Supplementary information

Up-regulation of SPS100 gene expression by an antisense RNA via a switch of mRNA isoforms with different stabilities

Daria Bunina^{1,#}, Martin Štefl^{1,#}, Florian Huber^{1,#}, Anton Khmelinskii¹, Matthias Meurer¹, Joseph D. Barry², Ilia Kats¹, Daniel Kirrmaier^{1,3}, Wolfgang Huber², Michael Knop^{1,3,*}

- ¹ Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- ² Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
- ³ Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Supplementary Figures and Legends Supplementary Movie Legend Supplementary Tables S1-S6 Supplementary References

Supplementary Figures and Legends

Figure S1. Overview of the antisense effect on *SPS100* **across conditions.** Raw data for the antisense effect on *SPS100* in all tested conditions. Whole colony fluorescence intensities were measured (Materials and Methods).

Figure S2. Test run of different versions of the antisense reporter. (**a**) Three different plasmids were tested for the antisense reporter shown in Figure 3a. SPS100-BFP wt, $PHO5_T$, and $PHO5_{T:scr}$ constructs were cloned along with the SPS100 5'- and 3'-intergenic regions (IGRs) into a centromeric plasmid and mCherry was inserted in antisense direction at the antisense initiation site. (**b**) Fluorescence intensities of the three constructs described in (a) were measured at the colony level after growth for 3 days under starvation conditions (SC, 0.1% glucose). Intensities with the $PHO5_T$ construct were higher. Consequently, this plasmid was used as an antisense reporter.

Figure S3. Gene loop formation between the *SPS100* **promoter and terminator regions does not depend on antisense but on** *SPS100* **gene expression.** Chromatin extracts from the cells with the indicated *SPS100* constructs were crosslinked with paraformaldehyde and digested with HaeIII enzyme (cut sites shown in red). Fragments after digestion were ligated after strong dilution to enrich for intra-fragment ligations. The cross-links were reversed and DNA was extracted. PCR primers used to detect ligations between different fragments after digestion are shown ("O" and "T", same orientation of both primers), as well as control primers lying in the same fragment after restriction ("C1" and "C2"). PCR shows expected product sizes from the interaction of restriction fragments "x" and "z" (PCR product 1) and a shifted product size (PCR product 2) which is a result of an incomplete digest at the HaeIII site between restriction fragments "x" and "y". The PCR products are specific to the interaction and are absent in the controls without HaeIII or ligase (as

opposed to the control product which is present independent on digestion or ligation).

Figure S4. Initial screen for antisense-dependent regulatory regions in the SPS100 3'-IGR. Colony fluorescences of a plasmid with SPS100-BFP followed by either $PHO5_T$ and the SPS100 3'-IGR (top) or the SPS100 3'-IGR directly ("*wt*", second from top) were measured (barplots to the right). Next, selected portions were deleted from the 3'-IGR in the *wt* plasmids and fluorescence intensities were recorded. Coordinates of the deletions are indicated. Error bars denote standard deviations.

Figure S5. 3'-end mRNA isoforms of *SPS100* **determined by Northern blot.** Loading controls and low contrast images of Northern blots which correspond to Figures 6b (**a** in supplement) and c (**c** in supplement). (**b**) Northern blots of the *SPS100* strains with the probe to the *SUT169*.

Comparison of sense and antisense levels up- and downstream of $PHO5_{\tau}$

Figure S6. RT-qPCRs with amplicons both up- and downstream of the $PHO5_T/PHO5_{T:scr}$ insertions. Strand-specific RT-qPCRs were conducted in SPS100-sfGFP wt, $PHO5_T$, and $PHO5_{T:scr}$ strains with two different amplicons: the "upstream" amplicon was located within sfGFP (green bar) whereas the

"downstream" amplicon was located in the *SPS100* 3'-IGR downstream of the termination site of the short isoform (red bar). Reverse transcriptions were performed with the same primers that were also used for subsequent qPCR amplification runs. The antisense initiation site is shown schematically, different colours indicate the amplicon and whether sense or antisense was measured (see legends). Error bars show the standard deviation of three technical replicates.

