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Abstract: Left ventricular noncompaction (LVNC) is a ventricular wall anomaly morphologically
characterized by numerous, excessively prominent trabeculations and deep intertrabecular recesses.
Accumulating data now suggest that LVNC is a distinct phenotype but must not constitute a patho-
logical phenotype. Some individuals fulfill the morphologic criteria of LVNC and are without clinical
manifestations. Most importantly, morphologic criteria for LVNC are insufficient to diagnose patients
with an associated cardiomyopathy (CMP). Genetic testing has become relevant to establish a diagno-
sis associated with CMP, congenital heart disease, neuromuscular disease, inborn error of metabolism,
or syndromic disorder. Genetic factors play a more decisive role in children than in adults and severe
courses of LVNC tend to occur in childhood. We reviewed the current literature and highlight the
difficulties in establishing the correct diagnosis for children with LVNC. Novel insights show that the
interplay of genetics, morphology, and function determine the outcome in pediatric LVNC.
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1. Introduction

Cardiomyopathies (CMP) are myocardial diseases of which dilated (DCM) and hyper-
trophic (HCM) CMP are the most common subtypes. Restrictive (RCM), left ventricular
noncompaction (LVNC), and mixed cardiomyopathies occur less frequently. Arrhythmo-
genic right ventricular cardiomyopathy (ARVC) is a rare disorder [1]. According to the
American Heart Association (AHA), CMP are associated with mechanical and/or electrical
dysfunction, and are classified into primary (genetic, nongenetic, acquired) and secondary
forms [2]. The European Society of Cardiology groups CMP into the subtypes DCM, HCM,
RCM, ARVC, and unclassified CMP, the latter includes LVNC. Further subclassification
into familial/genetic and non-familial/non-genetic forms are part of the ESC classifica-
tion [3]. This illustrates that classification of the LVNC phenotype is highly controversial
and no general agreement exists. Examples of monogenic inheritance of the phenotype
are frequent, but the association with CMP and other phenotypes rather suggest that the
genetic architecture of LVNC is far more complex. Genetic background might be impor-
tant for the development of noncompacted as well as compacted myocardium [4]. More
recent data now point to isolated LVNC as a distinct phenotype which does not need to
be pathologic [5]. LVNC has been shown to have a genetic cause in DCM, HCM, RCM,
ARVC, the channelopathies, and congenital heart defects (CHD) [6–8]. More specifically in
the pediatric population, LVNC has been identified with systemic entities such as Barth
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syndrome, chromosome 1p36 deletion syndrome, and CMP resulting from neuromuscular,
metabolic, or mitochondrial disease [4,9,10]. We reviewed the literature to help identify the
genetic and clinical features to determine outcome of LVNC in children.

2. Phenotype and Definition

There are many difficulties with the definition of the phenotype of LVNC. It is beyond
the scope and not the intention of this review to define the history of several decades of the
different definitions the phenotype of LVNC and we refer to several excellent previous re-
views [4,8,11]. The most widely used definition of LVNC is still the one by Jenni et al. from
2001 [12]. The particular morphology, which was detected by echocardiography, mostly in
adult patients with end-stage heart failure, with the technological advances in echocardiog-
raphy raised much attention since then. As Jenni et al. described it, LVNC is a ventricular
wall anomaly morphologically characterized by numerous, excessively prominent ventricu-
lar trabeculations and associated are deep intertrabecular recesses that are continuous with
the left ventricular (LV) cavity [12]. A two-layer structure is present, with a compacted
thin epicardial layer and a much thicker non-compacted endocardial layer. A maximal end
systolic ratio of non-compacted to compacted layer of >2 is diagnostic (NC/C > 2) [12]. The
extent of compacted to noncompacted myocardium does not lead to clinical manifestations
and CMP per se. Regional ventricular hypokinesia was not restricted to the non-compacted
segments in the original description [12]. Coexisting cardiac abnormalities are absent in
isolated LVNC [12]. Of note, “isolated” in the original definition by Jenni et al. did not
exclude the diagnosis of CMP, but was referring to the absence of CHD. Cardiac magnetic
resonance (CMR) imaging was used in the following years to describe ratios between
thickness, mass, or volume of NC/C [13,14]. The role of the thin compacted layer, which is
used for the definition of LVNC, was not specifically defined. The compacted layer can be
normal but also be disproportionately thinner than in controls [15]. Normal or abnormal
thickness of the compact myocardium cannot be taken as a morphologic marker for LVNC.
Rather, NC/C values (the ratio) need to reach cut-off values for the diagnosis [4,12]. Differ-
ent other methods and normal reference values are available due to the lack of consensus
criteria for LVNC [4,11]. The term “hypertrabeculation/noncompaction” is disputed due to
interobserver disagreement [16]. Right ventricular noncompaction is a difficult morphology
because an increased trabeculation is physiological in the right ventricle [11]. As for now,
there are no morphologic markers or features that could predict the clinical impact of
LVNC, whether it is a CMP or not.

