
ARTICLE

Temperature elevations can induce switches to
homoclinic action potentials that alter neural
encoding and synchronization
Janina Hesse1,2,5,6, Jan-Hendrik Schleimer1,2, Nikolaus Maier 3,4, Dietmar Schmitz 2,3,4 &

Susanne Schreiber 1,2✉

Almost seventy years after the discovery of the mechanisms of action potential generation,

some aspects of their computational consequences are still not fully understood. Based on

mathematical modeling, we here explore a type of action potential dynamics – arising from a

saddle-node homoclinic orbit bifurcation - that so far has received little attention. We show

that this type of dynamics is to be expected by specific changes in common physiological

parameters, like an elevation of temperature. Moreover, we demonstrate that it favours

synchronization patterns in networks – a feature that becomes particularly prominent when

system parameters change such that homoclinic spiking is induced. Supported by in-vitro

hallmarks for homoclinic spikes in the rodent brain, we hypothesize that the prevalence of

homoclinic spikes in the brain may be underestimated and provide a missing link between the

impact of biophysical parameters on abrupt transitions between asynchronous and syn-

chronous states of electrical activity in the brain.
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Action potentials are the central information unit in our
brain1,2. Despite the large complexity of the underlying
composition of ion channels—all-or-none spike genera-

tion in regularly firing neurons comes along in only three dif-
ferent dynamical types, defined by qualitative features of the
transition that induces firing at threshold3–5. While two of these
types have been extensively considered and seemingly sufficed to
characterize the behavior of many experimentally observed
neurons6,7, including the class 1 and 2 excitability described in
ref. 8, the prevalence and computational potential of the
remaining type has been ignored. We argue that this neglect is
unjustified, because these homoclinic action potentials (as we
term them here) can be easily induced in common conductance-
based neuron models and strongly impact the behavior of the
embedding network even when synaptic connections remain
unchanged.

The dynamics of action potentials are shaped by the biophy-
sical properties of the neurons that generate these pulses (Fig. 1).
The qualitative features of action potentials, however, depend on
the dynamical transition from the subthreshold range to a regular
firing regime and thus on the details of how spiking is induced at
the threshold. Mathematically, this transition happens at a
bifurcation, i.e., a point of qualitative change in a system’s
dynamics. For the induction of regular firing with nonvanishing
action-potential amplitude, three such onset bifurcations can
occur: the so-called Saddle-Node-on-Invariant Cycle bifurcation
(SNIC), the subcritical Hopf bifurcation, and the saddle-
HOMoclinic orbit bifurcation (HOM). The first two give rise to
what we term the “classical” action-potential types, the latter
yields homoclinic action potentials with the interesting properties
discussed in this study.

The qualitative properties of action potentials depend on the
underlying bifurcation. For example, the two classical bifurcation
types differ in the onset firing frequency at the threshold, which
can be arbitrarily low (SNIC) or immediately jumps to larger
values, excluding very low rates (subcritical Hopf), see Fig. 1b.
Both types also differ in their encoding, like the spike-triggered
average stimulus waveform (STA), their tendency to give rise to
subthreshold oscillations of the membrane potential, or their
contribution to a synchronization of the embedding network3–5.
For homoclinic spike generation, not much is known in the
context of neural processing. Homoclinic spikers might be par-
ticularly interesting for the processing of high frequencies because
in contrast to the spike-triggered averages of Hopf and SNIC
spikers, which show oscillations with a period around the mean
interspike interval, the STA of a homoclinic spiker shows a fast
transient that contains high frequencies (Fig. 1a). While the
underlying mathematical bifurcation is well-known and explored
in other dynamical systems across diverse fields (from lasers and
semiconductors to predator-prey systems9–11), its role in the
brain has been surprisingly unattended. Mathematically, a pre-
requisite of homoclinic spikes is the existence of a saddle fixed
point. The saddle is marked by attractive dynamics in one
direction and repulsive dynamics in another. A trajectory that
leaves the saddle along a repulsive direction and loops around to
return to the saddle along an attractive direction forms a
homoclinic orbit (Fig. 2a, right)5. The homoclinic orbit corre-
sponds to homoclinic spiking in the limit of zero firing rate, and
repetitive homoclinic spiking occurs when the homoclinic orbit
detaches from the saddle to form a stable limit cycle5. The global
nature of the HOM bifurcation may have rendered its mathe-
matical exploration more difficult in comparison to the other two
local bifurcations. Equally if not more important, however, is the
impression established early on that the two classical bifurcations
seemingly suffice to capture the two physiological excitability
classes described by Hodgkin, SNIC falling into class 1 and the
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Fig. 1 Action-potential dynamics of regularly firing cells come in three
mathematical types with different spike onset bifurcations, saddle node
on invariant cycle (SNIC), saddle-homoclinic orbit (HOM), and
subcritical Hopf bifurcation. a Biophysical properties set the spike onset
dynamics, including the spike-triggered averages (STAs) close to the
threshold. b The three spike onset dynamics differ in their firing-rate-input
curves (f–I curves), c typical phase-response curves (PRCs, top), and phase
planes (bottom); closed circles denote stable fixed points, open circles
unstable fixed points, and half-filled circles a saddle node. Arrows indicate
the direction of the dynamics.
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subcritical Hopf falling into class 2. In contrast, the homoclinic
bifurcation did not allow such a clear distinction, because its
somewhat more complex properties result in a double nature with
respect to the most prominent distinction between Hodgkin’s
class 1 and 2 excitability: When gradually increasing an input
(starting in the subthreshold range), neurons with HOM
dynamics present themselves as class 2, exhibiting a jump in
frequency at the threshold. When starting from a regular firing
mode, gradually decreasing the input, HOM neurons present as
class 1, exhibiting arbitrarily low rates before the smooth transi-
tion to rest (Fig. 1b). This property makes them easy to overlook,
given that they readily appear to match one of the two classical
types in the most commonly used stimulus protocols for f–I
characterization5.

The most interesting property of homoclinic action potentials,
however, is not the mixture of class 1 and 2 excitability. As we
demonstrate here in conductance-based neuron models, homo-
clinic action potentials possess a characteristic that distinguishes
their dynamics from both classical excitability classes and results
in novel properties that are likely to play a role for the infor-
mation transferred by such action potentials as well as the effect
of cells with these spike dynamics on the dynamics of the
embedding network. We argue that the temporal sensitivity of
neurons with homoclinic action-potential dynamics is distinct
and favors synchronization patterns of networks (including in-

phase synchronization across all cells as well as so-called fru-
strated network states with diverse combinations of fixed phase
relations between cells; both are explained in more detail
below)12. As the change in temporal sensitivity occurs abruptly
when leaving the classical SNIC spiking regime, the induction of
homoclinic firing can trigger synchronization patterns by com-
paratively small changes in parameters, like a temperature ele-
vation of only 2 °C, which, for example, for inhibitory networks
results in strong network rhythms. While here exemplified by
modifications in temperature, homoclinic action potentials can be
easily induced by changes in other physiological parameters. We
use our model predictions to complement our analysis with
in vitro experimental hallmarks suggesting the possibility of
homoclinic spikes at elevated temperatures in hippocampal CA1
pyramidal cells.