Figure S7. RT-qPCRs of SPS100 antisense library strains with different deletions in the 3'-IGR. Strand-specific RT-qPCRs were conducted in *SPS100-sfGFP* wt, $PHO5_T$, and $PHO5_{T:scr}$ strains with an amplicon binding in sfGFP (see Figure S6) of strains with either no deletion or deletion of the 20 nt element or the repeat as indicated in Figures 5 and 6. Black bars indicate sense, gray bars antisense levels. Error bars show the standard deviation of three technical replicates.

Figure S8. Sps100 expression levels and RT-qPCRs of SPS100 antisense library strains with and without heterologous terminators. (a) The region spanning nucleotides 207-519 of the *SPS100* 3'-IGR was deleted or replaced by two different bidirectional terminators ($ALG9_{term}$ and $UBC6_{term}$, see main text) in each of *wt*, *PHO5*_T or *PHO5*_{T:scr} strains. The resulting strains were grown into starvation and sfGFP intensities were measured by flow cytometry. The boxes show the first and third quartiles and the median. The grey violin plots show the distribution densities ranging from the first quartile minus 1.5 * interquartile range (IQR) to the third quartile + 1.5 * IQR. (b) Strand-specific RT-qPCRs were conducted in *SPS100sfGFP wt*, *PHO5*_T, and *PHO5*_{T:scr} strains with an amplicon binding in sfGFP (see Figure S6) of the strains shown in (a). Black bars indicate sense, gray bars antisense levels. Error bars show the standard deviation of three technical replicates.

Supplementary Movie Legend

Movie S1. Live monitoring of the transcription process. A GPD-22PP7-BFP-*SPS100* 3'-IGR strain was used for the analysis of transcriptional activity. Left: Maximum projection images which were recorded over ~ 30 min. Individual transcription events were detected and the Hidden Markov model was used for the analysis of the transcription site intensity traces (right part, intensity axis, blue lines). Resulted ON/OFF states are depicted in the right axis in green/red lines. Green and red circles and lines correspond to the transcription events in two different cells.

Supplementary Tables S1-S6

Table S1 – Yeast strains used in this study

Strain	Background	Description	Reference
Y8205		ΜΑΤα	(1)
		his3∆1 ura3∆0 met15∆0	
		can1Δ::STE2pr-his5	
		lyp1∆::STE3pr-LEU2	
yMaM330	Y8205	insertion of Gal-inducible I-Scel cassette	(2)
		leu2∆0::GAL1pr-I-SCEI-natNT2	
ESM356-	FY1676	МАТа	(3)
1		ura3-52 leu2∆1 his3∆200 trp1∆63	
LH175		MAT a , ho:hisG, lys2 ura3 leu2 his3 trp1∆FA (SK1	(4)
		background)	
yDB14	YMaM330	SPS100-sfGFP-S2 site (otherwise seamlessly	(5)
		tagged) in YMaM330 background	
yDB16	YMaM330	As yDB14 but with sfGFP followed by $PHO5_{T}$	(5)
yDB17	YMaM330	As yDB14 but with sfGFP followed by $PHO5_{T:scr}$	(5)
yDB218	ESM356-1	ESM356-1 transformed with pDaB38	this study
yMaS221	Y8205	yDB14 transformed with pMaS135	this study
yMaS222	Y8205	yDB16 transformed with pMaS135	this study
yMaS223	Y8205	yDB17 transformed with pMaS135	this study
yMaS224	Y8205	yDB14 transformed with pMaS136	this study
yMaS225	Y8205	yDB16 transformed with pMaS136	this study
yMaS226	Y8205	yDB17 transformed with pMaS136	this study
yDB302	LH175	Δsps100::kanMX6 (SK1 background)	this study
yMaS199		Diploid from yDB14 and yDB302	this study
		Δsps100::kanMX6/SPS100-sfGFP	
yMaS200		Diploid from yDB16 and yDB302	this study
		Δsps100::kanMX6/SPS100-sfGFP	
yMaS201		Diploid from yDB17 and yDB302	this study
		Δ sps100::kanMX6/SPS100-sfGFP	
yMaS207		Diploid from yDB302 and YMaM330 (neg. control	this study
		for yMaS199-201)	
yDB18	Y8205	yDB14 transformed with pDB6 (pRS413-SPS100)	this study
yDB20	Y8205	yDB16 transformed with pDB6 (pRS413- <i>SPS100</i>)	this study
yDB21	Y8205	yDB17 transformed with pDB6 (pRS413-SPS100)	this study
yDB51	YMaM330	CTA1-sfGFP-S2 site (otherwise seamlessly	(5)

