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Loop-extrusion and polymer phase-separation can
co-exist at the single-molecule level to shape
chromatin folding
Mattia Conte 1,4, Ehsan Irani2,3,4, Andrea M. Chiariello 1,4, Alex Abraham1, Simona Bianco 2,

Andrea Esposito 1 & Mario Nicodemi 1,2,3✉

Loop-extrusion and phase-separation have been proposed as mechanisms that shape chro-

mosome spatial organization. It is unclear, however, how they perform relative to each other

in explaining chromatin architecture data and whether they compete or co-exist at the single-

molecule level. Here, we compare models of polymer physics based on loop-extrusion and

phase-separation, as well as models where both mechanisms act simultaneously in a single

molecule, against multiplexed FISH data available in human loci in IMR90 and HCT116 cells.

We find that the different models recapitulate bulk Hi-C and average multiplexed microscopy

data. Single-molecule chromatin conformations are also well captured, especially by phase-

separation based models that better reflect the experimentally reported segregation in glo-

bules of the considered genomic loci and their cell-to-cell structural variability. Such a

variability is consistent with two main concurrent causes: single-cell epigenetic heterogeneity

and an intrinsic thermodynamic conformational degeneracy of folding. Overall, the model

combining loop-extrusion and polymer phase-separation provides a very good description of

the data, particularly higher-order contacts, showing that the two mechanisms can co-exist in

shaping chromatin architecture in single cells.
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To understand the molecular mechanisms that in the
nucleus of cells establish the large scale 3-dimensional (3D)
architecture of chromosomes1–14, encompassing DNA

loops15, Topologically Associated Domains (TADs)16,17 and lar-
ger structures13,18, different physical processes have been pro-
posed and investigated via chromatin models from physics19–46

and via computational approaches47–61. However, it remains
unclear how well different mechanisms capture folding at the
single molecule level, how they compare against each other in
explaining experimental data and whether they compete or
coexist. Here, we explore two recently discussed classes of models
that focus on two distinct physical processes, respectively loop-
extrusion and polymer phase-separation, that we compare against
single-molecule super-resolution microscopy6,62 and bulk Hi-C
data15,63 available in human loci in IMR90 and HCT116 cells.

Loop-extrusion and phase-separation based models reflect two
classical, yet distinct scenarios of molecular biology to explain the
formation of DNA contacts64. The first class considers the picture
where physical proximity between distal sites is established by
molecular motors that bind to DNA and extrude a
loop19,20,31,40,41. This is an out-of-equilibrium, active physical
process that involves energy, e.g., ATP, consumption. The model
envisages that those loop-extruding complexes stochastically bind
to a polymer chain and extrude loops until encountering another
motor, an anchor site or unbinding from the chain. While the
polymer becomes compacted in a linear array of loops, specific
contacts are established between the motor anchor sites where
extrusion halts, hence defining boundaries between subsequent
chromatin regions. Experimental evidence indicates that Cohesin
and Condensin can be components of the motor complex, while
properly oriented CTCF sites can act as anchor points41. Com-
puter simulations have shown that such a model can explain with
good accuracy loops and TADs visible in bulk Hi-C contact
maps19,20,31,40,41. Variants of such a model have been also
developed where chromatin loops are formed by thermal random
sliding of DNA into an extruding molecule31 or by, e.g.,
transcription-induced supercoiling40.

The second class of polymer models21–30,32–39,42–46 considers
another classical scenario where physical proximity between
distal DNA sites results from interactions mediated, for instance,
by diffusing cognate bridging molecules, such as Transcription
Factors, or from direct interactions produced, e.g., by DNA
bound histone molecules. In the Strings and Binders (SBS)
model43,45, for example, a chromatin filament is represented as a
self-avoiding chain of beads, along which are located different
types of binding sites for cognate diffusing binders that can bridge
those sites. The binding sites have been correlated to different
molecular and epigenetic factors, ranging from active and poised
Pol-II to eu- and heterochromatin sites21,27,28,46. The steady-state
3D conformations of the system are determined by the laws of
physics and fall in different structural classes corresponding to its
thermodynamics phases. In the SBS model, for instance, upon
increasing the concentration or affinity of binders, the system
undergoes a polymer phase-separation transition from a coil, i.e.,
randomly folded, to a globular state, where distinct globules self-
assemble along the chain by the interactions of cognate binding
sites24,27,35,45. Polymer physics explains that the thermodynamic
phases are independent of the specific origin of the interactions—
e.g., direct or mediated by diffusing factors - so different models
can belong to the same universality class65. For that reason, the
thermodynamic phases of, say, the SBS model also occur in
models with direct chromatin interactions. Those phase transi-
tions result in structural changes of the chain that spontaneously
establish contact or segregation of specific, distal sites, such as
genes and their regulators. Such a class of models has been shown
to explain Hi-C, SPRITE, GAM and microscopy contact data

across the genome, from the sub-TAD to chromosomal
scales21–30,32–38,42–46, also at the single molecule level35,38.

It is unclear, however, how loop-extrusion and polymer phase-
separation perform relative to each other in capturing chromatin
folding and whether they compete or coexist in establishing
chromosome architecture in single cells. Here, we implemented
different versions of those models to benchmark their structural
predictions at the single-molecule level against independent
multiplexed FISH data available in specific genomic loci6. We
simulated first a simple loop-extrusion (LE) model20 of those loci.
Next, we developed an extended LE (eLE) model where, to mimic
epigenetic differences of single cells, the anchor sites can differ
across single molecules29. Additionally, in the eLE model the
genomic locations of the anchor sites, and their single-molecule
presence probability, are optimized to best fit experimental con-
tact data. We also considered the SBS model of the studied loci35

and, finally, we introduced a model combining eLE and SBS (the
LE+SBS model), i.e., a model where in a single molecule both LE
and SBS mechanisms act simultaneously. We find that both loop-
extrusion and phase-separation based models can quantitatively
explain ensemble-averaged microscopy and bulk Hi-C data, albeit
the simple LE model is only partially effective. Our single-
molecule analyses show that both types of models do capture the
main features of single-cell chromatin conformations and higher-
order contacts. Yet, phase-separation based models better reflect
the experimentally reported segregation in globules of the con-
sidered genomic loci and their cell-to-cell structural variability.
Such a variability results from two main concurrent sources: the
intrinsic thermodynamic degeneracy of polymer folding and
single-cell epigenetic heterogeneity. Consistent with such a pic-
ture, the LE+SBS model turns out to provide overall an excellent
description of all the different datasets and to have the least
discrepancy with microscopy triple contact data, supporting the
view that loop-extrusion and phase-separation can coexist at the
single-molecule level in determining chromatin architecture.

Results
Polymer models of the studied loci. We implemented the
polymer models of two 2Mb wide genomic loci in human IMR90
and HCT116 cells where, as stated, single-cell super-resolution
microscopy data6 are available at 30 kb resolution (Fig. 1a, Sup-
plementary Fig. 1a). To assess the role of the different ingredients
of the models, we developed distinct versions that we compared
against single-cell data.

First, we implemented a simple LE model20, where loop-
extruding motors stochastically bind to a polymer bead chain and
extrude loops until encountering anchor points with opposite
orientation or another motor or unbinding from the chain
(Fig. 1b and Methods). The position and orientation of the
anchor points are identified by the FIMO standard motif finding
analysis66 based on the peaks of CTCF ChIP-seq data from
ENCODE67. While the motors can stochastically bind to and
unbind from the chain, the anchor sites are fixed and equal in all
single-molecule computer simulations. Their anchoring strength
is set to 100%, i.e., when an extruder arrives at an anchor point it
remains blocked at that position, yet we checked that the overall
results do not change for strengths in the range down to 60%
(Methods). This model is hereafter referred to as the LE model.

