(see Figure 1C). Significance can then be declared at a cer-
tain number of standard deviations away from the mean of
this empirical null distribution, as was done for the analy-
ses presented in this manuscript. Alternatively, significance
can be declared based on P-values, Bonferroni-corrected P-
values, and Benjamini–Hochberg FDR-corrected P-values
provided by SEMITONES.

In addition to lists of significant markers for each refer-
ence cell, the empirical null distribution of scores can be
used to determine a global marker list. To this end, SEMI-
TONES performs the two-sample Kolmogorov–Smirnov
test for goodness of fit between the enrichment scores for
each feature in all reference cells and the distribution of the
enrichment scores for each permuted feature vector in all

reference cells. Genes can then be ranked based on their
(corrected) P-value.

Evaluation

Identifying marker genes with SEMITONES. The qual-
itative evaluation of SEMITONES for the identification
of marker genes was performed using publicly available
scRNA-seq data of healthy human haematopoiesis. The
scRNA-seq count matrices were obtained from the GEO
database (GSE139369, accessed 28 February 2020) (3).
This data set contains 35 582 cells from six samples:
two CD34+ enriched BMMC samples, two non-enriched
BMMC samples, and two PBMC samples. We removed
any cells for which the ratio of the number of genes ex-
pressed over the count-depth is greater than or equal to
0.3. Next, we performed scran deconvolution normaliza-
tion using the computeSumFactors function and clusters
obtained from the quickCluster function (6,7). The nor-
malized counts were log-transformed using an alternative
pseudo-count proposed by Lun et al. (2018) (Lun et al.
bioRxiv). A cluster of cells with low count depth in one of
the CD34+ cells, identified during a visual inspection of the
UMAP embeddings, was removed, leaving 35 156 cells. The
(non-normalized) count data of these 35 156 cells were com-
bined, again normalized using scran, and log-transformed
using the alternative pseudo-count. We then performed a
term frequency-inverse document frequency transforma-
tion (tf-idf) on the normalized count data, as in the original
publication (3), and reduced the tf-idf transformed data to a
50-dimensional embedding using singular value decompo-
sition. A 2D and 25-dimensional UMAP (n neighbors = 30
neighbours, min dist = 0.3) of these 50 dimensions were
computed for visualization and similarity calculations, re-
spectively. SEMITONES reference cells were selected using
Algorithm 1. Cell similarities for reference cell selection and
enrichment scoring were computed using an RBF-kernel
with a � -value of 0.8 over the 25-dimensional UMAP space.

Reference cells were annotated based on the top 10 most
highly enriched genes identified by SEMITONES (see Sup-
plemental Table S1). The Blood Atlas (8), with a focus on
the Monaco scaled dataset (9), served as a primary refer-
ence for cell type-specific marker gene expression. Further
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marker genes were obtained from the literature (see Supple-
mental Table S2). Quantitative marker retrieval was evalu-
ated by checking for overrepresentation of highly-ranking
genes in the CellMarker database (10). We filtered the hu-
man marker database to only contain haematopoietic cells
(see Supplemental List 1). We assigned a high-confidence
tag to markers that are reported in three or more sources,
and a low-confidence tag to markers that were only re-
ported once or twice. Next, we assigned each gene the
highest rank it has in any of the reference cells according
to SEMITONES. Then, we computed the frequency with
which genes in each 25-sized rank bin are present in the Cell-
Marker database subset as high- or low confidence markers.

Benchmarking SEMITONES. SEMITONES was qualita-
tively compared against the alternative marker gene iden-
tification methods singleCellHaystack (11) and the default
differential expression testing implemented in the Seurat v3
function FindAllMarkers (12). For singleCellHaystack, we
use the advanced mode of the highD method using the 25-
dimensional UMAP embedding as input. Genes are ranked
based on their log(adjusted P-value), as returned by single-
CellHaystack. Seurat v3 was provided with the biological
clusters as provided with the original data publication of the
healthy human haematopoiesis scRNA-seq data (3). The
only non-default parameter value is return.tresh, which was
set to 1 in order to also return non(-significantly) differen-
tially expressed genes. Genes were then ranked by their low-
est adjusted P-value in any cluster. For comparison to Seu-
rat v3, the SEMITONES gene list was first filtered to only
contain those genes that pass the default FindAllMarkers
filter. For both the comparison to singleCellHaystack and
Seurat v3, genes are ranked by their highest absolute enrich-
ment score in any reference cell. As a result, no distinction
is made between presence and absence markers for any of
the compared methods.