		tagged) in YMaM330 background	
yDB53	YMaM330	As yDB51 but with sfGFP followed by $PHO5_{ au}$	(5)
yDB54	YMaM330	As yDB51 but with sfGFP followed by PHO5 _{T:scr}	(5)
yDB59	YMaM330	UGA2-sfGFP-S2 site (otherwise seamlessly	(5)
		tagged) in YMaM330 background	
yDB61	YMaM330	As yDB51 but with sfGFP followed by $PHO5_{ au}$	(5)
yDB62	YMaM330	As yDB51 but with sfGFP followed by PHO5 _{T:scr}	(5)
yDB55	YMaM330	FBP1-sfGFP-S2 site (otherwise seamlessly	(5)
		tagged) in YMaM330 background	
yDB57	YMaM330	As yDB51 but with sfGFP followed by $PHO5_{ au}$	(5)
yDB58	YMaM330	As yDB51 but with sfGFP followed by PHO5 _{T:scr}	(5)
yDB92	Y8205	yDB51 (CTA1-sfGFP) tagged with PCR product of	this study
		S2/S3 primers on pDB10 (Figures 4b-c):	
		CTA1-sfGFP-SPS100_3'IGR- Cyc1term(rev)-	
		KanMX	
yDB113	Y8205	CTA1-sfGFP-PHO5 ₇ -SPS100_3'IGR-	this study
		Cyc1term(rev)-KanMX	
		analogous to yDB92	
yDB94	Y8205	CTA1-sfGFP-PHO5 ₇ -SPS100_3'IGR-	this study
		Cyc1term(rev)-KanMX	
		analogous to yDB92	
yDB108	Y8205	FBP1-sfGFP-SPS100_3'IGR- Cyc1term(rev)-	this study
		KanMX	
		analogous to yDB92	
yDB96	Y8205	FBP1-sfGFP-PHO5 ₇ -SPS100_3'IGR-	this study
		Cyc1term(rev)-KanMX	
		analogous to yDB92	
yDB97	Y8205	FBP1-sfGFP-PHO5 _{T:scr} -SPS100_3'IGR-	this study
		Cyc1term(rev)-KanMX	
		analogous to yDB92	
yDB98	Y8205	UGA2-sfGFP-SPS100_3'IGR- Cyc1term(rev)-	this study
		KanMX	
		analogous to yDB92	
yDB100	Y8205	UGA2-sfGFP-PHO5 _T -SPS100_3'IGR-	this study
		Cyc1term(rev)-KanMX	
		analogous to yDB92	
yDB101	Y8205	UGA2-sfGFP-PHO5 _{T:scr} -SPS100_3'IGR-	this study
		Cyc1term(rev)-KanMX	
		analogous to yDB92	
yMaS107	ESM356-1	ura3::GPDprom-BFP-PHO5 _T -SPS100_3'IGR-	this study

		KanMx	
		integration of pMaS82 into URA3 locus	
yMaS108	ESM356-1	ura3::GPDprom-BFP-SPS100_3'IGR-KanMx	this study
		integration of pMaS83 into URA3 locus	
yMaS109	ESM356-1	ura3::GPDprom-BFP-PHO5 _{T:scr} -SPS100_3'IGR-	this study
		KanMx	
		integration of pMaS84 into URA3 locus	
yDB188	ESM356-1	ESM356-1 transformed with pDaB27	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{Δ1102}	
		(Figure S4)	
yDB189	ESM356-1	ESM356-1 transformed with pDaB28	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆102518}	
yDB187	ESM356-1	ESM356-1 transformed with pDaB26	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆103206}	
yDB186	ESM356-1	ESM356-1 transformed with pDaB25	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆207310}	
yDB183	ESM356-1	ESM356-1 transformed with pDaB22	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{Δ414518}	
yDB184	ESM356-1	ESM356-1 transformed with pDaB23	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆311518}	
yDB185	ESM356-1	ESM356-1 transformed with pDaB33	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆1518}	
yDB204	ESM356-1	ESM356-1 transformed with pDaB33	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆265272}	
yDB205	ESM356-1	ESM356-1 transformed with pDaB34	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆207226}	
yDB206	ESM356-1	ESM356-1 transformed with pDaB35	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	
		SPS100_3'IGR _{∆227246}	
yDB207	ESM356-1	ESM356-1 transformed with pDaB36	this study
		pRS415-SPS100_5'IGR-SPS100-BFP-	