Results
The intrinsic dynamics of neurons defines their computational
properties13,14. For regularly firing neurons, an important part of
their dynamics is reflected in the neuron’s temporal sensitivity to
inputs, captured by the so-called phase-response curve (PRC). At
depolarization levels above the threshold, the PRC quantifies how
strongly a small, transient input affects the timing of the next
spike. The resulting delay or advance in the next spike’s timing
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Fig. 2 Network synchronization depends on the type of cell-intrinsic dynamics. a Phase portraits of the saddle-node-on-invariant cycle (SNIC) and
homoclinic dynamics illustrate the co-existence of a stable resting (full circle) and spiking attractor in the homoclinic case, once the limit cycle detaches
from the saddle fixed point (red homoclinic orbit in the right panel). b Phase-response curves (PRCs) of model neurons with a SNIC spike onset (blue), and
a homoclinic spike onset (red). c The asymmetric PRC of the homoclinic neuron (compare b, red trace) results in a larger locking range than the symmetric
PRC of the SNIC neuron (compare b, blue trace). d Spiking responses of a fully coupled inhibitory network of model neurons with SNIC (blue) or homoclinic
(red) spike onset. Distinct network synchronization results entirely from differences in cell-intrinsic dynamics. e A temperature rise changes firing from
SNIC to homoclinic in diverse conductance-based models. Locking range as a function of temperature (relative to the model’s critical transition
temperature from SNIC to homoclinic spiking).
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depends on the specific timing of the input during the interspike
interval (i.e., early or late)4,15,16. Interestingly, the PRC is, on the
one hand, characteristic for the bifurcation that underlies action-
potential generation. On the other hand, due to the relevance of
temporal relationships for neuronal interactions, it also predicts
the collective temporal behavior of neurons when they are weakly
connected in a network17.

The PRC is specific to each spike dynamical type. At the
bifurcation (i.e., at threshold) the PRC tested with infinitesimal
input amplitude has a canonical form that is specific to the
dynamical type (Fig. 1c). The PRC of the classical SNIC has a
characteristic one-minus-cosine shape that peaks at the middle of
the interspike interval. Subcritical Hopf bifurcations are marked
by PRCs that exhibit negative and positive parts, representing
both advances and delays. In the homoclinic case, spike genera-
tion comes along with a PRC that gives rise to large advances of
the next spike when the input occurs right after the last action
potential. This effect decreases monotonically over the interspike
interval. In other words, the temporal sensitivity to inputs is
particularly pronounced in a period where neurons are com-
monly considered refractory. Refractoriness is not lost per se; an
input does not trigger an immediate action potential. Yet depo-
larizing inputs arriving early in the firing cycle have the largest
influence on the timing of the following spike.

PRC asymmetry impacts network synchronization patterns.
When comparing the PRCs across the three dynamics, there are
apparent differences in the symmetries of the curves. The PRC of
the classical SNIC is symmetric with respect to phase 0 (note that
the PRC is a periodic function, it repeats below zero; for easier
read-off, symmetry can also be evaluated against a vertical axis
centered at phase 0.5). In contrast, the PRCs of the subcritical
Hopf and the HOM are not symmetric. The PRC of the homo-
clinic case is particularly asymmetric because the timing sensi-
tivity before and after a spike (i.e., to the left and right of 0) differ
strongly. Interestingly, the PRC asymmetry is a property that is
known to predict the population activity of neurons in fully
coupled networks18. Under the assumption of fast synaptic
transmission, a fixed phase relationship between the firing of
neurons in the network can be expected if the asymmetry of the
PRC is strong18. In other words, the more asymmetric the PRC
shape, the stronger can be the phase locking of these neurons in
the network.

This fact provides an intuition for why networks with identical
connectivity can exhibit distinct behaviors for neurons of
different spike generation types: Inhibitory coupling of neurons
with weakly versus strongly asymmetric PRCs (Fig. 2b, c) leads to
distinct synchronization patterns in the mathematical simulation
(Fig. 2d). The resulting population activity of the two networks
differs, although the network topology is the same and neurons
even fire action potentials at identical rates. For fast synaptic
transmission, PRC asymmetry correlates with the so-called
locking range. In the limit of instantaneous transmission, the
locking range can be derived from the odd (i.e., asymmetric) part
of the PRC as the difference between the latter’s maximum and
minimum (because a frequency detuning between coupled
oscillators in this range still leads to stable phase relations
between oscillators, see “Methods” for further details). In other
words, the locking range here scales with PRC asymmetry and
directly quantifies the range of frequencies across which a fixed
phase locking between two coupled neurons can be observed.
Note that units of the locking range are given in Hz; units of the
PRC are Hz per unit of stimulation (like Hz/pA or Hz/mV).
Importantly, PRC asymmetry is a property of single-cell

dynamics, yet because of its relation to the locking range in the
all-to-all coupled network scenario with fast synaptic transmis-
sion (Fig. 2d), it causally relates to properties of network
synchronization patterns.

A direct transition from the classical SNIC to homoclinic
spikes. A neuron’s computational properties depend on the
specific composition of cellular parameters. The latter live in a
high-dimensional space, as many biophysical parameters
influence electrical activity. When comparing cells with the two
classical dynamics, SNIC and subcritical Hopf, it can be
assumed that they differ significantly at least in some dimen-
sions of cellular parameters, as, topologically, the two dynamics
are located in separate regions of the parameter space that are
not neighboring. The situation is different for the relation
between the classical SNIC and homoclinic dynamics. These are
direct neighbors and, consequently, small changes in one
parameter can suffice to tune a neuron’s SNIC action potentials
into homoclinic ones when the neuron is placed close to the
transition border. In fact, we already know that three para-
meters can cause such a switch in conductance-based neuron
models: membrane capacitance19, membrane leak (as can be
deduced from the bifurcation analysis in ref. 20), and extra-
cellular potassium concentration21. As we demonstrate next, the
temperature is yet another parameter that can tune spiking
dynamics.