SEMITONES was also quantitatively compared against
several alternative marker identification strategies using
synthetic scRNA-seq data simulated using Splatter (13). We
simulated 10 cluster-based (using method = ‘groups’ in the
splatSimulate function of Splatter) and 10 trajectory-based
single-cell datasets (using method = ‘paths’ in the splat-
Simulate function of Splatter) consisting of 1000 cells in
two groups (i.e. clusters or trajectories), 3000 cells in six
groups, 5000 cells in 10 groups, 7000 cells in 14 groups,
and 10 000 cells in 20 groups. In Splatter, each simu-
lated gene gets assigned a differential expression factor for
each group, i.e. cluster or trajectory branch, which serves
a ground truth for differential expression. This factor is
1 if a gene is not differentially expressed in a particular
group versus all other groups, and greater than or smaller
than 1 otherwise. The simulated data was processed using
a standard Seurat v3 pipeline to emulate a common ini-
tial exploratory analysis of scRNA-seq data. This pipeline
consists of normalization (NormalizeData), scaling (Scale-
Data), dimensionality reduction (RunPCA with npcs = 30,
Runumap with max.dim = 10) and clustering (FindClus-
ters) using Seurat v3 (12). Using this simulated data, we
compared the performance of SEMITONES against sin-
gleCellHaystack (11), Seurat v3’s FindAllMarkers for the
Wilcoxon rank-sum test and MAST (12,14), and mono-

cle3’s graph-autocorrelation analysis (15). Again, single-
CellHaystack’s advanced mode of the highD function was
used. For all other methods, default values were used, ex-
cept for the unfiltered MAST and Wilcoxon rank-sum test-
ing, where min.pct and logfc.threshold were set to 0. SEMI-
TONES was applied using 0.5% of cells as reference cells, se-
lected using Algorithm 1. Performance was assessed based
on the area under the receiver operator curve (AUROC) as
implemented in scikit-learn v0.24.2 (16). To compute the
AUROC, we interpreted 1 – P-value as the probability that
a gene is differentially expressed for all applied methods.

SEMITONES for the identification of cis-regulatory re-
gions. SEMITONES can also be used for identifying
neighbourhood-specific (in)accessible chromatin regions
from scATAC-seq data. For this, we took scATAC-
seq data of healthy human haematopoiesis from the
same publication as the scRNA-seq data discussed ear-
lier (3). The scATAC-seq count matrix was downloaded
from the GitHub page linked to the original publica-
tion (https://github.com/GreenleafLab/MPAL-Single-Cell-
2019, accessed on 3 March 2020). This dataset contains
35 038 cells, including CD34+ enriched BMMC, non-
enriched BMMC, and PBMC cells. Cells with a peak
depth exceeding 200 000 or in which >60 000 peaks were
called were removed, leaving 35 022 cells. Peaks were re-
moved if their count exceeded 40 000. The provided cell-by-
accessibility matrix was binarized, and we applied a term
frequency-inverse document frequency transformation (tf-
idf) on the binarized data, as in the original data publication
(3), and singular value decomposition to reduce the feature
space to 50 dimensions. Next, we computed a 2D and 35-
dimensional UMAP (n neighbours = 50, min dist = 0.5)
over the 50-dimensional space for visualization and simi-
larity calculations, respectively.

Reference cells were selected using Algorithm 1, and
cell similarities were computed using an RBF-kernel with
a � -value of 0.8 over the 35-dimensional UMAP space.
Reference cells were annotated based on GO-term enrich-
ments and associated genes obtained for all significantly en-
riched, selectively accessible genes (at >20 standard devi-
ations away from the mean of the empirical null distribu-
tion) using GREAT v4.0.4 (17). We used the default asso-
ciation rule and provide all peaks in the dataset as a back-
ground set. Motif enrichment for known transcription fac-
tor (TF) binding motifs in the significantly enriched, se-
lectively accessible regions was determined using the find-
MotifsGenome functionality in HOMER v4.10 (18). Mo-
tifs were considered enriched if their q-value (Benjamini)
<0.01. Annotation of nearest genes to peaks, and of peaks
as promoters, exons, 5’ UTR, 3’ UTR, intronic regions, in-
tergenic regions, or transcription termination sites (TTS)
was performed using HOMER v4.10. Enhancers were an-
notated using the permissive enhancer annotations in FAN-
TOM 5 phase 2.6 (19) using the intersect function from bed-
tools v2.29.2 (20). HOMER annotations were overwritten
in favour of enhancer annotations.

SEMITONES for the identification of spatially restricted
genes. For spatially restricted marker gene identification,
SEMITONES was applied to the publicly available Mouse
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Brain Serial Section 1 (Saggital-Anterior) 10x Genomics
Visium spatial transcriptomics data (https://support.
10xgenomics.com/spatial-gene-expression/datasets). The
data was downloaded using the SeuratData package in
R (https://github.com/satijalab/seurat-data). The dataset
contains gene expression values for 31 053 genes in
2696 spots whose spatial location in the 2D histolog-
ical image is known. The gene expression data were
normalized using the SCTransform function in Seurat
v3 (12) using default parameters, following the spa-
tial dataset vignette provided on the Seurat web page
(https://satijalab.org/seurat/articles/spatial vignette.html),
leaving expression data for 17 668 genes in all spots.
Reference spots (instead of cells) were selected using the
grid-based selection approach with a 6 × 6 grid, while
requiring that reference spots are at least 0.2 times the
length of the diagonal of a single grid cell apart from one
another. Similarities were computed using an RBF-kernel
with � = 0.001 over the 2D coordinates.