To explore the potential of the loop-extrusion mechanism and
to dissect the roles of its ingredients beyond such a minimal
implementation, we also considered a more refined version,
hereafter named the extended LE (in short, eLE). In the eLE
model, to mimic epigenetic differences across single cells, each
anchor site is present, with a given probability, only in a subset of
model single-molecules29 (Fig. 1c, Supplementary Fig. 1b).
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Additionally, to best fit average contact and microscopy distance
data, we searched for the optimal genomic location and
probability of the motor anchor sites, independently of CTCF
tracks (Methods). Finally, to better form TADs and globules (see
below), the beads of the polymer chain are subject to a self-
interaction produced by unspecific bridging molecules. In our
studied loci, we found that the probability to be present in a
model single-molecule is different for different anchor sites,
ranging from roughly 50–100% (Fig. 1c, Supplementary Fig. 1b),
a range consistent with current estimates of cell epigenetic
heterogeneity68. Also, interestingly, while the optimized eLE sites

are all CTCF sites, not all LE CTCF sites are retained in the model
after the optimization because a fraction of them (roughly 50%) is
found to be redundant in the eLE (i.e., not required to better
explain contact data, Supplementary Figs. 2a, b, 3a, b and
Methods). Additionally, while the eLE anchor sites are all
characterized by CTCF/cohesin signatures, they also have over-
laps with different chromatin marks such as H3K27ac, H3K4me1,
H3K27me3 and Pol-II (Supplementary Figs. 2c, 3c), supporting
the view that in the genome not all CTCF sites are equivalent, as
reported in recent experiments69,70, and that they could be
combined with other signals in determining loop sites.

Next, in the considered loci we implemented the SBS model35

whereby chromatin is represented as a self-avoiding chain of
beads, in a thermal bath, with specific binding sites for cognate
diffusing molecular binders (Fig. 1d, Supplementary Fig. 1c and
Methods). The location and types of binding sites are different for
the different loci and are inferred via a machine learning
procedure based on the PRISMR method, which takes as input
only Hi-C data28,35. The model of the HCT116 locus has four
binding site types and the model of the IMR90 locus has seven
types, each visually represented by a different color along the
chain (Fig. 1d, Supplementary Fig. 1c). The binding site types
have been shown to correlate with different combinations of
chromatin architectural factors, such as CTCF/cohesin,
H3K4me3 or H3K4me135. As mentioned above, the equilibrium
3D conformations of the SBS model fall in structural classes
corresponding to its thermodynamics phases65: upon increasing
binder concentration or affinity above a threshold value, the
system undergoes a phase transition from a coil (i.e., randomly
folded) to a polymer phase-separated state where distinct,
compact globules self-assemble along the chain in correspon-
dence of its different, prevailing binding domains (i.e., locally
enriched colors)35. The intrinsic thermodynamic degeneracy of
the states of the model results in a broad variety of 3D single-
molecule conformations35 (Methods). We also developed a
variant of the SBS model where cognate DNA sites have direct
physical interactions, rather than mediated by binders, and our
overall findings remain unchanged (Supplementary Fig. 4,
Methods) as expected from Statistical Mechanics65.

Finally, to check whether active mechanisms, such as loop-
extrusion, and passive mechanisms, such as thermodynamic
polymer phase-separation, could coexist to shape chromatin
architecture in the studied loci, we implemented a polymer model
combining the above described eLE and SBS models, i.e., a model
where both mechanisms act simultaneously in each single
molecule (named the LE+SBS model, Fig. 1e, Supplementary
Fig. 1d and Methods). For each of the considered models, an
ensemble of 3D conformations was obtained via Molecular
Dynamics simulations in the steady state29,35 (Methods). In all
the considered cases, the model unit length scale was mapped into
physical units by equating the median gyration radius to its
corresponding experimental counterpart6,35 (Supplementary
Fig. 5, Methods).

Both loop-extrusion and phase-separation based models reca-
pitulate average microscopy and Hi-C data. To benchmark the
different models, we focused first on how they recapitulate
population-averaged experimental data by comparing their
median distance and contact maps against, respectively, multi-
plexed FISH6 and bulk Hi-C data15,63.

In our IMR90 case study locus, we found that the models all
capture the global patterns visible in the median distance matrix6

(Fig. 2a, Methods). To have a quantitative measure of similarity,
we computed the genomic distance-corrected Pearson correlation
coefficient, r', between model and experiment. The LE has
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Fig. 1 Scheme of the investigated polymer models. We used Molecular
Dynamics simulations to investigate polymer models where folding is based
on two different physical processes: (i) DNA loop-extrusion and (ii)
polymer phase-separation, recapitulated respectively by the LE19,20 and by
the SBS models43,45. a Microscopy median distance6 and ENCODE67 CTCF
data are shown for the studied 2Mb wide locus in human IMR90 cells.
b We considered a simple Loop-Extrusion (LE) model20 where active
motors extrude polymer loops until encountering another motor or CTCF
anchor points with opposite orientation, which are fixed and equal in all
single-molecule simulations (anchor probability= 1). c We also considered
an extended version of the LE (eLE) whose anchor site locations are
optimized, independently of CTCF, to best reproduce Hi-C and average
microscopy data. To represent the epigenetic heterogeneity of single cells,
those anchor sites have a finite probability to be present in a model single
molecule29. d In the Strings and Binders (SBS) model35, a chromatin
filament is represented as a self-avoiding chain of beads including different
types of binding sites (colors) for diffusing cognate binders that can bridge
those sites. The model undergoes a phase-separation of the chain in
distinct globules35. The binding site locations are determined by the
PRISMR method and correlate with different combinations of chromatin
architecture factors including, but not limited to, CTCF and cohesin28,35.
e We also considered a polymer model (LE+ SBS) where in a single
molecule both the eLE and SBS mechanisms act simultaneously.
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r'= 0.19, while the eLE has r'= 0.49, highlighting a markedly
improved similarity to the experiment. The data appear to be
better captured by the SBS and by the LE+SBS models, as
signaled by their higher correlations (r'= 0.77 and r'= 0.70,
respectively). Analogous results are found by comparing the
model contact matrices against Hi-C data15 (Fig. 2b, Methods):
LE has r'= 0.24, eLE has r'= 0.57, while SBS and LE+SBS models
comparatively better reproduce Hi-C contact patterns (r'= 0.74
and r'= 0.72, respectively). We also considered other measures of
similarity, such as the simple Pearson correlation (Supplementary
Table 1), which provided analogous results.

Next, we focused on the relative distances of specific,
interesting pairs of sites in the IMR90 locus. Specifically, we
considered: (i) a pair of sites (highlighted in green, see the
scheme in Fig. 2c and Supplementary Table 2) located 0.3 Mb
apart from each other within the same TAD, having a strong
interaction; (ii) a pair of sites (red), located 0.7 Mb away in
different sub-TADs, having a strong loop contact in the
median distance matrix; and (iii) a pair of 1.1 Mb distant sites
(yellow) from different TADs, separated by a strong TAD
boundary. Albeit the genomic separation of the red pair is
twice as large as the separation of the green, those pairs have a
similar average spatial distance in the experiment, close to
400 nm, whereas the boundary separated yellow pair is
>800 nm apart (Fig. 2c, Supplementary Table 2). We found
that the different models all recapitulate those values (Fig. 2c,
Supplementary Table 2) and, interestingly, the LE+SBS model
is overall the closest to the experiment across those specific
pairs of sites. Additionally, we checked that the distance
distributions derived from the models are all similar to the
corresponding microscopy distance distributions (Supplemen-
tary Fig. 6). We stress, however, that the specific values of those
distances can depend on the minute details of the models, such
as the shape of the interaction potential or loop-extruder size.