Temperature can be introduced in conductance-based neuron
models via a three-fold effect (on gating speed, gating peak
conductance, and reversal potentials, in order of decreasing
impact)22. Bifurcation analysis shows that in a neuron model with
classical SNIC dynamics, a temperature increase eventually
switches spiking dynamics to the homoclinic type. Figure 2e
illustrates this finding in three representative and well-established
mathematical neuron models, the vertical red line marking the
transition point. For two-dimensional conductance-based models,
like the sodium–potassium model in Fig. 2e, this switch can even
be mathematically proven to exist in any model of SNIC
dynamics whose temperature is increased (in analogy to the
proof provided by Hesse and colleagues19). Focussing on the
relationship between the switching point and the locking range,
the rate of change in the latter accelerates towards the transition
(i.e., the slope is particularly steep), favoring the locking of spikes
when approaching homoclinic dynamics. This property arises
from the fact that the system suddenly switches from a slow
trajectory (SNIC case) to the fast manifold (homoclinic case), see
Fig. 2a. Switching the spike downstroke to the fast manifold
effectively halves not only the time spent around the saddle node,
but also the PRC; accordingly, the homoclinic PRC at the switch
corresponds to the second half of the SNIC PRC, see “Methods”,
yielding an intuition for why the PRC changes from symmetric to
asymmetric (when switching from SNIC to HOM) and,
consequently, why the locking range strongly increases. Indeed,
the major part of the boost in the locking range occurs within a
narrow temperature interval of only 1 °C. Due to the strong effect
on PRC asymmetry (and therefore locking range), the switch in
dynamical type can be expected to be accompanied by a stark
increase in the ability to produce synchronized network patterns
when approaching the transition point (Fig. 2d), as discussed
further down.

Mathematically, the trend of an increasing asymmetry and
locking range continues into the homoclinic regime. We note,
however, that the described switch in manifolds results in an
instability of the numerical continuation, not permitting us to
portray the curve beyond the switching point, see “Methods” for
an approximate numerical method.
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The two-dimensional bifurcation structure. As we saw above,
each spike-generating bifurcation type is associated with unique
properties that affect the temporal sensitivity via the PRC.
Moreover, each bifurcation type is also marked by a specific
bifurcation structure that takes the presence of one or several of
so-called attractor states into account (like resting states, math-
ematically corresponding to fixed points, or regular spiking,
mathematically corresponding to a limit cycle). Changes in
bifurcation structure at transition points between different types
of spike-generating bifurcations affect characteristic features of
neuronal dynamics. Specifically, when switching from the clas-
sical SNIC to homoclinic dynamics, neurons exhibit a novel
property: their voltage becomes bistable. This means that at a
given level of stimulation, such as constant input current, two
different voltage dynamics can arise. Depending on the initial
conditions (like the initial voltage value when a stimulation was
started), homoclinic neuronal dynamics can either be regularly
spiking (i.e., settle onto a limit cycle in mathematical terms) or,
alternatively, converge towards a fixed voltage value (like in the
subthreshold regime). For homoclinic spike generation, this
bistability is present for inputs directly above threshold, because
the saddle-node bifurcation, at which the stable resting state is
destroyed, happens at a higher input current than the creation of
the limit cycle from the saddle (Fig. 2a). Such bistable dynamics
do not exist in the classical SNIC case. For constant inputs below
threshold, SNIC dynamics converge to a fixed voltage level; for
constant inputs above threshold (yet far from the excitation
block), the dynamics converge towards regular firing (i.e., a limit
cycle), irrespective of initial conditions. The structure of the

possible bifurcations when increasing the temperature of a SNIC
neuron is summarized in a two-dimensional bifurcation diagram
(spanned by the dimension of input current and temperature,
Fig. 3a). The bistable zone co-occurring with homoclinic
dynamics unfolds in a typical structure resembling the flower of
calla lilly (shaded region in Fig. 3a). In this bistable region, the
presence of noise can result in switching between the silent and
the spiking state despite the constancy of the input (Fig. 3b).
When the temperature is increased and spiking switches from the
classical SNIC to the homoclinic regime, the occurrence of such
an intermittently-interrupted firing mode is a prediction of the
model analysis. With the noise stimulus appropriately chosen, see
Supplementary Fig. S6, this firing mode can, therefore, also be
used as a hallmark of homoclinic spike generation that distin-
guishes it from the classical SNIC case. For completeness, we note
that inputs strong enough to trigger the excitation block (or
depolarization block), thereby silencing the neurons, are not
considered here.

Experimental hallmarks of homoclinic firing with temperature
increase. To explore whether a temperature increase can switch
spike generation to a homoclinic regime, we performed whole-cell
recordings from CA1 pyramidal neurons in mouse hippocampal
slices in the absence of synaptic input at different temperatures of
the bath solution and looked for the two theory-predicted indi-
cators of homoclinic firing: (i) the intermittently-interrupted
mode resulting from neuronal bistability and (ii) an increase
of the locking range (resulting from the switch to an
asymmetric PRC).
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To assess the dynamical type, we quantified both the locking
range via the PRC (as an indicator of the synchronization ability)
as well as the fraction of pauses in regular firing (as an indicator
of the bistability, see “Methods”). The latter captures the relative
duration of particularly long ISIs, thus yielding zero or very small
values for regularly firing neurons, while increasing with the
number and duration of firing pauses in an intermittently-
interrupted firing mode. Using a noise stimulation protocol,
spiking responses were measured at each of two temperatures
(32 °C and 38–41 °C, respectively); cells fired regularly at the
lower temperature. The voltage trace of a simulated and an
experimentally measured cell at both temperatures can be
compared in Fig. 3b, d. While firing regularly at the lower
temperature, both the model and the CA1 cell show a significant
fraction of interrupted firing intervals at the higher temperature.
The data showed that the switch from regular to interrupted
firing patterns can occur within a range as narrow as 2 °C, see
Supplementary Fig. S8.

Due to the high demands on recording stability for experi-
mental PRC measurements and the requirement of a reasonable
level of intrinsic noise (see “Methods”), estimating PRCs in
general poses a challenge and thus affected our ability to
characterize the PRC-derived locking range. Moreover, for our
protocol, we needed to quantify PRCs at two different
temperatures in cells that exhibit SNIC dynamics (judged by a
1-minus-cosine shape of the PRC) at the lower temperature.
Figure 3 presents the experimental data for three cells in which
we succeeded to reliably estimate both quantities (locking range
and fraction of pauses) under these conditions; we note that a
total of 38 cells was recorded. Of the three cells, two
demonstrated an increase of the locking range at the elevated
temperature (Fig. 3e), one showed a decrease. The temperature-
induced change in the fraction of pauses correlated with the
locking-range measurements (Fig. 3f). For both measures (locking
range and fraction of pauses), the quantitative changes in two
cells thus were consistent with the temperature-induced switch
from SNIC to homoclinic dynamics observed in model simula-
tions (Fig. 3e, f).

Our assumption was that most neurons operate far from
homoclinic spiking to avoid pathological synchronization and
hence, we did not necessarily expect to observe the switch when
increasing temperature only slightly above the physiological level.
Surprisingly, we found examples of cells that showed both
signatures of homoclinic spiking at these elevated temperatures.