RESULTS

Identifying marker genes with SEMITONES

We first illustrate that SEMITONES retrieves known
marker genes and identifies new marker genes from scRNA-
seq data of the well-characterized healthy haematopoietic
system (3). The markers retrieved by SEMITONES char-
acterize rare cell types, developmental lineages, and spe-
cialized sub-cell types throughout the haematopoietic de-
velopment. We illustrate top-scoring SEMITONES genes
for the rare eosinophil/basophil/mast cell lineage, CLC
(8), and plasma cells, TNFRSF17 (21) (Figure 2A). Ex-
amples of high-scoring genes that mark more global
cell states include SPINK2, which marks the HSC and
multipotent progenitor (MPP) lineage (22), and GATA2,
which marks the erythroid-megakaryocyte lineage (4). Fi-
nally, SEMITONES-identified markers that highlight spe-
cialized T-cell subsets include SLC4A10 which marks
CD8 + mucosal-associated invariation T (MAIT) cells (23)
and TNFRSF4 which marks CD4+ Th17 cells (8).

Using the top-enriched markers for each reference cell,
we can annotate all 75 reference cells selected using our
data-driven cell selection algorithm (Figure 2B). These an-
notations broadly correspond to the annotations in the
original publication which were obtained using reference
protein surface marker expression from the CITE-seq ap-
proach and thus serve as a bona fide ground truth (see Sup-
plemental Figure S3). Given that we were able to annotate
all cell states reported in the original data publication, this
result confirms that our data-driven cell selection procedure
selected all previously reported cell states. An evaluation of
annotations for manually selected reference cells addition-
ally revealed a small population of plasmablasts, which were
not identified in the original study (3) nor represented in
the algorithmically selected reference cells (see Supplemen-
tal Figure S4). Detailed evaluations of the cell type retrieval
rate when selecting different proportions of cells, comput-
ing distances over different (reduced dimensional) feature
spaces, and using different distances metrics, reveal that our
approach selects all reported cell types across several pa-
rameter spaces (see Supplementary Figure S5a). Addition-

ally, in this regard, SEMITONES’ reference cell selection
algorithm outperforms alternative strategies for representa-
tive cell subset selection, including random sampling, fur-
thest point sampling, geometric sketching (24), and index
cell sampling as implemented in Milo and Wishbone (25,26)
(see Supplemental Figure S5).

Besides comprehensive cell-type retrieval, we also visu-
ally observe high separation of previously annotated clus-
ters in 2D embeddings obtained using only a few hundred or
thousand top-scoring SEMITONES genes, illustrating that
SEMITONES identifies subsets of highly biologically infor-
mative genes (see Supplemental Figure S6). The separation
of cell types in the 2D space when using just 500 and 1000
genes is better when using the top-ranked SEMITONES
genes from each reference cell compared to using global
top-scoring gene list according to the KS-testing approach
(see Methods, see Supplemental Figure S7). Upon further
inspection of the top 200 highest scoring genes for the KS-
testing approach to genes in the top 10 most enriched genes
across reference cells, many genes identified by the KS-
testing approach code for transcription factors (TFs) and
other lowly expressed genes (see Supplemental List 2). As a
result, the KS-testing based ranking of genes across all ref-
erence cells highlights biologically relevant genes that might
be missed when looking just at the top-ranking genes per
reference cell. The observation that SEMITONES identi-
fies informative genes is further supported by comparable
or higher density indices for SEMITONES and highly vari-
able genes (HVGs) selected by Seurat v2’s mean-variance-
plot (MVP) and Seurat v3’s default HVG selection methods
(see Supplemental Figure S7). This density index quantifies
how much closer the nearest neighbours are to a given cell
relative to the distance between random pairs of cells, and
should therefore be maximal (27). In contrast, silhouette
scores computed over the top 50 principal components are
generally slightly higher when computed over highly vari-
able genes selected by Seurat compared to the same number
of top-scoring SEMITONES genes. Here it should be noted
that the reference annotations from the original data pub-
lication were used to compute the silhouette scores. Since
these clusters were obtained by clustering based on the top
3000 most variable features as selected using the MVP from
Seurat v.2.3.4 (3), the higher scores might be more related
to the greater similarity in data preprocessing than higher
consistency within biologically meaningful cell states.