		SPS100_3'IGR _{Δ273292}	
yDB43	Y8205	SPS100-sfGFP-SPS100_3'IGR	this study
		analogous to yDB92	
yDB45	Y8205	SPS100-sfGFP-PHO5 _T -SPS100_3'IGR	this study
		analogous to yDB92	
yDB46	Y8205	SPS100-sfGFP-PHO5 _{T:scr} -SPS100_3'IGR	this study
		analogous to yDB92	
yMaS248	Y8205	SPS100-sfGFP-SPS100_3'IGR _{Δ1102} -	this study
		Cyc1term(rev)-KanMX	
		made as in Figure 4b, used for Figure 5	
yMaS212	Y8205	SPS100-sfGFP-SPS100-PHO5 _T -3'IGR $_{\Delta 1102}$ -	this study
		Cyc1term(rev)-KanMX	
yMaS214	Y8205	SPS100-sfGFP-SPS100-PHO5 _{T:scr} -3'IGR $_{\Delta 1102}$ -	this study
		Cyc1term(rev)-KanMX	
yMaS249	Y8205	SPS100-sfGFP-SPS100_3'IGR _{Δ(AAAAAC)8} -	this study
		Cyc1term(rev)-KanMX	
yMaS250	Y8205	SPS100-sfGFP-SPS100-PHO5 _T -3'IGR _{Δ(AAAAAC)8} -	this study
		Cyc1term(rev)-KanMX	
yMaS251	Y8205	$SPS100\text{-}sfGFP\text{-}SPS100\text{-}PHO5_{T:scr}\text{-}3'IGR_{\Delta(AAAAAC)8}\text{-}$	this study
		Cyc1term(rev)-KanMX	
yMaS220	Y8205	SPS100-sfGFP-SPS100_3'IGR ₄₂₀₇₃₁₀ -	this study
		Cyc1term(rev)-KanMX	
yMaS213	Y8205	SPS100-sfGFP-SPS100-PHO5 _T -3'IGR ₄₂₀₇₃₁₀ -	this study
		Cyc1term(rev)-KanMX	
yMaS215	Y8205	SPS100-sfGFP-SPS100-PHO5 _{T:scr} -3'IGR ₄₂₀₇₃₁₀ -	this study
		Cyc1term(rev)-KanMX	
yDB224	Y8205	SPS100-sfGFP-SPS100_3'IGR _{Δ273292} -	this study
		Cyc1term(rev)-KanMX	
yDB225	Y8205	SPS100-sfGFP-SPS100-PHO5 _T -3'IGR _{Δ272292} -	this study
		Cyc1term(rev)-KanMX	
yDB226	Y8205	SPS100-sfGFP-SPS100-PHO5 _{T:scr} -3'IGR _{Δ272292} -	this study
		Cyc1term(rev)-KanMX	
yMaS139	ESM356-1	ura3::GPDprom-22PP7-BFP-SPS100_3'IGR-	this study
		NatNT2 + NOP1prom-PCP-3mCherry-KanMX	
yMaS140	ESM356-1	ura3::GPDprom-22PP7-BFP-PHO5 ₇ -	this study
		SPS100_3'IGR-NatNT2 + NOP1prom-PCP-	
		3mCherry-KanMX	
MOLL			a
ymaS141	ESM356-1	ura3::GPDprom-22PP7-BFP-PHO5 _{T:scr} -	this study