3. Pathogenesis and Genetics

Many different terms and abbreviations used for noncompaction CMP and the non-
compacted morphology are used and relate to the possible pathogenesis [11]. In 1990,
Chin et al. suggested the term “isolated noncompaction of the left ventricular myocardium
(INVM)”. It was assumed that the myocardial anomaly occurred as a result of an arrest of
the normal compaction process during embryonal endomyocardial morphogenesis [17].

3.1. Developmental Aspects

Two developmental processes were described that govern the development of the
normal myocardium. The first event is ventricular trabeculation which begins around
week 4 of human development, the second is myocardial compaction during weeks 5 to
8 [18]. As demonstrated by several investigators, the Notch signaling pathway is critical for
these developmental processes [19]. Most recently, two more unique genetic pathways were
found in LVNC by genetic pathway analysis in humans: cardiomyocyte differentiation
via BMP receptors and factors promoting cardiogenesis in vertebrates [20]. Quite the
contrary was postulated by others, namely that LVNC may not be the result of an arrest
in the compaction process at all. Instead LVNC could be the result from the compacted
myocardium of the ventricular wall that grows into the ventricular lumen forming the
trabeculae [21]. Jensen et al. found that left ventricular excessive trabeculations (LVET) are
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not of embryonic origin [21]. A reduction of the trabecular layer was never documented in
humans [22]. Instead, they propose that the trabecular layer grows slower than the compact
layer in later human development and this modulates wall morphology [22]. As there is
no clear evidence for compaction on the developmental level the term “noncompaction”
might need to be replaced [5]. Higher spatial resolution may clarify the prevalence and
clinical significance of “LVET” [23].

What is the function of trabeculae in the adult heart, if we understand that excessive
trabeculations might be detrimental? There is actually evidence that trabeculae are deter-
minants of cardiac performance in adult hearts. The physiological function of trabeculae
in the human heart was studied, using the UK Biobank, MRI data with fractal analysis,
and modeling. The relationship of trabeculae-associated genomic loci with the risk of
cardiovascular disorders was studied [24]. Reduced trabecular complexity was causally
associated with the risk of heart failure. Trabeculae were important for cardiac contractility
in both healthy and failing hearts.

Considerable evidence now favors the assignment of a mere phenotype to LVNC
and genetic investigations are necessary to assign the possible pathogenicity of the pheno-
type [25,26].

3.2. Molecular Genetics

How could molecular genetic analysis help to determine the clinical outcome of the
individuals affected with LVNC? The first genetic abnormality to cause LVNC without
evidence of CHD was mutation in the X-linked gene TAFAZZIN [10]. Linkage analysis iden-
tified several autosomal dominant LVNC loci in families with LVNC phenotype, composed
of individuals with and without signs of CMP [8,27]. Candidate gene analysis revealed that
LVNC was associated with rare Mendelian variants in sarcomere genes [7,28]. In the majority
of cases, LVNC is inherited in an autosomal dominant mode with heterozygous pathogenic
variants leading to pediatric or adult LVNC [7]. Autosomal recessive inheritance or com-
pound heterozygosity with early, severe disease phenotype were noted as well [29–31].
Compared with adults, children more frequently have X-linked disease, a mitochondrial
inherited defect or chromosomal anomalies than adults [32].

In addition to genes coding for sarcomeric proteins, there are those coding for compo-
nents of the nuclear envelope and Z-band, ion channels, sarcolemma proteins, and genes
involved in signaling pathways or gene transcription. These genes associated with LVNC
overlap with the genes causing CMP, therefore genetics suggest that LVNC-CMP may also
be called HCM with LVNC or DCM with LVNC [33].