Importantly, in addition to the previously reported
cell types, the high granularity of SEMITONES-retrieved
markers enabled the annotation of additional monocyte,
B- and T-cell subsets based on SEMITONES markers. In
Figure 2C, we illustrate markers along the developmen-
tal trajectory of B lymphocytes, many of which have well-
documented functions and expression patterns. Following
the developmental order, the highly enriched DNTT gene
which codes for the recombination substrate TdT is in-
volved in immunoglobulin and T cell receptor recombina-
tion during the lymphoid-primed multipotent progenitors
(LMPP) and common lymphoid progenitor (CLP) stages
(28,29). Next, the combined enrichment of this DNTT gene
and AKAP12 gene allows for the identification of pro-B
cells, as AKAP12 is only expressed in pro-, pre-, and im-
mature B lymphocytes (30). This annotation is further cor-
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Figure 2. Application of SEMITONES for marker gene identification in scRNA-seq data. Expression profiles and annotations are displayed in 2D UMAP
embeddings where each dot represents a cell. (A) SEMITONES-retrieved markers of the rare eosinophil/basophil/mast cells and plasma cells (left col-
umn), stem-and progenitor cells (middle column), and the CD8 + MAIT cells and Th17 cells subpopulations of T cells (right column). (B) Reference
cell annotations based on SEMITONES marker genes. (C) SEMITONES-retrieved known marker genes of the B cell developmental trajectory. (D) The
frequency with which SEMITONES markers are present in the CellMarker database (left), and the expression patterns of potential novel marker genes,
identified by SEMITONES, that are not in the CellMarker database and have no other literature or database sources supporting their marker gene status
in pro B cells and erythrocyte progenitors, respectively (LINC00114 and NECAB1).
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roborated by the expression profile of the VPREB1 gene,
coding for the � polypeptide chain of the B-cell receptor
(31,32). The top 20 enrichment of VPREB1 and cell cycle
markers like TOP2A and KIFC1 allows for the identifica-
tion of a subset of highly proliferative large pre-B cells (see
Supplemental Table S1) (33). The next developmental state,
transitional B lymphocytes, is identified by the top enrich-
ment of the DTX1 gene which is exclusive to this cell state
(34). Finally, naive B lymphocytes are marked by top en-
richment of TCL1A which is not expressed in memory B
cells (35), while memory B cells are marked by the absence
of TCL1A and the presence of FCER2 and MS4A1 among
the top 10 enriched genes. Taken together, SEMITONES
identifies markers with important biological functions dur-
ing cell identity acquisition along the full developmental
axis.

To validate markers across a broader set of genes, we
quantified the enrichment of known markers among the
top-scoring SEMITONES genes using the CellMarker
database (10) (Figure 2D). For this, we assigned each gene
its highest rank in any of the 75 reference cells and divided
the top 1000 genes into bins of 25. Then, for each bin, we
calculated the frequency with which these genes are high-
confidence markers (reported by three or more sources),
low-confidence markers (reported by at least one source),
or not known marker genes. Here, we observe a clear over-
representation of high-and low-confidence marker genes
among the top-scoring SEMITONES genes. For the top
bin, 73% of genes are present in the CellMarker database,
and further literature search revealed evidence of marker
gene status for an additional 18% of genes in this bin, in-
creasing the total evidence rate to 91% (see Supplemen-
tal Table S3). Genes whose marker status was not previ-
ously reported but are in the top 10 ranking genes accord-
ing to SEMITONES nevertheless show marker-like expres-
sion profiles (see Supplemental Figure S8). Examples of
such potential novel marker genes include the long non-
coding RNA LINC00114 and the protein-coding NECAB1
gene for pro-B and erythrocyte progenitors, respectively. As
such, we conclude that SEMITONES enables the identifica-
tion of new relevant genes, even for the well-characterized
haematopoietic system.

Benchmarking SEMITONES for marker gene identification

Next, we compared SEMITONES’ marker-retrieval capa-
bilities to those of alternative approaches. We first per-
formed a qualitative comparison of marker identification
from the healthy human haematopoiesis scRNA-seq data
to the alternative cluster-independent marker identification
method singleCellHaystack (11) and the default Wilxocon
sum-rank differential testing procedure using the FindAll-
Markers function in Seurat v3 (12), which is arguably the
most popular marker identification approach for scRNA-
seq data. In this comparison, Seurat v3 was provided with
the bona fide ground-truth biological cluster labels from the
original data publication, thus applying the marker identi-
fication in a best-case scenario. To compare the gene ranks
between the three methods, we ranked genes according to
their P-value for Seurat v3 and singleCellHaystack and
based on their absolute enrichment score for SEMITONES.

As such, both presence and absence markers are considered
for all approaches.