To assess how well distinct models capture different aspects of
chromatin folding, we also computed the probability to find a
TAD boundary at a given genomic location and the average
separation score6 along the locus in single-molecule conforma-
tions (Fig. 2d, e, Methods). In the IMR90 case study locus, we
found that the boundary probability and the boundary strength
averaged over all genomic positions are similar across the
different models and very close to the experimental values
(Supplementary Fig. 7). The boundary probability as a function of
the genomic coordinates of the locus, however, is better captured
by the eLE model, which has the highest Pearson correlation with
experimental data (r= 0.83, Fig. 2d), while the LE has the lowest
correlation (r= 0.31). The SBS and LE+SBS models also provide
a good fit to the data, having respectively r= 0.63 and r= 0.65.
We also found that all the models provide a good overall
description of the average separation score along the locus
(Fig. 2e): the LE has the lowest correlation to the corresponding
experimental data (r= 0.51), the eLE has r= 0.74, the SBS
r= 0.79 and the LE+SBS model r= 0.82.

Our analysis of the HCT116 locus returned a very similar
picture about the performance of the different models to describe
average distance and Hi-C data (Supplementary Fig. 8a, b) as well
as TAD boundary probabilities and separation scores (Supple-
mentary Fig. 8c, d and Supplementary Fig. 9).

Taken together, our results show that both loop-extrusion and
phase-separation based models are consistent with ensemble-
averaged microscopy and bulk Hi-C data. While the LE model is
only partially effective, the eLE, with its optimized anchor sites
and molecule-to-molecule variability, performs even better in the
description of those data and is the best to recapitulate the TAD
boundary probability function. However, polymer models
including globule phase-separation mechanisms (SBS and
LE+SBS) have overall higher correlation values with average
microscopy distance and Hi-C contact data, and better capture
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and b bulk Hi-C15 data are compared to the corresponding model results in the IMR90 locus. The different models have high genomic distance-corrected
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some local features of chromatin folding, such as the
separation score.

The models are overall consistent with chromatin structure at
the single-molecule level. To quantitatively assess how effective
are the different models in explaining chromatin structure at the
single-molecule level, we took advantage of the mentioned super-
resolution microscopy data6 and of the ensemble of polymer 3D
conformations produced via our computer simulations.

First, we checked how well each model represents single-cell
chromatin conformations by performing an all-against-all
comparison of single-molecule imaged and model 3D structures.
We used a method35,71 whereby each 3D conformation from
microscopy data is univocally associated to a corresponding
model structure (for each considered type of model) by searching
for the least root mean square deviation (RMSD) of their
coordinates (Methods). Figure 3a and Supplementary Fig. 12a (in
IMR90 and HCT116, respectively) show a few examples of those
experiment-model best-matching structures, highlighting that, at
least visually, each model appears to capture the overall
structural pattern of its corresponding experimental conforma-
tion. To test the statistical significance of the association, we

compared the RMSD distribution of the best-matching experi-
ment-model pairs against a simple control case where the RMSD
distribution is computed between random pairs of imaged
structures. We verified that for each of the considered polymer
models the RMSD distribution of the best-matching pairs is
statistically different from the control in both the IMR90
and HCT116 loci (Fig. 10a,b two-sided Mann–Whitney test
p-value < 0.001). Specifically, in the IMR90 locus we found,
consistently across the models, that <5% of the former
distribution is above the first decile of the control (Fig. 3b)
and, in particular, the SBS model performs slightly better than
the others. The analysis of the models of the HCT116 locus
returned similar results (Supplementary Fig. 10c). As an
additional test, we also considered a more stringent control
where the RMSD is computed only between pairs of imaged
structures having overall similar distance matrices, i.e., with a
corresponding genomic distance-corrected correlation >0.5 (i.e.,
with r' > 0.5, see below), and we found analogous results
(Supplementary Fig. 11). Hence, the model conformations best
matching the experimental structures have a statistically
significant RMSD distribution and provide a non-trivial
description of chromatin molecules in single cells (Fig. 3a,
Supplementary Fig. 12a).
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Next, we tested whether the structural variability of model 3D
conformations reflects the one observed in single-cell microscopy
experiments6. In the IMR90 locus, for example, the distribution of r'
correlations between pairs of experimental single structure distance
matrices has an average r'= 0.23 and a variance equal to 0.18
(Fig. 3c), showing that while the imaged structures are broadly
varying they have also a significant degree of similarity6,35. For each
model, we computed the corresponding distribution of r' correla-
tions between all model single-molecule distance matrices and we
compared it with the experimental one (Fig. 3c and Methods).
Interestingly, the r' distributions of the different models have all a
shape similar to the experiment and a similar variance, yet they have
different average values (Fig. 3c). The LE and eLE model average r'
(r'= 0.06 and r'= 0.04, respectively) is significantly lower than the
experimental value, showing that their single-molecule structures
have a lower degree of similarity with each other than single-cell
imaged chromatin conformations. The LE+SBS model has an
average r'= 0.14, while the SBS model has r'= 0.23, which is equal
to the microscopy value (Fig. 3c). In fact, the r' distribution of the
SBS model is statistically indistinguishable from the experimental
distribution (two-sided Mann–Whitney test p-value= 0.362), while
the other models are statistically different (p < 0.001). Additionally,
we verified that analogous results are found if the experiment-
experiment r' distribution is compared to the distribution of r'
correlations between experiment and model single-molecule distance
matrices (Supplementary Fig. 13a). The analysis of the HCT116
locus returns a very similar scenario (Supplementary Figs. 12b, 13b).
We also checked that our results are not affected by a different
choice of the correlation parameter, hence confirming their statistical
robustness (Supplementary Fig. 14). We stress, nevertheless, that
those correlation measures can depend on the minute details
employed to construct the models and the agreement with the
experiment could be further improved.

Finally, as an additional test, we performed calculations of
shape and volume factors of the single molecule structures
predicted by our chromatin models, which we compared against
single-cell imaging data6. To this aim, we computed for each
imaged and model single molecule its corresponding inertia
tensor, whose eigenvalues (i.e., the system principal momenta of
inertia) are related to the semi-axes (named below a, b, c) of a
triaxial ellipsoid enclosing the considered conformation (Meth-
ods). As a control, we considered a globule-like homopolymer
model having the same number of beads and the same average
gyration radius (that is, same linear size) as the microscopy
images of the studied loci. In the IMR90 case, we found,
interestingly, that the conformations predicted by the different
models have a prolate shape that is consistent with imaging data
(i.e., a= 0.8 µm > b ≈ c= 0.4 µm), whereas in the control the
ellipsoid semi-axes are comparable to each other (i.e., a ≈ b ≈ c)
(Supplementary Fig. 15a–c). Then, by using the ellipsoid semi-
axes, we also computed for each type of model the distribution of
the single-molecule volumes, which we found to be comparable
with microscopy data (Supplementary Fig. 15d, average value
0.5 µm3). We performed all the above calculations in the HCT116
locus and found analogous results (Supplementary Fig. 16). As a
further quantitative check, we calculated additional standard
shape factors, such as the asphericity ratios72,73, and found
similar results on the prolate shape of single-molecule conforma-
tions (Supplementary Fig. 17). Additionally, we measured the
degree of spatial compaction of the single-molecule structures
(Methods) and found that the distributions of compaction levels
are comparable between experiments6 and our different polymer
models (Supplementary Fig. 18a, b), and notably they have an
overall profile similar to the independent relative signal distribu-
tion of DAPI nuclear intensity classes discovered in recent 3D-
SIM experiments62 (Supplementary Fig. 18c).

In summary, consistent with our previous results on bulk data,
our single-molecule analyses support the view that the different
polymer models all provide a non-trivial description of single-cell
chromatin conformations. While both loop-extrusion and phase-
separation based models capture the main features of chromatin
single-molecules, in the studied loci we find that the latter models
better reflect the microscopy observed single-molecule globular
structure and variability. In particular, our analysis shows that
chromatin structure variability across single cells results from two
main distinct, yet concurrent sources: on the one hand from the
intrinsic degeneracy of folding that we find in all the considered
models, and on the other hand from the differences of anchoring
points (or, analogously, binding sites) in single-molecules,
representing the epigenetic heterogeneity of single cells.