Synchronization patterns in neural networks due to a
temperature-induced switch in spike-generation type. To
demonstrate the impact and relevance of homoclinic spike gen-
eration on collective dynamics, we finally turned towards net-
works of weakly coupled model neurons with homoclinic spike
generation. The characteristic asymmetry of the PRC and the
associated increase in locking range, according to the theory of
coupled phase oscillators18, leads to a facilitated time-locking of
neurons in all-to-all coupled networks. For excitatory networks,
the resulting network state is frustrated12 (i.e., showing diverse
synchronization patterns with, at least transiently, fixed, yet
potentially offset phase relationships across neurons), and for
inhibitory networks, an in-phase synchronization across all
neurons can be expected (compare also Fig. 1b).

The sign of synaptic connections (i.e., excitatory versus
inhibitory) strongly influences the expected network dynamics,
because the preferred phase relations between neurons in the
network are different. Coupling of two homoclinic neurons with
excitatory synapses leads to an alternating spiking pattern in
antiphase synchronization (Fig. 4a, N= 2). Spikes are distributed

with maximal phase distance between each other. For a low
number of excitatory coupled neurons, this leads to a so-called
splay state, marked, after sorting, by a staircase-like spike pattern
(Fig. 4a, N= 5). For large networks, this pattern becomes highly
sensitive to noise, as the spiking of neurons can be reordered in
time by noise on the order of the phase distance between two
neurons, which decreases with increasing network size. With
inhibitory coupling, neurons align their spikes in time, i.e., they
show in-phase synchronization independent of network size
(Fig. 4b).

To strengthen the intuition, these network behaviors can be
deduced from an illustration of two coupled neurons. The
coupling function captures the effect of both the phase-
susceptibility of the post-synaptic neuron (as measured by the
PRC) and the synaptic kinetics on the phase relation of the two
neurons, and is defined as a correlation between PRC and
synaptic kernel. Stable phase relations are expected at phases
where the odd part of the coupling function is zero and has a
negative slope. In the case of two neurons with excitatory
coupling, this happens at phase 0.5, for inhibitory neurons at
phase 0 (Fig. 4c). In other words, two inhibitory neurons tend to
fire at the same phase, whereas two excitatory neurons tend to be
offset by half a cycle. Figure 4d illustrates the impact of two
neurons’ respective spikes (marked as perturbation) on the timing
of their subsequent spikes: For phase differences with positive
(negative) values of the coupling function, the difference in firing
phase is increased with each spike (decreased) compared to the
preceding spike. For excitatory coupling this means that a phase
difference (between temporally succeeding spikes of the two
neurons) below 0.5 will further increase in the next step, whereas
a phase difference above 0.5 will further decrease, resulting in a
long-term phase difference of 0.5, corresponding to the
synchronization pattern shown in Fig. 4a, N= 2 (antiphase
synchronization). In contrast, for inhibitory coupling, a phase
difference below 0.5 decreases, and above 0.5 increases, in the
long-term resulting in a phase difference of 0 and network
patterns as shown in Fig. 4b, N= 2 (in-phase synchronization).

Indeed, for excitatory networks with many neurons, the
described dynamics lead to frustrated states. As described earlier,
excitatory neurons separate their firing phases as much as
possible from each other. For larger networks, however, it is
impossible to identify stable phase relations allowing for large
phase differences between all neurons. Consequently, states in
which some neurons fire in synchrony, thus allowing others to
fire at larger phase differences, can also be stable and—depending
on noise levels—changes between these (anti-)synchronized
groups can be induced, resulting in transient network synchro-
nization patterns of high complexity12. For this reason, a pure
splay state is less likely to occur with increasing network size; the
continued switching between different splay state configurations
may even resemble an asynchronous state (in particular for larger
noise and network size). Even in the splay state of smaller
networks (where a sufficient phase difference between neurons
can be more easily maintained), perturbations can swap the order
in which neurons fire, in particular when all neurons are identical
and so is their coupling (mathematically, in this case all
permutations in neuronal firing sequence constitute equivalent,
equally likely network attractor states which the perturbation can
navigate).

The situation is less complex for inhibitory networks. Here,
homoclinic neuronal dynamics induce in-phase synchronization,
with a much lower dependence on network size N. To
demonstrate how a switch to homoclinic neuronal dynamics
can affect network behavior, we explored the dynamics of a
network of N= 100 temperature-dependent Wang–Buzsáki
neurons with inhibitory coupling, estimating the local field
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potential (LFP) by a linearly filtered population activity (see
“Methods”). The initial temperature was transiently elevated by
2 °C—an increase that was in this case sufficient to switch spike
generation for the classical SNIC type to the homoclinic regime.
As a consequence, network synchronization (visible in the large-
amplitude LFP oscillations) was drastically enhanced (Fig. 4e).

The increase evolved over several seconds; when lowering the
temperature again, the synchronization slowly decreased back to
its original level, see Supplementary Fig. S9.

In addition to the large-amplitude oscillations in the LFP, the
in-phase synchronization of networks can be quantified by the
vector strength (determined from the distribution of firing phases
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across all spikes, see “Methods”). A systematic analysis of vector
strength as a function of temperature confirmed the increase in
network synchronization toward the critical transition to
homoclinic firing (Fig. 4f). Maintaining a firing rate of 10 Hz
for the isolated neurons in these cases ensured that the increase in
synchronization arose from more synchronized timing rather
than higher firing rates. The effect prevailed for a lower degree of
network connectivity (20% random connections in Fig. 4f),
demonstrating its robustness. A substantial increase of the
network synchronization in the vicinity of the critical tempera-
ture also emerged when only 50% of the neurons were endowed
with temperature-sensitive dynamics while the other neurons
remained unaffected (Fig. 4f). Overall, the network simulations
demonstrate that homoclinic spikes result in a strong in-phase
synchronization of inhibitory networks—an effect that becomes
particularly apparent when switching the spike type. Excitatory
networks with homoclinic spikers are frustrated, resulting in
patterns with (transiently) fixed phase relations across neurons,
such as splay states (which in the mathematical community can
also be termed synchronized patterns, although in the biological
community they usually are not). In the vicinity of the switch,
strong changes in network synchronization patterns can be
induced by relatively small changes in parameters, like a mild
increase in temperature.

Discussion
Depending on their dynamical properties, action potentials can
be classified into three different types, one of which has been
largely neglected in neuroscience research. In this study, we
demonstrate that (i) in conductance-based model neurons the
switch from the one of the classical types to this homoclinic type
of spiking can be systematically induced by elevations in tem-
perature and (ii) the switch is accompanied by systematic changes
in a neuron’s temporal sensitivity to inputs (reflected in the PRC
and the locking range). Our experimental measurements in hip-
pocampal neurons shows an induction of homoclinic firing at the
higher temperature for some cells, suggesting that the switch in
action-potential type can be induced in mammalian neurons.
Moreover, our modeling work shows that homoclinic neuronal
dynamics result in network synchronization patterns, such as
splayed-out states resulting from frustrated dynamics for excita-
tory and in-phase synchronization for inhibitory connectivity. In
the vicinity of the homoclinic regime, small parameter changes
can suffice to trigger strong synchronization of inhibitory net-
works when one of the classical spiking dynamics switches to the
homoclinic type.