We observed limited agreement between SEMITONES
and singleCellHaystack (Figure 3A). Many of the markers
discussed in the previous section, e.g. VPREB1, HBB, and
TNFRSF17, are not among the top-ranking genes for sin-
gleCellHaystack. In contrast, the agreement between Seurat
v3 and SEMITONES rankings is far higher (Figure 3B).
Even so, still roughly 100 genes with a Seurat v3 P-value of
0 rank outside the top 100 SEMITONES genes. Similarly,
a handful of genes in the top 10 SEMITONES genes falls
outside the top 100 for Seurat v3. In Figure 3B, we high-
light three types of discrepant ranks, namely genes that are
identified as markers by both SEMITONES and Seurat v3
but not singleCellHaystack in the left column, genes that
are only identified by Seurat v3 in the middle column, and
genes that are only identified by SEMITONES in the right
column. Here, we can observe that genes that are not identi-
fied by singleCellHaystack are generally genes that are only
expressed in a small subset of cells, like the known marker
of the eosinophil/basophil/mast cell lineage HDC and the
HSC marker AVP. In contrast, genes that are only iden-
tified by Seurat v3 show a differential expression pattern,
but are not restricted to a distinct subpopulation of cells.
For example, the CYBA gene is identified by Seurat v3 as
a marker of the HSC cluster with a log-fold change of –
0.89, but is not selectively lower expressed in this cluster
alone, but instead also in naive T cells, CLPs and the ery-
throcyte lineage (Figure 3C, see Supplemental Figure S3).
Finally, SEMITONES-specific genes include genes that are
enriched in small subpopulations of cells but whose expres-
sion is not confined to pre-defined cell clusters. An example
of this is the LMO4 gene which shows selective expression
in the eosinophil/basophil/mast cell lineage and its progen-
itors, but not exclusively the eosinophil/basophil/mast cell-
lineage cluster as defined in the original study (see Supple-
mental Figure S3). Similarly, the expression pattern IGSF6,
which is part of the pre-dendritic cell (pre-DC) signature
(4), is highest in just a subset of cells across the granulo-
cyte and monocyte progenitor (GMP), conventional den-
dritic cell (cDC) and plasmacytoid (pDC) clusters from the
original publication. Overall, these results illustrate how the
SEMITONES cluster-agnostic marker retrieval approach
identifies genes that might be missed by cluster-based ap-
proaches, even if bona fide ground truth cluster labels are
available.

Finally, we quantitatively compared the performance of
SEMITONES to singleCellHaystack (11), Seurat v3’s de-
fault Wilcoxon rank-sum testing (12), MAST differential
expression testing as implemented in Seurat v3’s FindAll-
Markers (14), and graph-autocorrelation in monocle3 (15)
using simulated scRNA-seq data, for which a ground truth
on differential expression is available (see Methods) (13).
In terms of the median AUROC score, SEMITONES out-
performs all alternative methods when using the suggested
RBF-kernel over a multidimensional UMAP-embedding
(Figure 3D, left). Similarly, using SEMITONES with a co-
sine similarity over a PCA-embedding results in superior
or equivalent performance compared to the next-best per-
forming methods. Importantly, SEMITONES also achieves
this performance in a shorter run time of a maximum of
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Figure 3. SEMITONES outperforms alternative marker identification methods. (A) Gene ranks based on SEMITONES enrichment scores differ greatly
from gene ranks based on singleCellHaystack adjusted P-values. Genes that rank highly according to singleCellHaystack often also do so according to
SEMITONES, but several well-known marker genes that ranked highly by SEMITONES are assigned low ranks by singleCellHaystack. (B) Several genes
ranked lowly by SEMITONES are assigned rank 1, i.e. the q-value is 0, by Seurat v3’s default Wilcoxon rank-sum test. Contrastingly, only few high
ranking genes according to SEMITONES (rank < 10) rank lowly according to Seurat v3 (rank > 100). (C) Example expression profiles of genes that
are only identified by SEMITONES and Seurat v3 and not singleCellHaystack (left column), that are only identified by Seurat v3 (middle column), and
that are only identified by SEMITONES (right column). (D) Comparison of the performance and runtime between SEMITONES and several alternative
marker identification methods on simulated scRNA-seq data. Due to runtime constraints, the median AUC of only 12 of the simulated datasets containing
10 000 cells is presented for the unfiltered MAST and Wilcoxon methods. Likewise, the median runtime is given for just 8 and 6 10 000-cell simulations for
MAST and Wilcoxon, respectively. In all other cases, the median over all 20 simulations is reported. In the AUROC plot, the grey dashed line indicates
the expected AUROC for a random classifier. In the runtime plot, we provide the runtime with (triangle markers) and without (circle markers) significance
testing.
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30 minutes for 10000 cells compared to almost an hour
for monocle3’s graph-autocorrelation or almost a day for
Wilcoxon rank-sum testing or MAST in Seurat v3 on a
Linux operating system with a single 3.20GHz core avail-
able (Figure 3D, right).