	SPS100_3'IGR-NatNT2 + NOP1prom-PCP-	
	3mCherry-KanMX	
yDK475-1 Y8205	SPS100-PHO5 $_{T}$ -S2 in BY4741 background	this study
yDK476-6 Y8205	SPS100-PHO5 _{T:scr} -S2 in BY4741 background	this study

Table S2 – Plasmids used in this study

Plasmid	Backbone	Description	Reference
pFA6a		E. coli plasmid with AmpR cassette	(6)
pRS413		Centromeric plasmid, histidin selectable	(7)
pRS415		Centromeric plasmid, leucin selectable	(7)
pRS306K		Integrative plasmid for URA3 site, kanMX4	(8)
		resistance cassette	
pMaM175	pFA6a	contains S3-sfGFP-IScelsite-S.Parad.Tcyc1-	(5)
		$ScURA3$ -Scelsite-sfGFP ΔN –S2	
		Used for seamless tagging with sfGFP	
pMaM201	pFA6a	Like pMaM175 but with $PHO5_T$ following	(5)
		sfGFP	
pMaM203	pFA6a	Like pMaM175 but with $PHO5_{T:scr}$ following	(5)
		sfGFP	
pDaB38	pRS415	Notl site of pRS415 contains SPS100_5'IGR-	this study
		ORF-TagBFP-PHO5 ₇ -SPS100_3'IGR with	
		mCherry inserted in antisense direction at	
		position 227 of 3'IGR	
		Used as antisense reporter (Figure 3)	
pMaS135	pRS413	Like pDaB38 but without mCherry and with	this study
		histidine selectable marker	
pMaS136	pRS413	Like pDaB38 but with histidine selectable	this study
		marker	
pDB6	pRS413	SPS100 ORF including 1572 bp upstream (=	this study
		5'IGR) and 519 bp downstream (=3' IGR) was	
		amplified from genome ESM356-1 and	
		inserted into pRS413 cut with Xhol + Spel	
		Used for Figure 4a	
pMaS9	pRS415	Notl site of pRS415 contains SPS100_5'IGR-	this study
		ORF-TagBFP-SPS100_3'IGR	
pMaS10	pRS415	Like pMaS9 but with TagBFP-PHO5 $_{T}$	this study
pDB10	pFA6a	Sall site of pFA6a contains SPS100_3'IGR-	this study
		CYC1Term(rev)-KanMX	

		Used for tagging strategy in Figure 4b-c	
pMaS133	pDB10	pDB10 with deletion of nucleotides 1-102 of	this study
		<i>SPS100</i> 3' IGR	
pMaS134	pDB10	pDB10 with deletion of nucleotides 207-310	this study
		of SPS100 3' IGR	
pFH17	pDB10	pDB10 with deletion of (AAAAAC)_8 repeat of	this study
		SPS100 3' IGR (nucleotides 50-97)	
pDaB49	pDB10	pDB10 but with deletion of 20 nt motif of	this study
		SPS100 3' IGR (nucleotides 273-292)	
pMaS82	pRS306K	pGPD-TagBFP-SPS100_3'IGR	this study
		integrative plasmid targeting the URA3 locus	
pMaS83	pRS306K	Like pMaS82 but with TagBFP followed by	this study
		PHO5 _T	
pMaS84	pRS306K	Like pMaS82 but with TagBFP followed by	this study
		PHO5 _{T:scr}	

Table S3 – Oligonucleotides used in this study

Primer	Sequence 5' – 3'
RT-qPCR primers:	
SPS100 sense (reverse	CCATGTGATCACGCTTTTCATTCGGA
transcription)	
SPS100 antisense (reverse	AAGAGCTATTTACTGGGGTTGTACC
transcription)	
SPS100 sense/antisense forward	GGCCAACCCTAGTAACAACTTTG
(qPCR)	
SPS100 sense/antisense reverse	CACGTAGCCTTCTGGCATAG
(qPCR)	
BFP sense A (reverse	TTCAGGGCCATGTCGTTT
transcription)	
BFP sense B (reverse	CGTAGTACACAACACATAATCATC
transcription)	
BFP antisense (reverse	TTCACCGAGACGCTGTACC
transcription)	
BFP sense/antisense forward	TTCACCGAGACGCTGTACC
(qPCR)	
BFP sense/antisense reverse A	TTCAGGGCCATGTCGTTT
(qPCR)	
BFP sense/antisense reverse B	CGTAGTACACAACACATAATCATC
(qPCR)	
3' RACE primers:	
reverse transcription (Q_T)	
	1111111111TVN
tirst amplification reverse (Q ₀)	CCAGTGAGCAGAGTGACG