While PRC asymmetry can also occur in one of the two clas-
sical types, for homoclinic dynamics we encounter an unusual
property: the temporal sensitivity to inputs (reflected in the PRC)
is strongest directly following the spike, i.e., in a period usually
considered refractory. On the one hand, this characteristic of
homoclinic spiking bears consequences for encoding23, reflected

in the spike-triggered average (STA, Fig. 1a). The STA prompts
the hypothesis that homoclinic spikes can favor the transmission
of high frequencies, due to the neuron’s enhanced sensitivity
(non-zero PRC) directly after the spike, which allows homoclinic
spikes to encode temporally close inputs in its subsequent spike
timing. On the other hand, the asymmetry of the homoclinic PRC
can also facilitate network synchronization. Indeed, one of the
two classical types— associated with the subcritical Hopf bifur-
cation—can equally exhibit a PRC asymmetry and has been
shown to favor synchronization. Due to the shape of the Hopf-
related PRC (with spike-advancing phases occurring only later in
the interspike interval), however, for this spiking type the in-
phase synchronization unfolds in excitatory networks. In con-
trast, the specific PRC asymmetry encountered in the homoclinic
regime favors in-phase synchronization in inhibitory networks
and frustrated states in excitatory networks.

There is an important distinction between transitions among
the two classical spike-generation mechanisms and the transition
from SNIC to homoclinic spiking: the transition from SNIC to
homoclinic spiking is instantaneous due to the adjacency of both
regimes (separated by a codimension-2 bifurcation, see “Meth-
ods”), while the former transition requires a sequence of inter-
mediate bifurcations to traverse from the SNIC onset to the
subcritical Hopf bifurcation. Here, we show that temperature can
ubiquitously transform SNIC spikers into homoclinic spikers,
based on fundamental biophysical properties common to all
neurons, despite differences in the quantitative temperature
responses of different neuron types24. The transition from SNIC
spikers to homoclinic spikers with increasing temperature is
primarily due to the acceleration of channel gating, leading to a
decreased timescale separation of the dynamical variables. Any
parameter that either speeds up ion-channel gating (like a
decreased gating time constant, changes in steady-state con-
ductances, etc.), or slows down voltage dynamics (like an increase
in membrane capacitance, change in reversal potentials, etc.)
results in a relative change in the timescales between fast and slow
dynamics of the system, see Supplementary Fig. S1. This has
direct consequences and moves neurons with SNIC dynamics
closer toward the homoclinic regime. Extrapolating the effect, we
can assume that there are many more physiological parameters
that lead to homoclinic spiking, see Supplementary Figs. S1–S3.
Among these, membrane capacitance and membrane leak are
most obvious19. As a consequence of the “direct neighborhood”
of the classical SNIC and the homoclinic firing regimes in para-
meter space, and the associated qualitative change in PRC
asymmetry, in this vicinity small parameter changes are expected
to result in strong changes in network synchronization patterns.
In contrast, switches between the classical SNIC and subcritical
Hopf dynamics require comparatively larger parameter changes.
Drastic changes in synchronization appear before the subcritical
Hopf bifurcation occurs at the Bogdanov–Takens point, since the
stable limit cycle is not changed at this point. Before and after the

Fig. 4 Network synchronization increases when the critical temperature is crossed. a Synchronization patterns for N= 2 or N= 5 model neurons with
excitatory all-to-all coupling show anti-synchronization and a splay state, respectively. b Synchronization patterns for N= 2 or N= 5 model neurons with
inhibitory all-to-all coupling show in-phase synchronization. c Typical shapes of the odd part of the coupling function (see “Methods”) for homoclinic
neurons coupled with an excitatory pulse (top) or an inhibitory pulse (bottom). d Illustration of the temporal divergence of the phase difference following a
small excitatory (top) or inhibitory (bottom) perturbation of the synchronized state. e Network simulations of 100 pulse-coupled Wang–Buzsáki neurons:
the LFP population signal exhibits strong changes in synchronization in response to a temperature elevation of 2 °C (that switches spiking from SNIC to
HOM). f Systematic effect of temperature on network synchronization: vector strength across cells as a function of time; mean +/− SD; statistics obtained
across the final 40 s of the respective network simulation. Uncoupled neurons were tuned to 10 Hz firing; dashed vertical line (SNL) marks the switch
between the dynamical types. Synchronization increases at the switch (left: fully coupled networks; insets: LFPs at two temperatures). This effect prevails
for reduced network connectivity (middle: 20% random connectivity) and if spiking changes only in a fraction of neurons (right: fully coupled network
where the temperature of only 50% of the neurons was increased).
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Bogdanov–Takens point, the stable limit cycle arises from a fold-
of-limit cycle bifurcation, and only the fixed-point qualitatively
changes its properties. Therefore, effects on synchronization (in
this case in excitatory networks) are expected to be more gradual
in nature. For completeness, starting from a SNIC bifurcation,
also an increase in the relative timescale between voltage and
gating dynamics can result in homoclinic spiking (sometimes
called big homoclinic loop).

We experimentally searched for features of homoclinic firing in
hippocampal pyramidal cells because pyramidal neurons, unlike
hippocampal interneurons, show relatively low levels of noise and
at least a subset exhibits SNIC dynamics at non-elevated tem-
peratures, a prerequisite for our analysis. We note that, mathe-
matically also, neurons with subcritical Hopf dynamics exhibit a
(usually narrow) bistability at the threshold. The potentially
resulting burst-like firing behavior, however, displays multimodal
ISI distributions as well as subthreshold oscillations25, both of
which were not obvious in the experimental data. Moreover,
starting out with SNIC dynamics at the colder temperature, an
immediate change to the subcritical Hopf would mathematically
not be expected (see arguments about the subcritical Hopf above).
Whether interneurons also exhibit homoclinic firing with its
interesting coding properties, or at least SNIC firing at the colder
temperature (such that the transition to homoclinic firing could
be expected with an increase in temperature), is an open question
for future research. Our modeling work predicts that homoclinic
spiking can be universally obtained in a broad range of cells.

The ability to switch the spiking type to the homoclinic regime
assigns a causal and strongly amplifying role to microscopic
cellular properties on macroscopic network synchronization.
While our results suggest that the described effects may extend
well beyond all-to-all coupled network regimes, the effect of
homoclinic spikes on macroscopic activity in networks including
excitatory coupled neurons or more complex topologies merits
further investigation, for example regarding complex behaviors
such as chimera states26. Homoclinic spiking thus offers new
perspectives on network synchronization in different physiolo-
gical and pathological triggering situations, including neuromo-
dulation and seizure onset27,28. Therefore, homoclinic spiking
could provide a unifying mechanistic framework for the pre-
viously unexplained strong effects of minimal changes in bio-
physical parameters on network synchronization29–32, including a
rise in temperature increase during febrile seizures33–35. Inhibi-
tory neuron activity, in particular, was recently found to directly
precede seizure onset27, strengthening hypotheses that assign
inhibition a causal role in triggering synchronization. Taken
together, our results suggest a functional relevance and, due to its
generic inducibility, a previously underestimated prevalence of
homoclinic spiking in the brain, which calls for a further
exploration of this interesting activity regime.