The models well reproduce microscopy triple contact data. To
assess how well the different models capture higher-order con-
tacts, we investigated their predicted average triplet contact
probability matrix, which we compared to microscopy data6

(Methods). We focused on triplets formed by six different
genomic viewpoints roughly equally spaced along the IMR90
locus that correspond to some main TAD boundaries and loops
of the pairwise median distance matrix (Fig. 4 and Supplementary
Fig. 19). In our analysis, by definition, a triplet is formed when
three genomic sites have all their pairwise distances below a
threshold value. The triplet probability depends on such a
threshold, but we checked that it is proportionally conserved if
the threshold is varied around 150 nm, a typical value used in
microscopy6, in a range from 100 to 200 nm (Methods).

Microscopy data reveal that triplets are typically compartmen-
talized in the studied loci and restricted to the TAD encompass-
ing each of the selected viewpoints (Fig. 4a–c and Supplementary
Fig. 19), showing that TADs tend to create local environments
where also multiple contacts become enriched. The different
polymer models do capture experimental triplet patterns across
all the considered viewpoints. To quantitatively assess the
similarity between experiment and model-predicted triplets, we
computed the mean relative squared difference (MRSD) between
the corresponding entries of the two matrices over the studied
viewpoints (Fig. 4d, Methods). To set a reference, we also
considered the triplets formed in a random control made of self-
avoiding-walk (SAW) polymer chains having the same number of
beads and gyration radius (i.e., linear size) as the microscopy
images of the locus (Methods). Our analysis shows that the LE
model has an MRSD with the experiment that is one third of the
random control value, yet it has the largest discrepancy with
microscopy data compared to the other considered models,
whose MRSD is at least one order of magnitude smaller than the
control. Interestingly, the LE+SBS model has the lowest distance
from the experiment and its MRSD is statistically different from
both the LE, the SBS and control case (Fig. 4d, two-sided Welch’s
t-test p < 0.001), whereas it is statistically equal to the eLE MRSD
(two-sided Welch’s t-test p= 0.097).

Taken together, our results show that both loop-extrusion and
phase-separation mechanisms can explain higher-order contacts.
However, a model combining both mechanisms (LE+SBS) has
the least discrepancy with microscopy triplet data and overall
provides an excellent description of all the different experimental
datasets considered, supporting the view that loop-extrusion and
phase-separation can coexist in single-molecules in establishing
chromatin architecture.

Discussion
To investigate the physical mechanisms that shape chromatin 3D
large scale organization, we explored via Molecular Dynamics
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simulations two classes of polymer models where folding is based
on two distinct physical processes: DNA loop-extrusion and
polymer phase-separation, recapitulated respectively by the LE
and by the SBS models (Fig. 1). We assessed how they perform
relative to each other in capturing chromatin bulk Hi-C
contact15,63 and independent single-molecule microscopy data6

in human IMR90 and HCT116 cells, and we exploited such data
to establish whether those mechanisms compete or coexist in
single cells.

We implemented, first, a simple loop-extrusion (LE) model20

of those loci (Fig. 1b) and found that it performs well to fit
average microscopy distance and bulk Hi-C data (e.g., respec-
tively, r'= 0.19 and r'= 0.24 in IMR90) considering the basic
ingredients that inform the model. Next, we introduced an
extended version of the LE (named eLE, Fig. 1c), where the
genomic locations of the extruding motor anchor sites are opti-
mized, independently of CTCF peaks, to explain average distance
and contact data even better (respectively, r'= 0.49 and r'= 0.57).
Beyond pairwise interactions, the eLE model also better recapi-
tulates higher-order contacts in single molecules. Interestingly,
most forward and reverse anchor sites of the optimized eLE
model coincide with CTCF forward and reverse sites, yet not all,
and conversely around 50% of all CTCF sites are found to be
redundant (i.e., not required to better explain contact data) in the
optimized model (Fig. 1c), hinting that CTCF sites are not all
equal in the genome and can act in combination with other
signals in anchoring loop-extruding motors69,70. Additionally, to
mimic epigenetic differences among single cells, each of the eLE
anchor sites has a specific probability to be present in a model
single molecule29. The probability values returned by the opti-
mization search range from 50% to 100%, consistent with current
estimates of cell epigenetic heterogeneity68.

We also considered the SBS model of the studied loci (Fig. 1d),
i.e., a model where the interaction between cognate binding sites
on the polymer chain and their associated binding molecules
drives a phase-separation of the chain in distinct globules35. For
completeness, we checked that a model with direct interactions
between binding sites (rather than mediated by diffusing binders)
has behaviors analogous to the SBS. Finally, we introduced a

model combining the molecular elements of the eLE and of the
SBS (the LE+SBS model) where in a single molecule both the LE
and SBS mechanisms act simultaneously (Fig. 1e). We find that
the SBS and LE+SBS models explain well bulk Hi-C (e.g.,
respectively, r'= 0.74 and r'= 0.72 in IMR90), distance (r'= 0.77
and r'= 0.70) and single-molecule microscopy data, and reflect
the experimentally reported chromatin segregation in globules
and its cell-to-cell structural variability more accurately than the
LE or eLE models (Fig. 3).

Importantly, a further optimization of the model fine details,
such as the employed specific interaction potentials (shape, depth,
distance of the potential minimum, etc.) or the specific nature of
the modeled DNA extruding motors (size, speed, directionality,
etc.), can on one hand improve even more the model agreement
with experiments and on the other hand provide additional
mechanistic information. Also, the LE and SBS models could be
trained in a single step, which can only improve our results.
Nevertheless, the models here investigated perform well con-
sidering their simplicity (Figs. 2–4). In particular, the LE+SBS
model returns an overall excellent description of the different
datasets and the least discrepancy with microscopy triplet data,
showing that loop-extrusion and phase-separation can coexist in
shaping loops, TADs and the complex 3D architecture of the
studied loci. Our analyses also illustrate that the experimentally
observed structural variability of chromatin in single-cells is
consistent with two main co-existing sources of noise, i.e., the
heterogeneity of single-cell epigenetics and, interestingly, an
intrinsic conformational degeneracy, as chromatin can dynami-
cally fold in many different conformations rather than in a single
naïve structure as usual proteins.

Bulk Hi-C63,74 and microscopy6 experiments have shown that
depletion of cohesin causes loss of TADs at the population level.
Those results are consistent with the loop extrusion model as they
remove the molecular factors which extrude loops. Analogously,
they are consistent with the SBS and phase separation models
because, by removing chromatin architectural factors, they reduce
interactions and dilute contacts between cognate sites, resulting in
random coil conformations where average patterns are erased.
Indeed, in cohesin depleted cells, the single molecule structures
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reported by multiplexed microscopy6 were shown to be consistent
with a reversal of phase-separated globular structures into more
randomly folded states that abolish population-averaged
domains35. Other perturbations, such as depletion of CTCF or
of cohesin loader/unloader factors can be analogously explained.
While the observed loss of TADs and structure upon cohesin (or
CTCF) removal can be explained with both loop extrusion and
polymer phase separation models, the debate is still open on the
specific role of different chromatin factors. Recent studies on
CTCF/cohesin depletion have shown that loop extrusion is not
essential for establishing enhancer-promoter interactions (see,
e.g.,75–78) or building functional compartments62, highlighting
that chromatin contacts can rely on different factors, which is
consistent with our results.

While other folding mechanisms, beyond loop extrusion and
phase separation, are likely to contribute to the organization of
the genome (such as heterochromatin adsorption to the lamina),
one can speculate on why different molecular processes could
cooperate in determining chromatin folding. Beyond ensuring
redundancy in regulation, they appear to be more effective in
implementing complementary tasks. For instance, loop-extrusion
is particularly suited to establish TAD borders and pointwise
strong loop interactions, whereas globule phase separation can
better act to segregate different regions and to form more stable
(i.e., with lower variability) and hence more reproducible reg-
ulatory structures. Additionally, while loop-extrusion requires
energy consumption, phase transitions are sustained by the
thermal bath, and they are robust and reversible processes as the
system only needs, e.g., to set an above threshold concentration
(or affinity) of binders, with no need of fine tuning their number
(or strength).

