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Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany

In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of
pregnancy. However, the underlying mechanisms driving this effect are poorly
understood. Evidence suggests that CD56bright NK cell frequencies increase during
pregnancy. Here, we analyze pregnancy-related NK cell shifts in a large longitudinal
cohort of pregnant women with and without MS, and provide in-depth phenotyping of NK
cells. In healthy pregnancy and pregnancy in MS, peripheral blood NK cells showed
significant frequency shifts, notably an increase of CD56bright NK cells and a decrease of
CD56dim NK cells toward the third trimester, indicating a general rather than an MS-
specific phenomenon of pregnancy. Additional follow-ups in women with MS showed a
reversal of NK cell changes postpartum. Moreover, high-dimensional profiling revealed a
specific CD56bright subset with receptor expression related to cytotoxicity and cell activity
(e.g., CD16+ NKp46high NKG2Dhigh NKG2Ahigh phenotype) that may drive the expansion
of CD56bright NK cells during pregnancy in MS. Our data confirm that pregnancy promotes
pronounced shifts of NK cells toward the regulatory CD56bright population. Although
exploratory results on in-depth CD56bright phenotype need to be confirmed in larger
studies, our findings suggest an increased regulatory NK activity, thereby potentially
contributing to disease amelioration of MS during pregnancy.
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INTRODUCTION

During pregnancy, the maternal immune system is regulated to
ensure immune tolerance toward fetal alloantigens and
maintenance of immune competence against infections (1).
Intriguingly, this state of endogenous immunomodulation also
affects maternal autoimmunity leading to a reduced activity of
various autoimmune disorders during pregnancy (2). In multiple
sclerosis (MS), relapses are diminished by 70%-80% in the third
trimester followed by increased MS activity postpartum (3, 4).

While clinically the protective effect of pregnancy on MS
disease activity is well-established, its underlying biological
mechanisms have remained difficult to decipher. In placental
mammals, evolutionary pressure on reproduction has driven the
development of specific pathways that establish immune
tolerance for a successful pregnancy (5, 6). However,
explanations of the temporary amelioration of MS during
pregnancy have mainly focused on a non-specific general
modulation of the maternal immune system, such as shifts in
circulating immune cell populations and cytokines [reviewed in
(7)], as well as immunomodulatory effects of pregnancy
hormones (8, 9). Recently, studies in murine and human
pregnancy have indicated that T cell responses are modulated
in a clone-specific fashion, suggestive of potentially antigen-
specific regulation in healthy pregnancy and autoimmunity
(10–13). Identifying regulatory drivers that orchestrate these
cell-mediated mechanisms during pregnancy could thus
provide crucial insights into the pathways of tolerance induction.

In this context, natural killer cells (NK cells) may serve as an
important modulator, as they exert immunoregulatory functions
and have been suggested to play a protective role in MS (14).
Human NK cells are generally divided into two major populations
(15): CD56dim NK cells are regarded as highly cytotoxic effector
cells in contact to transformed or virus-infected cells, while
CD56bright NK cells constitute the main regulatory subset that
can modulate other immune cells through cytokine secretion and
direct cytotoxicity. In this line, it has been reported that CD56bright

NK cells are able to suppress activated CD4+ T cells through
cytotoxic killing (16). In MS, this suppressive capacity toward T
cells was found to be diminished (17, 18) and temporary NK cell
deficits were associated with disease activity and clinical
exacerbation (19, 20) suggesting an impaired potential of NK
cells to limit T cell driven inflammation in autoimmunity.
Importantly, several MS therapies such as daclizumab, dimethyl
fumarate or interferon-beta seem to increase frequencies and
cytotoxicity of CD56bright NK cells (21–23). It is therefore
conceivable that NK cells might also contribute to disease
amelioration of MS during pregnancy. Indeed, evidence suggests
a shift in NK cell frequencies, with an increase of CD56bright NK
cells and a decrease of CD56dim NK cells from the first to the third
trimester that coincided with the reduced MS activity during that
period (24). However, these longitudinal findings (24) are limited
by the small sample size. More recent studies (25–27) all used
cross-sectional study designs in small samples, in some cases
lacked healthy control groups, and varied in terms of the exact
NK subset definitions used. Moreover, studies in this area (24–27)
have been restricted to solely enumerating the broad NK cell
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popu l a t i on s in s t e ad o f eva lua t ing more spec ifi c
phenotypic changes.