Methods
Conductance-based model neurons with temperature dependence.
Conductance-based model neurons describe the dynamics of the membrane vol-
tage v by a current-balance equation of input current, capacitive current, and ionic
current. The ionic current, Iion ¼ Iionðv;mi; :::Þ, depends on v and the open
probability of ion channels given by their gating variables, mi. The gating is typi-
cally modeled by first-order kinetics. The complete model is given by

_v
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:::
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1
CA ¼

1
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with membrane capacitance Cm and input current Iin, and where the dot · denotes
the derivative with respect to time. We used three different conductance-based
neuron models to illustrate the generality of our results. As a two-dimensional
model for Fig. 2e, the Izhikevich sodium–potassium model with voltage dynamics
and a single gating variable for potassium was chosen5. As a three-dimensional
model, a variant of the Wang–Buzsáki model with gating variables for potassium

and sodium inactivation was selected, which was originally designed for hippo-
campal interneurons36. The four-dimensional model is a variant of the
Traub–Miles model with an additional gating variable for sodium activation, which
was originally fitted to hippocampal pyramidal cells37. In Fig. 4, we used the variant
of the Wang–Buzsáki model.

Temperature affected the models in three ways: via ionic reversal potentials,
peak conductances, and gating rates. We introduce the same dependence on
temperature in each of the models. With a temperature increase of 10 °C, the gating
rates 1=τmi

were increased by a factor four (Q10= 4), the maximal conductances
gmax were increased by a factor 1.3 (Q10= 1.3), and the reversal potentials were
shifted according to the Nernst equation. Thus, the models captured the major
changes observed experimentally for temperature alterations. For simplicity, we
assumed that the scaling of the parameters is equal for all gating variables. The
effect of temperature on neurons obeys typical biophysical laws, which are thought
to underlie all neurons38. Arrhenius’ scaling laws describe the influence of
temperature on ion-channel kinetics, while the temperature dependence of aquatic
diffusion sets the effect on channel conductances38. While these laws are universal,
the exact Q10 value which sets the scale of change per 10 °C may vary between
neurons. Still, the universality of the Arrhenius law and aquatic diffusion lead us to
expect that the temperature effects modeled here are valid for a wide class of
neurons.

The transition from SNIC to homoclinic spiking happens at the codimension-
two saddle-node-loop (SNL) bifurcation19. Both SNIC and homoclinic spike classes
show a saddle-node bifurcation with an increase in input current (blue line in
Fig. 3a), which eliminates the resting state. The elimination of the resting state
coincides with spike initiation at a SNIC bifurcation (Fig. 2a, left), while homoclinic
spiking is initiated at lower inputs (Fig. 2a, right), leading to bistability between rest
(Fig. 2a, right panel, filled dot) and spiking (Fig. 2a, right panel, red trace).

The critical temperature of interest, at which the switch from SNIC to
homoclinic spiking occurs, depends on the model parameters. To compare the
increase in synchronization ability (i.e., locking range, see below) for all three
models, we aligned the model temperatures to the SNL temperature and
investigated the region below that spans about three degrees Celsius. The
temperature of 0 °C in this scale, at which the SNL bifurcation occurs,
corresponded for the Izhikevich sodium–potassium model to a temperature
difference (above the original model) of ΔT= 16.95 °C, for the Wang–Buzsáki
model to ΔT= 3.59 °C, and for the Traub–Miles model to ΔT= 31.14 °C. These
critical temperatures were identified by visual inspection of numerical voltage
traces (continuation software AUTO)39; given the low dimensionality of the
models, the SNL bifurcation removed the afterhyperpolarization.

Phase responses. The phase reduction allows to simplify conductance-based
model neurons to one dimension with a single variable, the phase φ18. The phase
increases from zero to one between the voltage maxima of two consecutive spikes
for the unperturbed neuron, proportionally to the elapsed time. A neuron per-
turbed by a small input responds with a phase shift, i.e., a delay or advance of the
next spike. The phase-response curve (PRC) relates the phase, at which the input
occurs, to the phase shift of the subsequent spike. The PRC is also known by the
names phase resetting curve, phase sensitivity, or phase susceptibility. The first-
order phase dynamics, subject to a time-dependent, weak input stimulus, s(t), is
given by

_φ ¼ f þ ZðφÞsðtÞ; ð2Þ
with baseline firing rate, f, and PRC, Z(φ).

For the unperturbed system in Eq. (1), i.e., with constant input Iin, the PRC is
given by the voltage component of the solution to the associated adjoint system4,18,
which can be determined from Eq. (1). The adjoint equation is given as
_Z ¼ J ðxðtÞÞZ, with J the Jacobian of the original system, evaluated along the limit
cycle trajectory given by x(t). We solved the adjoint equation with appropriate
boundary conditions (periodicity in PRC and limit cycle) using the continuation
software AUTO39. The phase-response curve is the voltage component of the
solution Z(t) to the adjoint equation, as reviewed in ref. 4. We rescaled time t to
phase φ by dividing the time by the limit cycle period. To comply with Eq. (2), the
PRC Z(φ) was normalized as ZðφÞ � FðφÞ ¼ f ;8φ.

Synchronization measure based on single-cell characteristics. Synchronization
between neurons depends on their ability to influence each other. Based on the
theory of weakly coupled oscillators, the PRC allows to predict the synchronization
behavior of a network of coupled model neurons18. The relation between PRC and
synchronization can be illustrated for two oscillators with firing rates fi and fj. For a
given (synaptic) coupling kernel, G(t), the dynamics of the phase difference
between both oscillators, ψ ¼ φi � φj , is given as

_ψ ¼ Δf þ HðψÞ �Hð�ψÞ; ð3Þ

with Δf ¼ f i � f j, where the coupling function HðψÞ ¼ R 1
0ZðφÞGðψ � φÞdφ results

from an averaging over the phase in the time frame of slow phase differences18.
The locking range (or entrainment range), maxψ ðHðψÞ � Hð�ψÞÞ �minψðHðψÞ�
Hð�ψÞÞ, gives the maximal phase detuning Δf for which Eq. (3) has a stable fixed
point, _ψ ¼ 0, corresponding to phase synchronization.
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Theoretical considerations show that the locking range translates to phase
synchronization in weakly coupled Kuramoto networks18. The larger the locking
range of individual model neurons, the more easily they are expected to
synchronize when coupled in a network. The locking range also specifies the
frequency range across which a neuron can reliably couple to a periodic input.