Methods
The studied loci. In this paper we studied two 2Mb wide loci in human IMR90
and HCT116 cells, where published single-cell imaging6 and independent in situ
Hi-C data15,63 are available. The hg38 coordinates of the IMR90 locus are
chr21:28000000–30000000, those of the locus in HCT116 cells are
chr21:34600000–37100000. We used 5 kb resolution Hi-C data, KR normalized, re-
binned by summation at 30 kb to match the resolution of multiplexed FISH data.

Polymer models and simulation details. To investigate how loop-extrusion and
polymer phase-separation models perform relative to each other in capturing
chromatin folding in single-molecules, we implemented different versions of those
models that we tested against independent multiplexed FISH data6 (Fig. 1, Sup-
plementary Fig. 1). In each of the considered models, chromatin is represented as a
polymer chain made of beads having a finite diameter, σ. All the model interaction
potentials are taken from classical studies of polymer physics simulations79. Spe-
cifically, consecutive beads on the chain are connected via finitely extensible non-
linear FENE springs with standard parameters79 (i.e., maximum bond length=
1.6σ and energy strength= 30KBT) and their overlap is prevented by a short-range
steric interaction, implemented by a repulsive Weeks-Chandler-Anderson (WCA)
potential29,79. Each polymer bead is subject to a Langevin dynamics, which is
numerically integrated via the Velocity-Verlet algorithm by using the LAMMPS80

and HOOMD81 Molecular Dynamics (MD) software. In dimensionless units, the
particles have all same diameter σ= 1, same mass m= 1, and a standard friction
coefficient ζ= 0.579. The polymer system is confined within a simulation cubic box
with periodic boundary conditions. The initial states of our MD simulations are
independent SAW conformations, prepared as detailed in24,79. Then, the main
dynamics of the models is simulated (see below) and the polymer system evolves
up to 108 MD time iteration steps when stationarity is fully reached. For each type
of model, we produced via massive parallel MD simulations an ensemble of 103

single-molecule conformations in the steady state.
First, we considered a simple loop-extrusion (LE) model of the studied loci as

described in20 (Fig. 1b). In brief, loop-extruding motors are modeled as additional
harmonic springs on the chain, which extrude loops by translocating along the
polymer. Their number is fixed, they cannot pass through each other and their
translocation halts when they encounter another motor or anchor points with
opposite orientation, or they stochastically dissociate from the chain. To simulate
the extrusion process, at every Tex time iterations steps, the simulation is updated
by moving the spring from the bead pair (i, j) to (i−1, j+1). We set the LE spring
energy constant equal to 10KBT and its rest length to 1.1σ, which are both values
consistent with the literature range19,20,29. The time interval Tex is equal to 500
timesteps, yet its specific value does not impact on the simulation results19.

Positions and orientations of the anchor sites are determined by a standard motif
finding analysis (using the FIMO tool within the MEME Suite software66) based on
the peaks of available CTCF ChIP-seq data from ENCODE67 (ENCODE accession:
ENCFF463FGL in HCT116; in IMR90 CTCF tracks are generated by ENCODE
and downloaded from the UCSC website as in6). Each anchor site has a given
probability, named strength20, to stall an LE motor at its position. Additionally,
each anchor site is present in a given single polymer molecule with a given
probability. In the LE model the strength and the presence probabilities of all
anchor sites are both set equal to 100% in our simulations, i.e., the anchor points
stall any LE motor at their position and they are fixed and equal across all the
single-molecule conformations. We also checked that our results are overall
unchanged if the anchor strengths are varied in a broad range, e.g., from 60% to
100%, or determined, for instance, via a logistic mapping transformation as in20.

To highlight the potential of the LE model and to dissect the roles of its
ingredients beyond its minimal version, we developed a more refined, extended LE
(eLE) model, which takes into account biological evidence (e.g., anchor sites
changing from cell to cell) to fit even better the data. First, the polymer chain of the
eLE model is subject to a generic self-attraction potential19 produced by unspecific
bridging molecules that help better forming TADs and globules as seen in Hi-C
and microscopy experiments. We set the binding energy affinity of such potential
to 0.7KBT, yet we checked that different values, e.g., from 0.5 to 1KBT, return all
similar results. Next, to mimic epigenetic differences across single cells, each
anchor site of the eLE model has a specific, finite probability to be present in a
single polymer molecule29 (Fig. 1c, Supplementary Fig. 1b). To best reproduce
population-averaged Hi-C and microscopy distance data, we systematically
searched for the optimal single-molecule presence probability and genomic
locations of those anchor sites, independently of CTCF tracks. Specifically, by
running extensive MD simulations, we explored up to 2x102 distinct anchor site
configurations in the studied loci to find the minimal set that best reproduces the
average contact patterns. We sampled in our optimization search a wide spectrum
of presence probabilities, spanning from 20% to 100%. The values returned by the
procedure range roughly from 50% to 100%, which are overall consistent with
current estimates of cell epigenetic heterogeneity68. In the studied loci, while
interestingly the optimized eLE sites are all CTCF sites, we found that not all LE
(FIMO) CTCF sites are retained in the model after the optimization as a fraction of
them (roughly 50%) is redundant in the eLE (i.e., they are not required to explain
contact data). For example, in our IMR90 main case, there are 16 CTCF FIMO
sites, of which 11 are reverse- and 5 forward-oriented, that are used as anchor sites
of the LE model (Supplementary Fig. 2a). In the eLE model, we found instead 12
anchor sites, of which 6 are reverse and 6 forward oriented (Supplementary
Fig. 2b). Specifically, the 6 reverse-oriented sites of the optimized model (eLE) all
match FIMO reverse-oriented sites, but 5 out the 11 FIMO reverse-oriented sites
(i.e., roughly 45%) are found to be redundant in the optimized model. Analogously,
4 out the 6 forward-oriented sites of the optimized model match forward-oriented
FIMO sites, whereas 2 forward eLE sites are found to match instead reverse-
oriented FIMO sites and are unique to the optimized model; finally, 1 forward-
oriented FIMO site is redundant in the eLE (Supplementary Fig. 2a, b).
Additionally, while the eLE anchor sites are all characterized by CTCF/cohesin
signatures, they also have overlaps with different chromatin marks such as
H3K27ac, H3K4me1, H3K27me3 and Pol-II (Supplementary Fig. 2c), supporting
the view that in the genome not all CTCF sites are equivalent, as reported in recent
experiments69,70, and that they could be combined with other signals in
determining loop sites. Similar results are found in the HCT116 cell locus, where to
explain microscopy data the eLE model requires only a subset of the FIMO CTCF
sites (19 out 47, roughly 40%) which are also located in correspondence of other
histone and transcription marks (Supplementary Fig. 3). We stress, nevertheless,
that those estimates are limited to the considered genomic loci and require
genome-wide statistics to be robust. Finally, as in the LE model, the strength of the
eLE anchor points is set to 100%, yet different values, e.g., in the range down 60%,
provide similar results. The extrusion dynamics of the eLE model is the same as the
above-described LE model. A crucial parameter controlling the system dynamics is
the ratio between the extrusion velocity and the unbinding rate, named the
extruder processivity29,82. In our simulations, we performed a systematic sweep of
processivity values within the literature range20,29, e.g., from 80 kb up to 750 kb,
and found that 700 kb produces the best agreement with average distance and
contact data in the studied loci. Similarly, we also varied the number of loop-
extruders, Nle, in the range of previous studies19, e.g., from 5 to 20, and found that
Nle= 10 provides the best results.