Here, we aimed to conduct a confirmatory analysis of
pregnancy-related NK cell shifts in a large longitudinal cohort
of pregnant women with and without MS, and to provide
additional exploratory evidence on in-depth phenotype
modulations of NK cells in MS. Investigating the role of NK
cells during pregnancy in health and MS could support a better
understanding of their regulatory capacities with potential
relevance for tolerance induction in autoimmunity.
MATERIALS AND METHODS

Subjects and Recruitment
To assess the dynamics of NK cells over the course of pregnancy,
women from 3 longitudinal cohorts were included in the present
immunophenotyping study. Patients in the Hamburg MS cohort
were recruited through the Multiple Sklerose Tagesklinik of the
Universitätsklinikum Hamburg- Eppendorf. Patients in the
Berlin pregnancy cohort in MS (PreCoMS) were recruited by
the Charité NeuroCure Research Center. Healthy pregnant
women were recruited as part of the Prenatal Identification of
Children’s Health (PRINCE) study at the Klinik für Geburtshilfe
und Pränatalmedizin, Universitätsklinikum Hamburg-
Eppendorf. The study was approved by the local ethics
committees (Ethikkommission der Ärztekammer Hamburg;
PV3558 , PV3694 ; Eth ikkommiss ion der Chari t é –
Universitätsmedizin Berlin, EA1/173/13) and all participants
gave written informed consent prior to enrolment. Participants
were examined in the respective medical centers by a neurologist
or gynecologist (PRINCE) at three timepoints during pregnancy
(Tri 1: gestational week 8-14; Tri 2: gestational week 20-24, Tri 3:
gestational week 30-36). MS patients were additionally seen after
child-birth: 3 months postpartum in Hamburg and 3, 6, 9 and 12
months postpartum in Berlin. During clinical visits, blood was
sampled and a neurological/gynecological exam was performed.
For analysis, all subjects with complete flow cytometry data
within pregnancy and at 3 months postpartum (for MS
patients) were selected. Data for the healthy cohort shown here
refer to women without autoimmune diseases, however, the same
pattern was observed if women with any chronic disease were
excluded, such as hypo-/hyperthyroidism (17/180 women) and
asthma/emphysema (9/180 women). Details of demographic
data and descriptors of MS severity are listed in Table 1.

Sample Collection and Flow Cytometry
Peripheral blood of healthy controls and MS patients in Hamburg
were sampled into EDTA tubes (Sarstedt, Germany). Thereafter,
blood samples were stained freshly in the dark at 4°C with an
antibody cocktail containing CD3 AF647 (clone UCHT1), CD4
V500 (clone RPA-T4; BD Biosciences, USA), CD8 APC-Cy7
(clone RPA-T8), CD14 PB (clone HCD14), CD16 FITC (clone
3G8), CD19 PE-Cy7 (clone HIB19), CD45 PerCP-Cy5.5 (clone
HI30), CD56 PE (clone HCD56; Biolegend, USA if not stated
otherwise). After staining, leukocytes were fixed and erythrocytes
July 2022 | Volume 13 | Article 907994
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lysed with BD FACS Lysing Solution (BD Bioscience, USA), then
washed twice in PBS (520 x g, 5 min, 4°C). Subsequently, samples
were measured on a FACS Canto II (BD Bioscience, USA).