Neighbourhood-specific cis-regulatory element identification

Due to the flexibility of its enrichment scoring, SEMI-
TONES is also readily compatible with scATAC-seq count
matrices. To showcase this application we use the healthy
human scATAC-seq data corresponding to the scRNA-seq
data from Granja et al. (3). Like for the scRNA-seq data,
we use the data-driven selection algorithm to select 75 refer-
ence cells and apply SEMITONES to compute enrichment
scores for all features, i.e. peaks, in the dataset. Visual in-
spection of top-scoring peaks confirms that SEMITONES
identifies neighbourhood-specific accessible and inaccessi-
ble peaks (Figure 4A). Rarely, these regions are known
cell-type specific enhancers, like the PID1-DNER inter-
genic CAGE-defined monocyte enhancer (chr:230147763–
230148263). However, cell-type specific annotations of
peaks are not commonly available. Thus, to annotate refer-
ence cells, we pass significantly selectively accessible peaks
to the GREAT algorithm (17) and annotate cells based on
associated genes and enriched GO-terms (Figure 4B). In
this manner, we annotated 74 out of 75 reference cells. Most
annotations correspond to those in the original study, which
were obtained using a canonical correlation-based compar-
ison with the corresponding scRNA-seq data (3), with the
exception of a few T lymphocyte subpopulations (see Sup-
plemental Figure S9a). As for the scRNA-seq data, dimen-
sionality reduction on only the significantly enriched fea-
tures improves the separation of clusters in a 2D embed-
ding of the cells (see Supplemental Figure S9b). In terms
of quantitative assessments of the informativeness of top-
scoring regions, Silhouette scores are higher when using the
5000 to 100 000 most enriched genes according to SEMI-
TONES compared to using the same number of most acces-
sible peaks for dimensionality reduction (see Supplemental
Figure S10a). Furthermore, when using the top 500 regions
according to SEMITONES, the density indices (27) are sub-
stantially higher than when using the top 500 most acces-
sible regions for dimensionality reduction (see Supplemen-
tal Figure S10b). When selecting more regions for dimen-
sionality reduction, the density indices for SEMITONES-
selected genes drop and are somewhat lower than those for
the top accessible regions, although the difference becomes
smaller as more regions are selected. These results indicate
that SEMITONES is particularly suitable for the selection
of a small number of regions that are highly informative of
cell identity. Finally, on average 38% of the genes nearest
to the significantly enriched elements per reference cell are
present as markers in the CellMarker database (10), and on
average 17% when only considering high-confidence makers
(see Supplemental Figure S10c). Besides recapitulating cell
states identified in the original publication, SEMITONES
markers revealed a Notch-signalling signature indicative of
a pre-T lymphocyte fate in one of the CLPs and a dendritic
cell signature in a subset of progenitor cells indicative of a
pre-dendritic cell fate. This observation is concordant with

the notion that cis-regulatory signatures reveal lineage com-
mitments before these are observed on the RNA level (36),
suggesting that enhancer accessibility may be more indica-
tive of cell state than gene expression. Besides, these obser-
vations reinforce the notion that independent inference on
the chromatin level is essential to gain novel insights from
scATAC-seq data.

To investigate the biological relevance of the selectively
accessible peaks identified by SEMITONES, we determined
enriched sequence motifs using HOMER (18), pinpoint-
ing binding sites of known lineage-specific TFs, like HOX
motifs in stem- and progenitor cells, GATA motifs in the
myeloid lineage, and PRDM1 and IRF4 motifs in the B-cell
lineage (see Supplemental Table S4). Additionally, known
regulators of B cell differentiation, like E2A, EBF, PU.1 and
IRF8 (37), are enriched in pre-B and transitional B cells
(Figure 4C, see Supplemental Table S4). Likewise, many of
the motif enrichments in naive CD4 + cells have known
functions in CD4 + cell specialization (38–41). Strikingly,
many of the transcription factors identified by our KS-test
based gene ranking approach (see Supplemental List 2) cor-
respond to the transcription factors whose binding motifs
were found to be enriched in selectively accessible peaks
(see Supplemental Table S4). Taken together, these results
corroborate that SEMITONES identifies functionally rele-
vant, cell subset-specific accessible regions from scATAC-
seq data.

SEMITONES also identifies selectively inaccessible re-
gions. Figure 4D shows the proportion of all significantly
enriched, significantly enriched and accessible, and signif-
icantly enriched and inaccessible peaks that have a cer-
tain annotation across reference cells. Selectively inacces-
sible peaks are most likely to overlap promoter regions,
while selectively accessible regions are more likely to be en-
hancers (also when correcting for the total number of peaks
with a given annotation, see Supplemental Figure S11).
These trends fit prior observations that promoters default
to accessibility across conditions, while distal regulatory el-
ements exhibit condition-specific accessibility profiles (42).

SEMITONES identifies spatially restricted genes

Given the recent increase in the availability of spatial tran-
scriptomics datasets, we demonstrate how SEMITONES
can be applied to gene expression data with known 2D co-
ordinates of each transcriptional profile. For this, we use
a publicly available 10x Visium spatial transcriptomics
dataset of the anterior mouse brain. Since the 2D coor-
dinates of each profile are given, reference cells are se-
lected using a grid-based reference cell selection method
(see Methods). SEMITONES can then be used to iden-
tify marker genes for specific brain structures like the fi-
bre tracts (Fth1), the glomerular layer of the main olfactory
bulb (Gng4), the hippocampus (Cabp7), the choroid plexus
(1500015O10Rik), the reticular thalamus (Pvalb), and cor-
tical layer V (Ighm) (43) (Figure 5A).