Next, we considered the SBS model of the studied loci35, where a chromatin region
is represented as a Self-Avoiding Walk (SAW) chain of beads, along which different
specific, as well as unspecific, types of binding sites (visually represented by different
colors) are located for cognate molecular binders (Fig. 1d, Supplementary Fig. 1c). The
binders are diffusing Brownian particles that move under the Langevin equation and
they can bridge their cognate sites on the polymer via specific attractive interactions,
hence driving a phase-separation of the chain in distinct globules. As the number of
binders or their energy affinity grows above a given threshold, the model undergoes a
thermodynamics phase transition from a coil, i.e., open randomly folded, to a phase-
separated globule state, in which the specific interactions between cognate sites guide
the self-assembly of the chain into spatially segregated globules. As stated by polymer
physics65, the equilibrium conformations of the model fall in those two main folding
classes that correspond to the system thermodynamics phases. The genomic locations
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of the binding sites of the SBS model are inferred by a machine learning procedure
based on our previously published PRISMR method28,35, which takes as in input only
bulk Hi-C data without a-priori epigenetic information or additional parameters. In
our studied loci, the procedure returns seven distinct types of binding sites in IMR90
and four in HCT116, each type associated to a specific combination of chromatin
architectural factors (included but not limited to, e.g., CTCF and cohesin62), as fully
detailed in35. So, the SBS inferred site types of our models are different because,
consistently, the distributions of chromatin marks of the two loci are different. A
thermodynamic ensemble of single-molecule conformations of those loci is derived by
running extensive MD simulations of the optimal polymer models inferred by
PRISMR. Full details of the MD implementation of the SBS model can be found
in24,28. We also explored in our model a scenario where chromatin is folded in
different states in different single-cells24,28. To this aim, we considered a population
mixture of polymer conformations, each spontaneously folded in one of the
conformational classes predicted by polymer physics (i.e., the coil or the globule phase-
separated state) and found, for example, that an ensemble of 3D structures, composed
90% of single-molecule conformations in the globule and 10% in the coil state, best
explains all the different experimental datasets considered. In all our analyses, we set
the SBS simulation parameters, such as binder concentrations and affinities, as in35.
Interestingly, by taking, for example, a binder concentration in the range
0.05–0.5 µmol/l (values reported in35), corresponding to 30–300 binders/µm3, the
predicted number of binders required to fold our considered genomic loci (whose
volume estimates are close to 0.5 µm3, see Supplementary Figs. 15, 16 and below)
ranges from tens to several hundreds, which are values consistent with typical
transcription factor concentrations. Similarly, assuming a typical nuclear volume of
500 µm3, the number of binders to condensate the entire genome is expected to be
larger by three orders of magnitude (e.g., in the range 15,000–150,000). Those
predicted numbers represent an additional possibility to test our polymer models of
chromatin, for instance by SMLM or STED experiments that are enabling to visualize
chromosome 3D structure in individual nuclei with nanometer-scale precision83,84.

Additionally, we also implemented a variant of the SBS model where the
physical interactions between cognate DNA sites are direct rather than mediated by
binders and our conclusions remain unchanged as expected from Statistical
Mechanics65. For instance, in the IMR90 locus, we checked that such a variant of
the model returns bulk interaction patterns similar to the experiments and to those
of the SBS (Supplementary Fig. 4). In fact, the model with direct interactions has
high genomic-distance corrected Pearson correlations, r' (see below for definition),
with the imaged median distance6 and average Hi-C15 contact maps of the locus
(r'= 0.75 and r'= 0.58, respectively) as much as high r' values with the
corresponding maps of the SBS model (r'= 0.71 and r'= 0.65). All the simulation
parameters of the SBS with direct interactions are set as in35.

Finally, to investigate whether DNA loop-extrusion and polymer phase-separation
could coexist in shaping the 3D architecture of the studied loci, we introduced a model
combining the above-described eLE and SBS models (named the LE+SBS model), in
which both mechanisms act simultaneously in a single polymer molecule (Fig. 1e,
Supplementary Fig. 1d). Specifically, in our implementation, the polymer is initially in
a SAW state and the binders are randomly located within the simulation box. The
binding sites of the LE+SBS chain are those inferred by PRISMR for the SBS models of
the studied loci35. The polymer model also includes now the specific, optimal sites of
the corresponding eLE model, which are present in a single polymer molecule with the
probability derived for the eLE model and act as anchor points in the extrusion
dynamics (see above). While the binders interact with the specific and unspecific
binding sites, after Tex timesteps the loop-extruding springs stochastically bind to (and
unbind from) the polymer at a constant rate and extrude loops as discussed before. In
the MD implementation of the model, the Langevin equation regulates the SBS
dynamics of polymer beads and binders and it is integrated with a constant time step
Δt= 0.0129, while the LE dynamics is advanced at regular Tex= 500 timesteps (in Δt
units) starting from the final spring positions of the previous LE MD step as detailed
in20. The simulation parameters of the LE+SBS model, such as the binder
concentrations and affinities, or the number of LE springs and their processivity, are
those stated above for the SBS and eLE models of the studied loci. Hence, in our
approach, the LE+SBS model is not trained de novo, as it relies on the parameters of
eLE and SBS trained separately. We showed that such a model combining eLE and SBS
(trained separately) performs well in explaining chromatin contact data (Figs. 2–4), so
we expect that an alternative, unified model that combines the learning of the LE and
SBS into a single step can only improve on that.

We used the standard MD conversions to map the dimensionless units of our
MD simulations into physical values35,73,85. The length scale of each model, i.e., the
bead diameter σ, is set by equating the medians of the model and microscopy6

gyration radius distributions as in35 (Supplementary Fig. 5). We found: σ= 36 nm
(for the LE model), σ= 53nm (eLE), σ= 60 nm (SBS), σ= 61 nm (LE+SBS) in the
IMR90 case; σ= 41 nm (eLE), σ= 45 nm (SBS), σ= 53 nm (LE+SBS) in HCT116.
The plots of the experimental and model 3D conformations in Fig. 3a and
Supplementary Fig. 12a are produced with the POV-RAY software (Persistence of
Vision Pty. Ltd., 2004). A simple linear spline interpolation is performed in the
rendering of both experimental and model 3D structures.

Spatial distance matrices and correlations. For each of the studied polymer
models, the single-molecule distance matrix is the square matrix of the Euclidean
distances between all pairs of polymer beads of the considered single-molecule

conformation. It is efficiently computed in Python by using built-in functions
within the SciPy package. The median distance matrix is then the ensemble median
of the single-molecule distance matrices. To quantitatively compare median dis-
tance maps from models and experiments, we used the genomic distance-corrected
Pearson correlation coefficient, r', which accounts for genomic distance effects28.
Specifically, r' is the Pearson correlation computed on distance (or contact)
matrices whose diagonals are subtracted, in both models and experiments, by their
average value at that genomic distance. The patterns of the microscopy median
distance matrix6 are well captured by the different models, yet the SBS and LE+SBS
have overall higher r' correlation values with the experiments (Fig. 2a and Sup-
plementary Fig. 8a). We also considered other measures of similarity, such as the
usual Pearson correlation, r, which returned similar results (Supplementary
Table 1). Distance matrices are visually represented as 2-dimensional heatmaps
with the seismic reversed color bar as in6. The color bar scale limit of the models is
set equal to the experimental range to have a fair comparison. We also verified that
a lower scale limit in the models (e.g., equal to zero) does not change our results, as
done, for instance, for the SBS and LE+SBS models in Fig. 2a and Supplementary
Fig. 8a. To deal with missing values in the data, we excluded from all our analyses
imaged single-cell distance matrices having missing values for >80% of their entries
and we also checked for outliers by removing in both experiments and models, as
in35, the matrices with a low average r' (r' < 0.1) against the others. Finally, we
investigated the relative distances of specific site pairs (red, yellow, green in Fig. 2c),
which correspond to the following genomic coordinates (hg38) in IMR90: red:
28.06–28.72 Mb; yellow: 28.54–29.65 Mb; green: 29.08–29.38Mb.