In the Berlin MS cohort, peripheral blood mononuclear cells
(PBMCs) were isolated from heparinized whole blood by density
centrifugation (Biochrom GmbH, Germany) and cryopreserved
in RPMI-1640 media (Gibco Life Technologies, Germany) with
20% fetal bovine serum (Sigma Aldrich, Germany) and 10%
dimethyl sulfoxide (Sigma Aldrich, Germany) in liquid nitrogen.
For flow cytometric assessment of NK cells, frozen PBMCs were
thawed and washed with RPMI-1640 media with 10% fetal
bovine serum. Sample integrity after thawing was determined
microscopically with trypan blue, and through cell viability
staining with Zombie NIR Fixable Viability Kit (Biolegend,
USA). PBMCs were sequentially stained with FcR Blocking
Reagent (Miltenyi Biotec, Germany) to minimize unspecific
binding of antibodies, and with the following antibodies
(Biolegend, USA if not stated otherwise) diluted in PBS with
0.5% BSA (Gibco Life Technologies, Germany/Sigma Aldrich,
Germany): CCR7 BV421(clone G043H7), CD127 BV785 (clone
A019D5), CD14 Alexa700 (clone 63D3), CD16 BUV395 (clone
3G8; BD Biosciences, USA), CD19 Alexa700 (clone HIB19),
CD20 Alexa700 (clone 2H7), CD27 PE (clone M-T271), CD3
Alexa700 (clone UCHT1), CD56 PE/Dazzle594 (clone 5.1H11),
CD94 APC (clone DX22), CX3CR1 BV605 (clone 2A9-1; BD
Biosciences, USA), DNAM1 PerCP/Cy5.5 (clone 11A8), NKG2A
PE/CY7 (clone Z199; Beckman Coulter, USA), NKG2C Alexa488
(clone #134591; R&D Systems, USA), NKG2D BV510 (clone
1D11), NKp46 BV650 (clone 9E2). Antibodies for cell surface
staining were incubated in the dark at room temperature for
15 min. Data acquisition was performed on LSR Fortessa (BD
Biosciences, USA).

Magnetic Resonance Imaging (MRI)
Patients in the Berlin MS Cohort were invited to MRI scans for
all timepoints outside pregnancy. MRI scans were generally
Frontiers in Immunology | www.frontiersin.org 3
obtained on the same day as blood sampling or at maximum
within 8 days. All MRI data were acquired on the same 1.5 Tesla
scanner (MAGNETOM Sonata Siemens, Erlangen, Germany)
using a volumetric high-resolution T1 weighted magnetization
prepared rapid acquisition gradient echo (MPRAGE) sequence
(repetition time [TR] = 2,110 ms; echo time [TE] = 4.38 ms;
inversion time [TI] = 1100 ms; FOV=256 x 256 mm2; slice
thickness 1mm) as well as an axial T2 weighted turbo inversion
recovery magnitude sequence (TIRM) (TR/TE/TI = 10,000/108/
2,500 ms; field of view [FOV] = 256 × 256 mm2, slice thickness
3.0 mm). Lesion segmentation for total lesion volume was semi-
automatically performed on T2 TIRM images of all patients by
MATLAB-based Lesion Segmentation Toolbox (LST) for
Statistical Parametric Mapping (28) and checked and verified
by three expert raters under the supervision of a board-certified
neuroradiologist using ITK-SNAP (www.itksnap.org) (29).

Data Analysis and Statistics
Flow cytometric data of the Hamburg and Berlin cohorts were
first compensated and then manually gated for the major NK cell
populations CD56bright and CD56dim using FlowJo Software
(Treestar, USA). In both cohorts, CD3+ T cells were excluded
before selecting NK cells (gating in the Berlin cohort also
excluded CD19+, CD20+, and CD14+ cells; for gating strategy,
see Supplementary Figure 1).

High-dimensional NK cell data from Berlin MS patients were
explored by a computational analysis utilizing the unsupervised
clustering algorithm FlowSOM (30). FlowSOM assigns each cell
in to clusters of phenotypically similar cells using self-organizing
maps (SOM), a type of artificial neural network. A second
metaclustering step allows for identification of larger clusters
resembling biologically relevant cell populations which can
subsequentially be analyzed for differential marker expression
and changes in cell frequencies. FlowSOM was performed in
Cytobank (Cytobank Inc., USA) with clustering of pre-gated Lin-

CD56+ NK cells based on their expression of 12 surface markers
TABLE 1 | Demographics and MS descriptors.

Healthy cohort Hamburg MS cohort Hamburg MS cohort Berlin

Participants (n) 180 24 8
Age (years, mean; SD) 31.1; 3.7 30.2; 4.8 32; 3.7
Mothers pregnant with first child (n; %) 115; 64% 21; 88% 6; 75%
Sex of the child
(n, boy/girl/n.d.)