The locking range in Fig. 2e refers to model neurons with an infinitesimal short
coupling, GðtÞ ¼ Aδðt � tpreÞ, with presynaptic spikes at tpre and amplitude
A= 5 pA/cm2. In this case, HðψÞ ¼ AZðψÞ, and the min–max difference is taken
over the odd part of the PRC, i.e., over ZðψÞ � Zð�ψÞ. Consequently, the locking
range increases with the asymmetry of the PRC and enlarged PRC asymmetry
underlies the increase in locking range around the SNL bifurcation19. For
completeness, we note that, mathematically, the odd part is defined as half of
(ZðψÞ � Zð�ψÞ); we here neglect the factor 0.5 for clarity of the argumentation and
without effect on the results presented. The increase of the locking range when
switching to the homoclinic regime also holds for synaptic coupling at
physiologically realistic timescales, see Supplementary Fig. S4.

Synchronization in network simulations. Figure 4 shows that synchronization is
enhanced in networks of homoclinic neurons19,40,41. Network dynamics were
simulated using the simulation environment brian242. A number of N
temperature-dependent inhibitory Wang–Buzsáki neurons were stimulated with a
mean current of Iin and a zero-mean white-noise current with a standard deviation
of σ ¼ 12 pA=cm2 ffiffiffiffiffiffi

ms
p

. The neurons were coupled with voltage perturbations of
amplitude ϵ. The parameters for Fig. 2d are N= 10, Iin was adapted for each
temperature to ensure spiking at around 10 Hz, σ adapted without coupling to a
coefficient of variation of CV= 0.08, and ϵ ¼ �44 μV, temperature of the red
traces was 3.5 °C warmer than for the blue. For Fig. 4e N= 100, Iin ¼ 300 pA=cm2,
σ ¼ 12 pA=cm2 ffiffiffiffiffiffi

ms
p

, and ϵ ¼ �2 μV, with temperatures above the original
Wang–Buzsáki model of ΔT= 2 °C and ΔT= 4 °C, which corresponded to relative
temperatures of −1.59 °C and 0.41 °C with respect to the model’s transition tem-
perature from SNIC to homoclinic firing; for Fig. 4f N= 100, Iin was adapted for
each temperature to ensure spiking at around 10 Hz, σ adapted without coupling to
a coefficient of variation of CV= 0.02, and ϵ ¼ �2 μV. The network simulations
were started with random initial voltages and run for 5 s with a high noise input
(five times σ) to desynchronize the neurons. After another 5 s of simulation with a
normal noise level, the neurons were coupled and the actual simulation started
(length ≈100 s). Figure 4e and the insets in Fig. 4f show a proxy for the LFP based
on the simulated spike pattern. Each spike in the network added an exponential
decay with 10 ms time constant to the local field potential, LFP ¼ ∑iexp
ð�ðtðt > tiÞ � tiÞ=ð10msÞÞ, where ti denotes the spike times for all neurons of the
network. The synchronization of the network was measured by comparing the
phases φj of the individual model neurons: The vector strength, a common measure
of synchronization of rhythmic neurons,∑jexpð2πiφjÞ, increases with enhanced in-
phase synchronization, and is also known as order parameter18. The vector
strength across all neurons in the network was evaluated at each point in time
based on a linear phase interpolation between subsequent spikes. Temporal mean
+/− SD were obtained from the final 40 s of each simulation.

Experimental procedures
Ethics statement. Animal maintenance and experiments followed institutional
guidelines, the guidelines of the Berlin state (T0100/03), and European Union (EU)
Council Directive 2010/63/EU on the protection of animals used for experimental
and other scientific purposes. Mice were housed in a laboratory animal facility at an
ambient temperature of 18–23 °C and 45–55% humidity. A 12-light/12-dark cycle
was used (light cycle 6 AM to 6 PM).

Slice preparation and storage. C57BL/6N male mice of age between 10 and 13 days
and between 22 and 30 days were decapitated following isoflurane anesthesia.
Brains were transferred to ice-cold sucrose-based ACSF containing the following
(in mM): 87 NaCl, 2.5 KCl, 3 MgCl2·6H2O, 0.5 CaCl2, 10 glucose, 50 sucrose, 1.25
NaH2PO4, and 26 NaHCO3 (pH 7.4). Horizontal slices (400-μm thick) of ventral to
mid-hippocampus were cut using a vibratome (VT1200S, Leica) and stored in an
interface chamber perfused with standard ACSF containing the following (in mM):
119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 10 glucose, 1.25 NaH2PO4, and 26
NaHCO3, at pH 7.4 and an osmolarity of 290 to 310 mosmol/l. The temperature
was kept at 32 to 34 °C, and the slices were superfused with a flow rate of about
1 ml/min. ACSF solutions were equilibrated with carbogen (95% O2, 5% CO2).
Slices were allowed to recover for at least 1.5 h after preparation.

Electrophysiology. For recordings, we mounted the slices on polylysine-coated glass
coverslips and transferred them to the recording chamber, which was perfused at a
rate of 5–6 ml/min. The recording chamber was placed in an Olympus BX-51WI
upright microscope, and slices/cells were visualized at ×4 and ×60, respectively43.
Whole-cell recordings were performed with glass electrodes (2–5MΩ) filled with
the following intracellular solution containing (in mM): 120 K-gluconate, 10
HEPES, 10 KCl, 5 EGTA, 2 MgSO4·7H2O, 3 MgATP, 1 Na2GTP, 14 phospho-
creatine, and 5.4 biocytin (0.2%). The pH was adjusted to 7.4 with KOH. Synaptic
activity was blocked with the GABAA receptor antagonist SR-95531 (gabazine) and
glutamate receptor blockers (NBQX and d-APV). The synaptic blockers turned out

to be temperature-dependent; in order to block synaptic activity also at higher
temperatures, the blocker concentration was set to 20 μM SCH-50911, 5 μM SR-
95531 (gabazine), 25 μM NBQX and 100 μM d-APV. Whole-cell data were
amplified tenfold for current-clamp recordings using a MultiClamp 700B amplifier
(Molecular Devices). Signals were low-pass filtered at 3–6 KHz using the built-in
Bessel filter of the amplifier and digitized at 10 KHz with 16-bit resolution using an
analog-to-digital converter (Digidata 1550 A, Molecular Devices). Data were
sampled and stored using the Clampex software (version 10.7, PClamp Software
Suite, Molecular Devices).

Spiking recorded in response to noise input. Neurons were stimulated with a step
current adapted to obtain repetitive spiking with a firing rate between 5 and 10 Hz,
and an additional noise current with zero mean. The noise current represented an
Ornstein–Uhlenbeck process with a time constant of 4 ms, meant to simulate
typical synaptic timescales. The standard deviation of the noise was adapted such
that the spike train showed higher variability than without noise (visual inspec-
tion). The membrane voltage was recorded and spikes were identified based on a
voltage threshold at −20 mV. Spike trains were obtained in 38 cells at low (around
32 °C) and high (mostly around 40 °C, some at around 37 °C) temperatures. For
some cells, also recorded intermediate temperatures were recorded. After changing
the temperature of the bath, the slice was allowed to adapt for at least 2 min before
the recording started.