Pairwise contact frequency maps. The average pairwise contact matrix of each of
the considered polymer models is computed based on a standard method used in
the literature24,46. Specifically, for each single-molecule conformation, we first
derive the corresponding pairwise contact map, i.e., a symmetric square matrix
whose entry (i, j) is equal to one if the polymer beads, i and j, are in contact, and
zero otherwise. A contact between two any polymer beads is established if their
relative spatial distance is less than a distance threshold Aσ (A is a dimensionless
constant). Then, for each model, the average pairwise contact map is simply the
ensemble average of the single-molecule contact matrices. We set, as in35, the
constant scale factor A equal to 3.5 and 5, respectively, in the IMR90 and HCT116
models, yet we checked that changing those numbers, e.g., from three up to ten,
only marginally affects our results. As before, the model contact matrices compare
well against Hi-C data15,63, especially in the case of the eLE, the SBS and LE+SBS
models, as signaled by their high r' correlation values (Fig. 2b, Supplementary
Fig. 8b).

Boundary probability and separation score. TAD boundary probabilities and
strengths are computed, in both experiments and models, by using the definitions
and algorithms published in6. In particular, for the experiments, as well as for the
LE and eLE models, the algorithm parameters are set as6: gb= 1, valley= 1,
su= 10, sl= 6. We also verified that upon changing those numbers, our general
results, such as boundary locations and strengths, are overall preserved. For
instance, in the case of the SBS and LE+SBS models we used: gb= 1, valley= 8,
su= 4, sl= 4 in IMR90 and gb= 1, valley= 4, su= 5, sl= 5 in HCT116, as in35.
The polymer models turned out to provide all a good description of the boundary
features of the studied loci. For example, for each type of model, the boundary
probability averaged over the genomic coordinates is comparable with the expected
value from imaging data (Supplementary Figs. 7a, 9a, error bar is the standard error
of the mean). Also, the boundary strength distributions of the models are all similar
to the experiments (Supplementary Figs. 7b, 9b), as well as their corresponding
average values (Supplementary Figs. 7c, 9c, error bar is the standard deviation
divided by the square root of the number of boundaries). Finally, the comparison of
the experimental and model derived genomic boundary probability functions also
provides high Pearson correlation values (Fig. 2d and Supplementary Fig. 8c, a two-
point running average is performed to better visualize those functions). We stress
that no free parameters are available in all those calculations and comparisons.

Similarly, by using the definitions and methods reported in6, we computed the
separation score as a function of the genomic coordinates along the studied loci
(Fig. 2e and Supplementary Fig. 8d, error is 95% confidence interval). The different
models well recapitulate the experimental functions, particularly the LE+SBS,
which has the highest correlation to the data in both the IMR90 and HCT116 loci
(r= 0.82 and r= 0.90, respectively). Again, no free parameters are available in
those comparisons.

All-against-all comparison of single-molecule imaged and model 3D struc-
tures via the minimum RMSD criterion. To check how well the different models
represent the ensemble of single-molecule imaged conformations of the studied
chromatin loci, we performed an-all-against-all comparison of microscopy and
model 3D structures. To this aim, we used an accepted method35,71 that performs a
rotational and translational alignment of two structures (e.g., experimental and
model derived) by minimizing the root mean square deviation (RMSD) of their
particle positions. Thus, by searching for the least RMSD, each conformation from
microscopy data6 is univocally associated to a corresponding, best-matching
structure of the models (for each type of model). Examples of experiment-model
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best-matching pairs are in Fig. 3a and Supplementary Fig. 12a, respectively for the
IMR90 and HCT116 loci. To efficiently perform the structural comparison, we
used the free available MDAnalysis Python library, which uses the fast QCP
algorithm to compute the RMSD between two coordinate sets86. A standard
z-score is applied on the experimental and model coordinates to have a fair
comparison and missing values are linearly interpolated. To prove the association
is statistically significant, we first tested the RMSD distribution of the experiment-
model best matches against a loose control made of random pairs of imaged
structures. For each of the considered polymer models, we checked that in both the
IMR90 and HCT116 loci the two distributions are statistically different (Supple-
mentary Fig. 10a, b, two-sided Mann–Whitney test p-value < 0.001) and well
separated (Fig. 3b and Supplementary Fig. 10c, <5% and 15% of the best-matching
pairs is above the first decile of the control, respectively, in IMR90 and HCT116).
Next, to further test our association, we performed an additional, more stringent
control where the RMSD is computed only between pairs of microscopy con-
formations having distance matrices with a corresponding genomic distance-
corrected Pearson correlation value r' > 0.5 and found again analogous results
(Supplementary Fig. 11). Specifically, in both loci, the RMSD distribution of the
best-matching pairs of each model is statistically different from the control (two-
sided Mann–Whitney test p-value < 0.001) with <25% of entries of the former
falling above the first quartile of the latter. Finally, we also checked that the
comparison against a control SAW model with the same number of particles and
3D size as the imaged conformations returns similar results, as shown in a pre-
viously published paper38.

Structural variability of single-molecule conformations. To quantify the level of
structural variability of single-molecule conformations, we computed the all-
against-all distribution of r' correlations between pairs of single-molecule imaged6

and model distance matrices. In the IMR90 locus, the experiment-experiment r'
distribution is broad (variance 0.18) and has a non-zero average value (r'= 0.23),
signaling that the imaged single-cell conformations have a significant degree of
structural similarity, yet they are broadly varying. The corresponding r' distribu-
tions from the models have all a similar shape and variance, but they return
different average values: r'= 0.06, r'= 0.04, r'= 0.23, and r'= 0.14, respectively, in
the case of LE, eLE, SBS, and LE+SBS (Fig. 3c). Similarly, in the HCT116 locus, the
distribution of r' correlations between experimental single-cell distance matrices
has an average r'= 0.27, while the corresponding average values from the models
are: r'= 0.07, r'= 0.30, and r'= 0.23, resp., for the eLE, SBS, and LE+SBS (Sup-
plementary Fig. 12b). We also compared, for each type of model, the experiment-
experiment r' distributions against the distribution of r' correlations between
experimental and model single-molecule distance matrices and found analogous
results (Supplementary Fig. 13). Additionally, as a further check, we also trans-
formed the r' correlation parameter through the Fisher z-transformation in all the
comparisons between models and experiments made in the studied loci and found
that such transformation does not affect our results, hence confirming their sta-
tistical robustness (Supplementary Fig. 14). We used the Python open-source
Pandas tools to efficiently compute the r' distributions and the Python Seaborn
data visualization library to produce the corresponding violin plots. Each violin
plot is the combination of a standard boxplot (extending from the lower to upper
quartile values of the data) and a kernel density estimation of the underlying
distribution. To fairly manage missing values in the data, the r' pair correlation
between single-molecule distance matrices is computed only between the
entries with numerical values, excluding NA/null values in both input arrays. Also,
to reduce the noise, we performed a standard Gaussian filter on single-cell distance
matrices (standard deviation of the Gaussian kernel equal to 1). Statistical simi-
larity between r' distributions is assessed by a two-sided Mann–Whitney test,
computed only between independent pairs of distance matrices as in35. Finally, as
also stated in the Main Text, the above correlation measures can depend on the
finer details of the models, hence the agreement with the data could be further
improved.