103/77/0 10/11/3 5/3/0

Disease course (n; RRMS/CIS/other) n.a. 20/3/1 7/1/0
Disease duration (years, mean; SD) n.a. 2.9; 2.5 5.5; 3.8
EDSS at Tri 1 (score, median; IQR) n.a. 1.0; 2.0 1.5; 0.1
EDSS at PP 3 (score, median; IQR) n.a. 1.0; 2.0 0.5; 1.6
EDSS at PP 6 (score, median; IQR) n.a. n.d. 0.8; 1.8
Last DMT before pregnancy (n, none/GA/IFNb/DMF/aHST) n.a. 12/5/5/1/1 3/3/1/1/0
DMT at PP 3 (n, none/GA/IFNb/DMF) n.a. 18/3/1/1 8/0/0/0
Breastfeeding at PP 3 (n, yes/no/n.d.) n.a. 18/4/2 7/1/0
Relapse in 2 years prior to pregnancy
(n, yes/no/n.d.)

n.a 16/7/1 6/2/0

Relapse in pregnancy (n, yes/no) n.a. 2/22 0/8
Relapse until PP 3 (n, yes/no) n.a. 4/20 0/8
July 2022 | Volume 1
aHST, autologous hematopoetic stemcell transplantation; CIS, clinically isolated syndrome; DMF, dimethylfumarate; DMT, disease modifying therapy; EDSS, Expanded Disability Status
Scale; GA, glatiramer acetate; IFNb, interferon beta; IQR, interquartile range; n.a., not applicable; n.d., no data; other, patients with suspected primary progressive MS; RRMS, relapsing-
remitting multiple sclerosis; SD, standard deviation; PP 3, 3 months postpartum.
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(e.g., CD56, CD16, NKG2C NKp46, DNAM, NKG2D, NKG2A,
CD27, CX3CR1, CCR7, CD94, and CD127). SOM clustering was
conducted using a 9 X 9 grid, resulting in 81 total clusters that
were then grouped into 20 metaclusters by consensus clustering.
Metaclusters were visualized in a minimal spanning tree (MST)
in which clusters that are close contain phenotypically similar
cells (see Supplementary Figure 2). For further analysis, cell
frequencies of each metacluster were exported and assessed in R
for statistically significant frequency changes to identify
pregnancy-associated NK cell subsets. Finally, metaclusters
exhibiting significant frequency changes were manually
characterized for marker expression (i.e., median fluorescence
intensity) using MST visualizations conducted by Cytobank and
heatmap obtained in R. In the results section of this article,
metaclusters are simply referred to as clusters.

Statistics were performed in R version 4.0.5. Differences in cell
frequency between timepoints were compared by paired
Wilcoxon tests.
RESULTS

Pregnancy Induces an Expansion of
CD56bright NK Cells in Healthy Women and
Women With MS
The three cohorts were comparable with respect to mothers’ age,
parity, and sex of the child (see Table 1). First, we conducted flow
cytometric assessment of the two major NK cell populations,
CD56bright and CD56dim NK cells, during the first, second and
Frontiers in Immunology | www.frontiersin.org 4
third trimester of pregnancy in the group of healthy women
(n=180, healthy cohort, Hamburg) and in one of the groups of
female MS patients (n=24, MS cohort, Hamburg). For MS
patients, NK cell populations were additionally measured at
three months postpartum.

Comparing early vs. late pregnancy, we found a significant
increase of CD56bright NK cell frequencies from the first to the
third trimester in women with MS as well as in healthy controls
(Figure 1A). Despite the large difference in sample size, the effect
size of this pregnancy-related increase in CD56bright NK cells was
comparable for MS (d = -0.54; 95% CI [-0.99, -0.11]) and HC
(d = -0.54; 95% CI [-0.7, -0.39]). Mirroring the shifts of the
CD56bright population, CD56dim NK cell frequencies decreased
toward trimester 3 in MS patients and healthy controls (d = 0.54;
95% CI [0.11, 0.99] and d = 0.54; 95% CI [0.39, 0.7] for MS and
HC, respectively, Figure 1B). Additional postpartum follow-ups
in the MS cohort demonstrated a reversal of pregnancy-
associated shifts in the NK cell compartment: CD56bright NK
cell frequency was diminished and CD56dim NK cell frequency
increased at three months postpartum compared to late-
pregnancy (d = 0.51; 95% CI [0.07, 0.96] and d = -0.51; 95%
CI [-0.96, -0.07] for CD56bright and CD56dim, respectively,
Supplementary Figure 3). Together, our data illustrate that
NK cells undergo pronounced frequency changes during and
after pregnancy, in particular pointing toward a pregnancy-
induced expansion of regulatory CD56bright NK cells in the
third trimester. As comparable results from MS and HC
indicate, this shift seems to display a general phenomenon of
healthy pregnancy rather than an MS-specific effect.
BA