To compare SEMITONES results to alternative
clustering-free methods, we checked how many of the top
100 SEMITONES genes are also among the significant
genes called by the variogram method in Seurat v3. 96
out of these 100 genes are among the 1910 significantly
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Figure 4. SEMITONES identifies informative peaks from scATAC-seq data. (A) Example accessibility profile of a selectively accessible (top) and a selec-
tively inaccessible (bottom) genomic region. (B) Reference cell annotations based on GREAT GO-term enrichments and associated genes of significantly
enriched, selectively accessible marker peaks identified by SEMITONES. (C) Enriched motifs of genomic regions that SEMITONES identified as signif-
icantly enriched and selectively accessible in a transitional B reference cell neighbourhood (left) and a naive CD4+ reference-cell neighbourhood (right).
(D) The distribution of the percentages of all, significantly enriched and selectively accessible, and significantly enriched and selectively inaccessible regions
with particular HOMER annotations, or an enhancer annotation in FANTOM5.

spatially variable genes identified by the variogram method.
The remaining four genes show low spatially restricted
expression in a small subset of cells (see Supplemental Fig-
ure S12). These genes include the hypothalamus-enriched
Magel2 and Peg10 genes (43), indicating that SEMI-
TONES identifies markers even for genes with high noise
(i.e. drop-out) levels. Overall, these results illustrate that
SEMITONES is a viable method for spatially restricted
marker identification.

Finally, SEMITONES can also be used in an inverse
manner to annotate cells given a set of known markers.

To do this, we computed the enrichment scores for just
the given marker genes in all spots (equivalent to cells in
scRNA-seq data). To enable a fine-grained final annotation,
we increased the value of � to 0.01 to consider smaller cell
neighbourhoods during enrichment scoring. Figure 5B il-
lustrates the enrichment level for the fibre tract marker Fth1,
the glomerular layer of the main olfactory bulb marker
Gng4, and the hippocampus marker Cabp7. The annota-
tions of the corresponding regions are given at eight stan-
dard deviations above the mean of the empirical null dis-
tribution in Figure 5C. These annotations overlap largely
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Figure 5. SEMITONES identifies spatially restricted markers from spatial transcriptomics data. (A) The spatially resolved expression profile of top spatially
enriched SEMITONES genes. (B) The significance level in the number of standard deviations away from the mean of the empirical null distribution for a
marker gene of fibre tracts (Fth1, left), a marker of the glomerular layer of the main olfactory bulb (Gng4, middle), and a marker of the hippocampus (Cabp7,
right). (C) The annotation of spots as belonging to the fibre tracts (left), the glomerular layer of the main olfactory bulb (middle), and the hippocampus
(right) based on the enrichment scores of known marker genes for these regions (Fth1, Gng4, Capb7). Cells are annotated as belonging to a certain spatial
structure if their enrichment score is at least 8 standard deviations higher than the mean of the emprical null distribution.
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with the brain structures in the histological image, confirm-
ing that SEMITONES enrichment scoring and significance
testing allows for the annotation of spatial tissue structures.
Although we chose to illustrate this application on spatial
transcriptomics data to enable a straightforward visualiza-
tion of the results, the approach can also be used on scRNA-
seq data, as illustrated by the recent application for the an-
notation of a single-cell Arabidopsis-root expression atlas
(44).

DISCUSSION

We present SEMITONES, a tool for the de novo, cluster-
independent identification of informative features from
single-cell omics data. By omitting cell clustering, we aim
to mitigate error and bias propagation from cell identity
assignments. Using scRNA-seq, scATAC-seq and spatial
transcriptomics data, we illustrate how SEMITONES iden-
tifies biologically relevant features, i.e. genes or accessibility
peaks, from diverse single-cell omics data types. For both
scRNA-seq and scATAC-seq, the selected features contain
enough biologically relevant information to annotate refer-
ence cells and to improve the cell state separation in lower-
dimensional embeddings compared to using all features.
This observation may be of particular interest in the con-
text of targeted sequencing approaches, which use a subset
of highly informative genes to characterize a specific sys-
tem. Additionally, we use simulated scRNA-seq data to ver-
ify the accuracy of SEMITONES and establish its superior
performance over alternative feature identification meth-
ods for single-cell transcriptomic data. Although simulated
scATAC-seq data with a ground-truth on differential acces-
sibility is not currently available and no high-quality ref-
erence databases for cell type-specific accessible chromatin
regions exist, the enriched sequence motifs and their cor-
respondence to transcription factors that were identified as
markers from scRNA-seq data illustrate that SEMITONES
identifies biologically informative peaks. Finally, we illus-
trate how the inverse application of SEMITONES can also
be used for the annotation of individual cells given specific
marker genes.