second amplification reverse (Q _I)	GAGGACTCGAGCTCAAGC
SPS100 first amplification forward	TGGGTACTTGTCACCAATCC
(GSP1)	
BFP first amplification forward	CCTGAGGGCTTCACATGG
(GSP1) SPS100 accord amplification	
forward (GSP1)	AGCGAGTTACAACAAATCTTCC
BFP second amplification forward	GGCTGCCTCATCTACAACG
(GSP2)	
Northern blot probes:	
ProbeA (targeting sense sfGFP)	GTAGTGATTATCGGGTAACAAGACTGGACCATCACCAATAG
ProbeB (targeting sense SPS100	CGTAGTACACAACACATAATCATCTTAATCGATGAATTCGA
after STOP)	GCTCG
ProbeC (targeting SPS100 long	GAACACTGATAATAACTGTACTGAAGACAAACAATTAGGAA
isoform)	AGTAAC
Drobot * (toracting conce SDS100	GGATTGGTGACAAGTACCCAGCAGAAATTGCACCTTGTGG

Media	Condition	Concentration	Temperature
SC	raffinose	2 % w/v	30 °C
SC	sodium chloride	0.4 M	30 °C
SC	trehalose	2 % w/v	30 °C
SC	ethanol	3 % w/v	30 °C
SC	potassium acetate	2 % w/v	30 °C
SC	glycerol	3 % w/v	30 °C
SC	glucose	0.1 % w/v	30 °C
SC	glucose	2 % w/v	30 °C
SC	glucose	2 % w/v	14 °C
SC	raffinose + galactose	2 + 2 % w/v	30 °C
SC	sucrose	2 % w/v	30 °C
SC	maltose	2 % w/v	30 °C

Table S4 – Growth conditions

SC – synthetic complete.

sfGFP	tagged	T=14°C	T=30°C	T=30°C
gene		2% glucose	0.1% glucose	2% glucose
KAP123		5.63	5.62	4.66
HNM1		4.28	NA	NA
AMS1		4.31	4.08	3.27
HXT5		13.43	20.47	23.54
BCY1		8.12	5.05	4.95
ELO1		7.03	2.93	NA
PTM1		5.63	NA	3.36
RCK2		4.55	NA	NA
TMA7		9.61	3.98	4.47
CHS5		3.89	NA	NA
RPL6B		10.76	5.53	4.98
CCS1		3.43	NA	NA
PUB1		21.38	7.65	9.04
SUR1		2.07	NA	NA
CTR1		6.39	2.93	3.36
НХТ3		13.24	NA	NA
GLC3		15.58	6.93	9.02
HMF1		10.17	4.73	4.61
ICL1		64.70	50.79	39.52
KRS1		14.64	4.50	6.10
YHR087	W	47.09	19.74	41.20
COX5B		3.08	NA	NA
PRY1		5.29	NA	NA
SPC1		3.70	NA	NA
CYC1		5.30	NA	NA
FBP1		10.74	13.74	7.20
SUR7		5.20	3.31	3.76
ADH6		6.26	3.49	NA
YGP1		3.70	NA	NA
HTZ1		5.44	3.39	3.26
UGA2		3.21	3.04	4.94
JEN1		11.62	19.80	4.58
YMR178	W	4.49	NA	NA
FBA1		245.67	125.15	119.46
LEM3		3.38	NA	NA
GTT1		4.32	4.09	4.40
ARA1		14.69	12.58	8.19
NPC2		3.37	3.47	NA
VCX1		4.71	NA	NA
INH1		8.59	8.12	7.78
YNL1940	C	3.25	9.01	5.29
PDC1		211.42	85.75	156.83
MRPL23	i	3.03	NA	NA

Table S5 – Detection of sfGFP fusions by the plate colony assay

SVP26	3.90	NA	NA	
CTA1	NA	8.75	NA	
SPS100	NA	27.97	5.07	
YKL187C	NA	3.63	NA	
CYB2	NA	3.40	NA	
YBL029C-A	NA	NA	4.22	
YJR096W	NA	NA	4.42	

Table of the 50 genes which were detected above background at 3 different growth conditions. Values correspond to the fold increase of colony fluorescence above background. NA means that the gene was not detected at this particular growth condition.