FIGURE 1 | CD56bright NK cells increase throughout pregnancy. Frequency of CD56bright NK cells (A) and CD56dim NK cells (B) in healthy pregnant women (HC,
gray) and pregnant MS patients (MS, blue, Hamburg cohort) shown for each trimester of gestation. Boxplots depict median and inter-quartile range, overlaid with
datapoints of individuals. Statistical analysis performed by Wilcoxon paired test between trimesters 1 and 3.
July 2022 | Volume 13 | Article 907994
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In-Depth NK Cell Profiling Shows
Alterations of NK Cell Phenotype Related
to Cell Activity and Cytotoxicity
CD56bright and CD56dim NK cells constitute broad phenotypes of
human NK cells. To shed light on the detailed NK cell phenotype
in MS pregnancy, we next employed a data-driven approach to
characterize NK cell phenotypes in depth during pregnancy in
MS. Here, we measured 12 markers relevant for NK cell
activation, maturation and migration in a second cohort of
female MS patients which received a higher frequency of
follow-ups and additional MRI scans postpartum (n = 8, MS
cohort, Berlin, see Table 1). Importantly, the analysis in this
cohort confirmed the broad shifts in NK cell phenotypes
CD56bright and CD56dim, with increased CD56bright NK cell
frequencies and diminished CD56dim frequencies in the third
trimester followed by reversal of these changes postpartum (see
results of manual analysis in Figures 2A, B). Analysis of MRI
scans showed an increase of T2-weighted lesion volume at six
months postpartum, which coincided with the postpartum
reduction of CD56bright NK cells, whereas the number of
lesions did not change (Supplementary Figures 4A, B).

On the detailed phenotypic level, computational analysis by
means of the clustering algorithm FlowSOM identified 20 NK
cell clusters with distinct marker expression profiles (see
FlowSOM clusters in Figures 3A, B). Out of these, six clusters
exhibited changes in their cell frequency over the course of
pregnancy (six clusters with the smallest p-values, Figure 3C).
To define the pregnancy-related phenotype of NK cells, we
selected all clusters with significant frequency changes during
and after pregnancy (see cluster 4, 11 and 7, Figure 3C), and
characterized their marker expression.

Within the CD56bright compartment, cluster 4 and 11
significantly increased from the first to the third trimester
followed by a postpartum reduction (see Figure 3C). Taken
together, cluster 4 and 11 formed more than half of the
Frontiers in Immunology | www.frontiersin.org 5
CD56bright NK cells during pregnancy as they accounted for
6.8% of all CD56+ cells (versus 6.2% for the remaining CD56bright

clusters 18, 19, 12, and 9). Their phenotype was characterized by
a dim expression of CD16, a receptor indicative for cell
cytotoxicity, as well as by high expression levels of receptors
that regulate cell activity, i.e., the activating receptors NKp46 and
NKG2D, and the inhibitory receptor NKG2A (with NKG2D only
being highly expressed on cluster 11; see cluster 4 and 11,
Figure 3B). Due to this similar pattern of receptors for cell
activity and cytotoxicity, cluster 4 and 11 can be regarded as one
specific CD56bright subset that might be of functional relevance
during pregnancy (notwithstanding the differential expression
CD127, CCR7 and CD27, see Figure 3B). Interestingly, cluster 7
with a mixed composition of CD56bright and CD56dim NK cells
displayed high levels of NKp46, NKG2D and NKG2A
comparable to the CD56bright clusters 4 and 11 indicating that
a minor fraction of CD56dim NK cells shares the same expression
pattern predominantly found on CD56bright NK cells (see cluster
7, frequency changes of cluster 3 with a comparable marker
expression did not reach statistical significance, Figures 3B, C).
Reflecting the similar phenotype, the mixed cluster colocalized in
the same MST region as the respective CD56bright clusters (see
Figure 3A). Out of 11 clusters containing only CD56dim NK cells,
no significant changes were observed during pregnancy and only
one CD56dim cluster (cluster 6) showed a significant postpartum
decrease. Together, these high-dimensional phenotypic data
from women with MS imply that the broad populations of
CD56bright and CD56dim NK cells undergo even more fine-
grade changes of their phenotype during pregnancy that may
alter cell activity and cytotoxicity.