The benchmark on simulated scRNA-seq data also illus-
trates SEMITONES’ dependence on the similarity metric
and the embedding over which this similarity metric is com-
puted. First and foremost, using an RBF-kernel over a mul-
tidimensional UMAP embedding results in the highest per-
formance for SEMITONES, endorsing its use for other ap-
plications presented in this manuscript. Another motivation
for the RBF-kernel is the interpretation of its � parameter
as an inverse measure of the neighbourhood size to be con-
sidered during enrichment scoring (see Supplemental Fig-
ure S1a). By choosing a sufficiently large value for � , one
ensures that local markers, i.e. markers selective for a small
subset of cells, are detected. More global markers will also
be identified as significantly enriched, but will be assigned
enrichment scores that rank lower than these local mark-
ers. Conversely, if the � -value is too low, highly selectively
markers will not be selected because cells in a larger neigh-
bourhood will be considered to be highly similar. The same
holds true when using alternative metrics where similarities
for larger neighbourhoods of cells are very high, such as

the cosine similarity (see Supplemental Figure S1b), poten-
tially resulting in lower performance for larger, more com-
plex (simulated) datasets (Figure 3D). The selection of this
similarity metric is also relevant in the context of algorith-
mic reference cell selection (see Supplemental Figure S5).
Here, too, using an RBF-kernel over a multidimensional
UMAP embedding results in competitive performance.

The interpretation of the RBF-kernel as defining cell-
neighbourhoods for which to identify markers, indexed by
reference cells, does not suffer from the same limitations
as clustering-based approaches. Most importantly, in non-
fuzzy clustering approaches often used for differential ex-
pression testing, the inclusion of a cell in one cluster im-
poses the exclusion of that cell from all other clusters. Con-
versely, in SEMITONES, a cell being highly similar to one
reference cell does not exclude the possibility of that same
cell being highly similar to another reference cell. As a re-
sult, neighbourhoods characterized by the RBF-kernel may
be overlapping. In this regard, the neighbourhood defini-
tion shows similarities to the overlapping neighbourhoods
used in Milo (25), where overlapping cell neighbourhoods
are constructed by the assignment of cells to index, i.e. ref-
erence, cells on a kNN-graph. Here, a critical difference is
that the assignments to the index cell in Milo are hard as-
signments, while the similarity to the reference cell provides
a measure of how similar a cell is to the reference cell, equiv-
alent to a fuzzy neighbourhood assignment. Due to the in-
dependence of the reference cell similarities, selecting more
reference cells than cell types or states does not impact the
descriptiveness of the enrichment scores per reference cell.
This independence of the reference cells has several advan-
tages. Firstly, enrichment scoring can be performed inde-
pendently per reference cell so the enrichment score com-
putations can be run in parallel. However, even so, select-
ing a very large number of reference cells creates the need
for post-processing and merging of results from reference
cells with highly similar results, thus it is generally not ad-
visable to select too large a number of reference cells. Fortu-
nately, due to the independence of the reference score com-
putations, additional reference cells may be manually se-
lected post hoc in case the user feels that not all desired cell
neighbourhoods were explored using automatically selected
cells, as illustrated by the identification of a plasmablast
neighbourhood by manually adding select reference cells
(see Supplemental Figure S4).

The flexibility of SEMITONES is illustrated by its ap-
plicability to diverse data types, like the identification of
biologically relevant genomic regions from scATAC-seq
data and the identification of brain region-specific genes
from spatial transcriptomics data. Both of these applica-
tions also show SEMITONES’ robustness to sparsity and
noise. Namely, scATAC-seq is notoriously sparse, with gen-
erally <3% of entries being non-zero, both because many
chromatin regions are not accessible in any given cell and
due to high drop-out rates. Yet, SEMITONES identifies bi-
ologically informative peaks from scATAC-seq data. Ad-
ditionally, SEMITONES identified lowly detected known
region-specific genes with a noisy expression pattern as
spatially restricted from spatially resolved transcriptomics
data. Since the spatial transcriptomics data does not have
single-cell resolution, it illustrates how SEMITONES is
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in principle applicable to any data type where meaningful
sample-to-sample similarities can be computed. Finally, we
also provide functionality for the enrichment scoring of co-
expression vectors, where the resulting scores may be used
for the construction of co-enrichment graphs that iden-
tify regulators of cell identity (see Supplemental Materials
section ‘SEMITONES for co-enrichment scoring’, Supple-
mental Figure S13, and Figure S14). This application will
be further explored in future work. Further avenues of im-
provement for SEMITONES include improving its scala-
bility in terms of memory demand for large reference cell
numbers by implementing sparsity constraints on the simi-
larity matrices, decreasing the run time for large numbers of
features by improving the multiprocessing set-up, and mak-
ing the significance testing procedure more efficient.
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