Volume and shape factors of single-molecule conformations. To infer quan-
titative information about chromatin shape of the studied loci, we computed the
inertia tensor, I, of each imaged6 and model single-molecule 3D structure, defined

as: Ijk ¼ ∑
N

i¼1
miðr2i δjk � xijxikÞ, where N is the number of beads of each single

structure, mi the mass of the i-th bead particle and xij its j-th spatial coordinate (j,k
indices are equal to 1,2,3, respectively, for x,y,z). By diagonalizing I, we derived its
three eigenvalues, i.e., the system principal moments of inertia Ia , Ib , Ic. Those
moments are related to the semi-axes (named below a, b, c) of a triaxial ellipsoid
enclosing each considered single-molecule conformation via the relations:
Ia ¼ N

5 ðb2 þ c2Þ, Ib ¼ N
5 ða2 þ c2Þ, Ic ¼ N

5 ða2 þ b2Þ. To establish a control, we con-
sidered a globule-like homopolymer model having the same number of beads and
the same average gyration radius (that is, same size) as the microscopy images of
the studied loci. In our IMR90 main case, we found, interestingly, that the con-
formations predicted by the LE, eLE, SBS and LE+SBS models have all a prolate
shape that is consistent with imaging data (i.e., a > b ≈ c), whereas in the control
model the ellipsoid semi-axes turned out to be comparable to each other (i.e.,
a ≈ b ≈ c) (Supplementary Fig. 15a, b, boxplots extend from the lower to upper
quartile values of the data, with mean highlighted in yellow). To further test such a

prediction, we computed the flattening parameter defined as (a-b)/a, which is a
measure of the degree of ellipticity of the ellipsoid shape: the flattening of the
control homopolymer, as expected, is centered around 0, whereas our different
models return all an average value close to 0.5 that is again consistent with imaging
data (Supplementary Fig. 15c). Then, we computed for each imaged and model
single-molecule 3D structure the volume of the corresponding bounding ellipsoid
by using the relation V= (4/3)πabc (Supplementary Fig. 15d). We found that the
single-molecule volume distributions across the LE, eLE, SBS and LE+SBS models
are comparable with the experiments (average value 0.5 µm3, Supplementary
Fig. 15d), consistent with the findings of our manuscript. Additionally, we per-
formed all the above calculations in the other HCT116 cell locus and found ana-
logous results (Supplementary Fig. 16).

As a further quantitative check, we calculated additional standard shape factors,
such as the asphericity ratios of single-molecule conformations measured by the
eigenvalues of their gyration tensor (see, e.g., refs. 72,73 for reference), and found
similar results on the prolate shape of single-cell imaged and model 3D structures
(Supplementary Fig. 17).

Finally, we exploited the above volume estimations to measure the degree of
spatial compaction of model and real chromatin single-molecules of the studied
loci. In particular, recent 3D-SIM experiments allowed to identify the patterns of
local chromatin density in the cell nucleus, leading, for example, to the
identification of seven DAPI intensity classes associated to local differences in DNA
compaction62. Thus, to assess whether our models recapitulate the patterns of
chromatin compaction found at the nuclear scale by those independent 3D-SIM
data, we computed for each experimental6 and model 3D conformation the ratio
<V>/V (where V is the ellipsoid volume enclosing the single-molecule structure
and <V> its ensemble averaged value), which provides a normalized measure of the
degree of chromatin spatial compaction. Then, as done in62, we divided the
distributions of compaction levels (<V>/V) of our studied loci into seven, equally
spaced classes and measured their relative abundance, i.e., the relative fractions of
single-molecules within each class (Supplementary Fig. 18; outliers below first and
last decile are removed in both experiments and models). We found a distribution
of compaction levels consistent between imaging data6 and the different models of
our studied loci (Supplementary Fig. 18a, b, statistical error is SEM; classes are
ordered from lower to higher compaction) and, interestingly, also similar to the
relative signal distribution of DAPI intensity classes reported by 3D-SIM
(Supplementary Fig. 18c, taken from62). Overall, our analyses on volume and shape
factors of single molecules further support our results and also highlight the general
relevance of other microscopy methods (e.g., 3D-SIM62) through the predictions of
our polymer models of chromatin.

Triplet contact frequency maps. To investigate the higher-order structure of the
studied loci, we computed from our models the predicted frequencies of triplet
contacts that we compared against microscopy data6. Specifically, in our analysis
we considered six different genomic viewpoints, which are roughly equally spaced
along the IMR90 locus and proximal to the main TAD boundaries and loops of the
distance matrix. Their coordinates are (hg38): 28.33–28.36 Mb, 28.51–28.54Mb,
28.72–28.75 Mb, 29.08–29.11 Mb, 29.38–29.41 Mb, 29.83–29.86 Mb. For each of
the studied viewpoints, k, we computed the corresponding average triplet contact
probability matrix in both models and experiment (Fig. 4 and Supplementary
Fig. 19), i.e., a symmetric square matrix whose entry (i, j) is the frequency of the
triplet contact between the sites i, j, and the fixed viewpoint k. Those sites, by
definition, form a triplet only if their relative pairwise spatial distances, i.e., rij, rik
and rjk, are all below a given threshold value33. In the experiment, for instance, we
set such a threshold equal to the reference value6 150 nm, but we also checked that
different values within the range 100–200 nm proportionally preserve the measured
triplet frequencies and contact patterns. In particular, a distance threshold of
180 nm in the models turned out to better recapitulate the experimental triplet
frequencies. To measure the similarity between microscopy and model-predicted
triplet contact maps, we computed, for each of the considered models, the mean
relative squared difference (MRSD) between the corresponding entries of the two
matrices, defined as the mean value of the ratios (Aij-Bij)2/Aij, where A is the
experimental triplet matrix (for a fixed, considered viewpoint) and B the corre-
sponding prediction of the model. The ratios are evaluated only for non-zero Aij

entries. In Fig. 4d we report for each model the MRSD averaged over the con-
sidered viewpoints (error bars are SEM). As a control, we computed the triplets in a
SAW polymer chain with the same number of beads and gyration radius as the
imaged conformations. While the random control returns the largest MRSD with
the experiment, the LE+SBS has, interestingly, the lowest difference with the data
and its value is statistically equal to the eLE MRSD (Fig. 4d, two-sided Welch’s t-
test p= 0.097).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. Published Hi-C data15,63 used for analyses are available at the
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Gene Expression Omnibus (GEO) database with accession numbers GSE63525 and
GSE104334. Published single-cell imaging data6 used in this study are available at
https://github.com/BogdanBintu/ChromatinImaging. ChIP-seq data analyzed in this
study were accessed via ENCODE67 (ENCODE accession for IMR90: ENCFF195CYT
[https://www.encodeproject.org/experiments/ENCSR000EFJ/], ENCFF899APS
[https://www.encodeproject.org/experiments/ENCSR002YRE/], ENCFF474OJM
[https://www.encodeproject.org/experiments/ENCSR087PFU/], ENCFF752IXO
[https://www.encodeproject.org/experiments/ENCSR831JSP/], ENCFF178QVF
[https://www.encodeproject.org/experiments/ENCSR437ORF/], ENCFF741WIY
[https://www.encodeproject.org/experiments/ENCSR431UUY/], ENCFF625BTD
[https://www.encodeproject.org/experiments/ENCSR055ZZY/], ENCFF448ZOJ
[https://www.encodeproject.org/experiments/ENCSR000EFK/], ENCFF732WRW
[https://www.encodeproject.org/experiments/ENCSR000CTK/], ENCFF453XKM
[https://www.encodeproject.org/experiments/ENCSR000EFI/]; for HCT116:
ENCFF391AAM [https://www.encodeproject.org/experiments/ENCSR000BSB/],
ENCFF899XEF [https://www.encodeproject.org/experiments/ENCSR661KMA/],
ENCFF711MPL [https://www.encodeproject.org/experiments/ENCSR333OPW/],
ENCFF931YSQ [https://www.encodeproject.org/experiments/ENCSR161MXP/],
ENCFF137TPC [https://www.encodeproject.org/experiments/ENCSR091QXP/],
ENCFF294LZM [https://www.encodeproject.org/experiments/ENCSR810BDB/],
ENCFF832IOO [https://www.encodeproject.org/experiments/ENCSR179BUC/],
ENCFF848IHI [https://www.encodeproject.org/experiments/ENCSR000EUU/],
ENCFF870WXZ [https://www.encodeproject.org/experiments/ENCSR698RPL/],
ENCFF463FGL [https://www.encodeproject.org/experiments/ENCSR240PRQ/]).
Source data are provided with this paper.

Code availability
All the codes used in this work are based on standard, publicly available software
packages, as detailed in the Methods section. The software used for Molecular Dynamics
simulations is LAMMPS, version 30july2016, and HOOMD, version 2.9.x. 3D structures
visualization was realized with the POV-Ray software, version 3.7. All the codes required
to perform the simulations of the polymer models are provided at https://github.com/
ehsanirani/PhaseSeparation-LoopExtrusion-MD87.
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