Phase-response curve measurement from recorded spiking. The recorded data
were analyzed using Spyke Viewer44 extended with additional plug-ins for PRC
measurements. The deviations in spiking induced by the noise current were used to
quantify the PRCs. PRCs can be estimated from the deviations in the mean firing
rate resulting from the perturbations caused by the injected noise. For the
experimental PRCs and derived measures shown in this article, an adaptation of
the so-called STEP method based on a minimization of spike-time prediction
errors was used45. Given a voltage trace in response to an experimentally known
noise stimulus, the STEP method consists of the following steps:

1. Identification of spikes by threshold crossing at ti; i ¼ 0; 1; :::;N � 1 where
N is the number of spikes in response to the noise stimulus.

2. Calculation of interspike intervals (ISIs), ISIi ¼ tiþ1 � ti; i ¼ 0; 1; :::;N � 2.
3. Calculation of the phase deviations, Δφi ¼ ðhISIi � ISIiÞ=hISIi, based on the

mean ISI, hISIi ¼ 1=ðN � 1Þ∑iISIi .
4. Cutting of the noise stimulus in snippets ni, such that each ni is the noise

stimulus between the spikes at ti and ti+1, and rescaling of the time such that
each noise snippet goes from phase ϕ= 0 to 1 (which corresponds to the
time interval of one mean ISI).

5. Definition of PRC Z as a sum of base functions. We used trigonometric base
functions, ZðφÞ ¼ a0 þ∑5

k¼1 aicosðk2πφÞ þ∑5
k¼1 bisinðk2πφÞ.

6. Optimization of the PRC Z such that the PRC minimizes for all ISIs the
prediction of the phase deviation based on the stimulus in the interspike
interval, i.e., finding a PRC that optimizes Δφi ¼ hISIi R ZðφÞniðφÞdφ. We
used a least-squares algorithm to optimize the PRC coefficients. Based on a
temporal discretization, the STEP algorithm arranges all information in a
large matrix that simplifies the optimization, see ref. 45.

A bootstrap of the data with 200 repetitions was used to provide error estimates
for the measured PRCs. We first estimated the PRC based on half of the recorded
spikes, chosen randomly from the set of all spikes. The resulting error was
propagated to the locking range, and used to plot the error bars shown in Fig. 3e.
We then estimated the PRC based on a spike train resulting from randomly
shuffled ISIs. The resulting error sets the noise level around zero above which a
reliable PRC measurement should rise.

Commonly, experimental measurements of PRCs rely on short current
perturbations at a one-time point per ISI. We here use a continuous noise stimulus
instead, in order to prevent misinterpretation of the PRC shape: Using single time
point perturbations, measured PRCs are known to be shifted to the left if the
stimulus strength is too large18. The resulting PRCs might be mistaken for
homoclinic PRCs. The noise stimuli protocol chosen here avoids this artifact and
possible misinterpretation, as too strong a stimulus strength results in a right shift
in the measured PRCs46.

In order to obtain reliable PRC estimates, neuronal spiking has to be sufficiently
stationary47,48. As the recorded pyramidal cells showed spike adaptation within the
first seconds of a current step stimulation, we used recording traces with 60 s of
stimulation, but ignored spikes occurring in the first 5 s. While canonical PRCs are
only expected for low firing rates, firing rates that are too low limit the overall
number of spikes that can be recorded. We thus restricted the analysis to
recordings with a mean firing rate between 3.5 and 13.5 Hz.

For three cells, we found PRCs above the bootstrap-derived noise level whose
shape resembled a 1-minus-cosine as expected for SNIC dynamics4 at the low
recording temperature around 32 °C. For these cells, also the PRCs at higher
temperatures were above the bootstrap-derived noise level. The recordings used to
estimate the PRC were selected based on the lowest mean firing rate rcold of all
recordings at around 32 °C. Recordings with a mean firing rate within the range
rcold ± 0:51 rcold were included in the PRC-estimation set. Recordings from this set
recorded at around 32 °C were used to estimate the PRC at the low temperature
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(32.3 °C for cell 1, 31.9 °C for cell 2, and 32.2 °C for cell 3). The highest available
temperature was used to estimate the PRC at the high temperature (37.7 °C for cell
1, 40.0 °C for cell 2, and 40.0 °C for cell 3). From the estimated PRC Z, which
depends on the phase φ, the locking range was predicted based on the odd part of
the PRC; the locking range is measured as maxφðZðφÞ � Zð�φÞÞ under the
assumption of pulse coupling (Fig. 2e).

Evaluation of bistability from recorded spiking. Homoclinic neuronal dynamics
are marked by bistability between resting state and stable limit cycle (i.e.,
spiking)25. In recordings with an appropriate amount of noise, this bistability
shows as a stochastic switching between rest and spiking; elongated periods close to
rest are reflected in exceptionally long interspike intervals (ISIs), i.e., firing pauses.
To test whether the ISI distributions differed between high and low temperatures
for the three cells identified based on the PRC measurement, the occurrence of
particularly long ISIs was analyzed, based on the same recording traces as for the
PRC estimation.

Voltage traces were cut into snippets of 27 s length (allowing us to obtain two
snippets per recording from the 60 s with the first 5 s removed). Bistability was
evaluated for a given cell and temperature by calculation of the fraction of pauses,
defined as the relative duration of exceptionally long ISIs. Specifically, for each
snippet the sum of all ISIs with a duration of more than twice the average ISI
duration was obtained and divided by the sum of all ISIs in the snippet. To evaluate
whether the fraction of pauses differed significantly between the ISI sets recorded at
low and high temperatures, we used a rank-sum test (Matlab implementation rank-
sum with standard parameters; two-sided Mann–Whitney U test). One star in
Fig. 3f marks P values below 0.05, two stars mark P values below 0.01. As an
alternative measure expected to increase with the occurrence of bistability,
Supplementary Fig. S5 shows the coefficient of variation (CV) for the same
recordings presented in Fig. 3f.

Computational resources. For numerical simulations, data analysis, and plotting,
we used the python packages scipy49, sympy50, and matplotlib51 (python version
2.7.16) and for numerical simulation the simulation environment brian242 (version
2.3.0.2). In addition, we used for data analysis the tool spykeviewer44 (version
0.4.1), for statistical tests Matlab (Mathworks, version 9.7.0.1190202), for numerical
continuation AUTO-07P (version 0.7), and for graphic design the open-source
software inkscape52 (version 1.1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The experimental data generated in this study have been deposited at zenodo.org under
https://doi.org/10.5281/zenodo.6589677.

Code availability
The programming code is textbook standard or previously published. It can be made
available upon request.
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