DISCUSSION

Our data confirmed that pregnancy in healthy women and MS
induces a profound shift of NK cells toward the regulatory
BA

FIGURE 2 | Pregnancy-induced shifts of NK cells throughout and after gestation in Berlin MS cohort. Frequency of CD56bright NK cells (A) and CD56dim NK cells
(B) in pregnant MS patients (MS, Berlin cohort) shown for each trimester of gestation and 1 year postpartum. Boxplots depict median and inter-quartile range,
overlaid with datapoints of individuals. Gray boxes represent pregnancy. Statistics performed by Wilcoxon paired test between trimesters 1 and 3, as well as
trimester 3 and 3 months postpartum.
July 2022 | Volume 13 | Article 907994
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population of CD56bright NK cells. Extending previous findings
of pregnancy-related NK cell changes by exploratory high-
dimensional phenotyping, we found a specific subset of
CD56bright cells that formed the predominant CD56bright

phenotype during pregnancy in MS, and was characterized by
a dim expression of the cytotoxicity receptor CD16 and high
levels of receptors that regulate cell activity, e.g., NKp46, NKG2D
and NKG2A.

Although NK cells are discussed as potential regulators of
autoimmune activity in MS (14, 16, 20), previous studies on
pregnancy in MS have delivered conflicting results of how NK
cell frequencies behave during this period of endogenous
immune tolerance (24–27), likely due to incoherent study
design. Here, we verified in two independent, longitudinal MS
pregnancy cohorts that CD56bright NK cell frequencies increase
and CD56dim NK cell frequencies decrease toward the third
trimester followed by a reversal of these changes postpartum.
Moreover, drawing on the so far largest longitudinal cohort of
healthy pregnant women, we demonstrated a comparable pattern
of a relative CD56bright expansion and CD56dim reduction for
healthy pregnancy. Importantly, our data together with the
results of others (24–26, 31, 32) imply that the observed NK
cell shifts represent a general immune adaptation to pregnancy
which can also be found in pregnant women with MS.

To yield deeper understanding of the role of NK cells during
pregnancy in MS, analyses need to go beyond monitoring the
prototypic NK cell phenotypes of CD56bright and CD56dim. This
Frontiers in Immunology | www.frontiersin.org 6
becomes apparent in light of new data that reveal a far more
complex phenotypic and functional diversity of human NK
subsets that may be relevant for health and disease (33, 34).
Here, we provided first in-depth profiling of the NK cell
phenotype in MS pregnancy showing that the expansion of
CD56bright NK cells may be driven by a CD16+ NKp46high

NKG2Dhigh NKG2Ahigh subset. Additionally, a minor fraction
of expanding CD56dim NK cells also showed a comparable
phenotype. As the sample for phenotyping was relatively small,
our results should be regarded as exploratory. However, similar
phenotypic NK data from healthy pregnancy (35) and pregnancy
with type 1 diabetes (31) support the pattern of elevated
expression of NKp46, NKG2D and NKG2A on NK cells.

The cell surface receptors we measured herein are indicative
of cellular function, and our exploratory data on NK cell receptor
expression should thus help to generate new hypotheses how NK
cells may contribute to reinstall immune tolerance during
pregnancy in MS. NK cell activity is tightly regulated through
dynamic input from activating and inhibitory receptors (36). As
inhibitory signals are necessary to render NK cells more
responsive to increased activating stimuli (37), simultaneous
upregulation of activating (e.g., NKp46 and NKG2D) and
inhibitory receptors (e.g., NKG2A) during pregnancy could
lead to increased NK cell responsiveness. Consequently, the
CD56bright NK cells observed in MS pregnancy might exert
enhanced activity (i.e., cytokine production, or suppression of
other immune cells through direct NK cytotoxicity). Along
BA

C

FIGURE 3 | Clusters within CD56bright and CD56dim NK cell populations display dynamic shifts in MS pregnancy. In a detailed phenotypic analysis during and after
pregnancy in MS patients (Berlin cohort), FlowSOM identified 20 distinct clusters among pre-gated Lin- CD56+ NK cells. Clusters are numbered and indicated by shades of
grey and differently coloured backgrounds (for details of FlowSOM see Supplementary Figure 2 and Methods) (A). Surface marker expression of each cluster is shown in
the heatmap. For all markers except CD56, dark blue indicates negative expression and dark red indicates highly positive expression. For CD56, dark blue to green
indicates dim expression (as all analyzed cells are CD56+) and dark red indicates bright expression (B). Clusters with frequency changes throughout pregnancy and the
postpartum period (six clusters with smallest p-values shown). Cluster frequency referred to as percentage of Lin- CD56+ NK cells (C). Cluster 3 and 7 contain CD56bright