Gene	Regulation (this	Regulated (Huber et	Regulated (other
	study)	al., 2016)	studies)
SPS100	↑	n/a (not expressed)	not reported
PDC1	↑	n/a (overexposed)	not reported
FBA1	↑	n/a (overexposed)	not reported
CTA1	↑	no	not reported
AMS1	↑	1	not reported
HXT5	\uparrow for 0.1% and SC,	no	not reported
	30 °C, \downarrow for 14 °C		
HXT3	\downarrow	no	not reported
YNL194C	\downarrow	no	not reported
COX5B	\downarrow	\downarrow	not reported
SPC1	\downarrow	\downarrow	not reported
YHR087W	\downarrow	\downarrow	not reported
SUR7	\downarrow	no	yes, but only at low levels
			(9)
SUR1	\downarrow	\downarrow	not reported
ELO1	\downarrow	\downarrow	not reported
UGA2	\downarrow	no	not reported

Table S6 – Detection of sfGFP fusions by the plate colony assay

Comparison with previous studies. The genes identified in this study to be regulated by antisense transcription were compared to our previous study where we used exponential growth conditions, and to reports in the literature. Legend: \uparrow = antisense increases expression; \downarrow = antisense decreases expression; **n/a** = was not tested for regulation; **no** = gene was tested for regulation but no difference was observed between *PHO5*_T and *PHO5*_{T:scr}; **not reported** = we could not identify other studies reporting antisense-dependent regulation of this gene.

Supplementary References

- Tong,A.H.Y. and Boone,C. (2007) High-throughput strain construction and systematic synthetic lethal screening in Saccharomyces cerevisiae. In Stansfield, I and Stark, MJR (ed), YEAST GENE ANALYSIS, SECOND EDITION, Methods in Microbiology. ELSEVIER ACADEMIC PRESS INC, 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA, Vol. 36, p. 369+.
- 2. Khmelinskii,A., Meurer,M., Duishoev,N., Delhomme,N. and Knop,M. (2011) Seamless gene tagging by endonuclease-driven homologous recombination. *PLoS One*, **6**, 1–17.
- Pereira,G., Tanaka,T.U., Nasmyth,K. and Schiebel,E. (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. *EMBO J.*, 20, 6359–6370.
- Riedel,C.G., Mazza,M., Maier,P., Korner,R. and Knop,M. (2005) Differential requirement for phospholipase D/Spo14 and its novel interactor Sma1 for regulation of exocytotic vesicle fusion in yeast meiosis. *J. Biol. Chem.*, **280**, 37846–37852.
- Huber,F., Bunina,D., Gupta,I., Theer,P., Steinmetz,L.M. and Knop,M. (2016) Protein Abundance Control by Non-coding Antisense Protein Abundance Control by Non-coding Antisense Transcription. *CellReports*, **15**, 1–12.
- Wach,A., Brachat,A., Pohlmann,R. and Philippsen,P. (1994) New Heterologous Modules for Classical or PCR-based Gene Disruptions in Saccharomyces cerevisiae. YEAST, 10, 1793– 1808.
- Sikorski,R.S. and Hieter,P. (1989) A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. *Genetics*, **122**, 19–27.
- 8. Taxis,C. and Knop,M. (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. *Biotechniques*, **40**, 73–78.
- Xu,Z., Wei,W., Gagneur,J., Clauder-Münster,S., Smolik,M., Huber,W. and Steinmetz,L.M. (2011) Antisense expression increases gene expression variability and locus interdependency. *Mol. Syst. Biol.*, **7**, 468.