and CD56dim NK cells as indicated by a medium CD56 expression in the heatmap (yellow to orange). Mixed composition of cluster 3 and 7 has been additionally confirmed
by manual gating. Boxplots depict median and inter-quartile range, overlaid with datapoints of individuals. The gray box represents pregnancy. Statistical analysis performed
by Wilcoxon paired test between trimesters 1 and 3, as well as trimester 3 and 3 months postpartum.
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similar lines, the elevated CD16 expression on CD56bright NK
cells described here could indicate an enhanced cytotoxic
capacity of CD56bright cells in pregnant MS patients, given that
this receptor for antibody-dependent cellular cytotoxicity (38)
serves as an indicator of the overall cytotoxic potential of NK
cells (39). Although we did not measure NK cell functions and
activity of NK cells during healthy pregnancy has been a matter
of debate (40, 41), NK cells from pregnant women might exhibit
increased cytotoxicity upon adequate stimulation as lately shown
in direct contact to influenza-infected PBMCs (35, 42).

On a mechanistic level, the specific CD56bright phenotype of
pregnancy in MS may lead to an increased regulatory NK cell
activity, e.g., through enhanced cytotoxic suppression of
activated T cells by CD56bright NK cells, a cell interaction that
was found impaired in MS (17, 18). NKp46, NKG2D and
NKG2A are crucial for NK cell mediated suppression of
autologous T cells (16). When T cells become activated, they
increase their expression of NKG2D and NKG2A ligands,
thereby allowing NK cells to control T cell activation through
direct cytotoxicity (43, 44). In consequence, the specific
CD56bright subset we characterized herein might be able to
suppress autoreactive T cells more efficiently, possibly
contributing to the decreased inflammatory MS activity during
pregnancy. Moreover, highly expanded T cell clones in MS
patients were recently shown to contract during pregnancy
(13), and NK cell mediated suppression could offer a potential
explanation of these T cell repertoire changes. However, as MS
patients exhibit increased levels of the inhibitory NKG2A ligand
HLA-E (17, 45), it remains unknown how this aberrant
expression may impact the actual NK cell activity in MS
pregnancy. Another target of NK mediated tolerance induction
could be dendritic cells (DC). NK cells shape the maturation of
DCs through direct cytotoxicity that is dependent on NKp30, but
also on NKp46 and NKG2A (46, 47), thus controlling antigen
presentation to T cells which might constitute an alternative
pathway how CD56bright NK cells observed here limit
autoreactive T cell responses.

Some limitations of our study should be considered. Although
NK cell receptors are linked to cell function, we cannot infer
functional consequences from the exploratory data on pregnancy-
related NK phenotype modulations. It would thus be valuable to
investigate NK cell functions in MS pregnancy. Such studies could
also profit from exploring the relationship between NK cell
characteristics and measures of MS disease activity (e.g., CNS
lesions in MRI), an association that we could not analyze due to
limited statistical power. With respect to the potential molecular
drivers, it remains unclear whether NK cell changes during
pregnancy represent specific immune adaptations that were
evolutionary selected to sustain placental pregnancy [as
compared to (5)], or represent an epiphenomenon of
pregnancy-induced shifts in cytokines (48) and elevated levels of
circulating hormones (49). Especially, hormones like estrogens,
progesterone and cortisol have been intensely discussed to
contribute to the amelioration of MS during pregnancy (8),
however, their precise effect on NK cells is difficult to predict as
various studies reported either a suppression (50–52) or
Frontiers in Immunology | www.frontiersin.org 7
stimulation (53, 54) of NK cell responses. Furthermore, studies
in human subjects, especially in pregnant women, are inherently
restricted to correlational observations, thus, precluding any causal
links. However, as pregnancy leads to rapid and pronounced
changes of disease activity in MS, it may constitute an
informative research paradigm to unveil protective NK cell
responses. Herein, we found a CD56bright NK cell phenotype to
be associated with clinical remission (e.g., pregnancy) that might
lead to an increased regulatory NK cell activity during this period.
In consequence, our findings further establish the relevant role of
NK cells in MS pathogenesis, and sketch possible pathways for NK
cell mediated modulation of autoimmunity during pregnancy.
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