From the sarcomere genes, MYH7 was reported first and most frequently in adults and in
children with LVNC. ACTC1, TTNT2, and TPM1 were also described as LVNC genes [7,34].
Later sequencing of TTN became feasible [35]. In individuals with HCM and LVNC,
mutation of the gene MYBPC3 was frequent [28,33,34]. The incidence of MACE is overall
comparable between genotype-positive and genotype-negative LVNC individuals [34,36]. The
mechanisms by which defective sarcomere genes cause LVNC remain to be elucidated [4].
In a systematic review in adult LVNC, genotype-phenotype correlations were assessed [32].
Single missense mutations in sarcomere genes were the main causes for the phenotype, and
48% of the of the sarcomere mutations were in MYH7 [32]. MYH7 and ACTC1 mutations
had a lower risk for MACE than MYBPC3 and TTN [32].

The spectrum of genetic variants identified in LVNC patients is heterogeneous because
of the differences in enrolment criteria and site of investigation. The description of LVNC
was first derived from a cohort of patients from tertiary centers with an obvious CMP. This
would explain the relatively high yield in genetic testing in this preselected population [35,37].
The differences in genetic yield are caused by the current problems with the diagnosis of
LVNC with clinical manifestations that range from asymptomatic CMP to heart failure with
major adverse cardiac events (MACE). With next generation sequencing (NGS) a genetic
cause is identified in overall up to 30% of adult index cases, but with up to 44% even more
frequently found in children [32,38,39].
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Especially in children, LVNC is often first detected as part of the clinical investigation
into an unclear genetic syndrome, muscular dystrophy, or mitochondrial myopathy [4]. Ge-
netic syndromes with LVNC have been identified in patients with chromosomal anomalies,
aneuploidies, and microdeletion syndromes, and most represent isolated sporadic cases.
Chromosome 1p36 deletion syndrome is the most common human terminal deletion syn-
drome and LVNC is identified in 23% of individuals. The CMP in 1p36 deletion syndrome
and in a proportion of non-syndromic LVNC and DCM is caused by PRDM16 deletion or
mutation, respectively [9].

In fact, to date more than hundred genes were described to be associated with
LVNC [4,20]. From all the available literature on possible genetic associations with LVNC
the study by Mazzarotto et al [40]. should be explained in more detail. It was determined
whether or not LVNC was a distinct disease or a phenotype of CMP by using rare variant
burden analysis. LVNC was characterized by a large overlap with DCM/HCM, but was
also associated with distinct noncompaction and arrhythmia etiologies. LVNC-specific
variant classes were truncating variants in MYH7, ACTN2, and PRDM16). Non-truncating
(transmembrane) variants in HCN4 and structural variants in RYR2, both variant classes
in genes involved in arrhythmia phenotypes were specific for LVNC. LVNC-specific vari-
ants probably explain 5–10% of cases. Significant gene-disease associations were detected,
but no significant excess of rare variation was observed for the majority of the analyzed
genes. These findings were very similar to previous findings for HCM and DCM [40,41].
Interestingly, a significant excess of rare variants in LVNC cases compared with gnomAD
(https://gnomad.broadinstitute.org/; accessed on 18 April 2022) was observed for the
variants in many of the sarcomere genes first reported to be associated with LVNC [7,28,34].
MYH7 (TV) with an anticipated mechanism of haploinsufficiency have generally been con-
sidered to be non-pathogenic in DCM or HCM, but was proposed as a pathomechanism in
LVNC. The most frequent MYH7 (TV) variant in LVNC is the splice site variant c.732+1G>A
which does not seem to be a founder variant [7,40]. It is important to mention that in
ClinGen (https://clinicalgenome.org/; accessed on 18 April 2022) LVNC is not curated as
a specific disease entity and it awaits further consideration if or how these specific LVNC
variant classes will be assigned.

3.3. Functional Models

Several animal models were created to discover the underlying mechanisms of LVNC [8].
Unfortunately, only in a few genes investigated by these genetic models, pathogenic ge-
netic variants were found in the corresponding human genes. The pathology of LVNC is
difficult to recapitulate in murine models [42]. Genes which showed a LVNC phenotype in
humans and demonstrated diverse cardiac phenotypes in murine models were PRDM16,
MIB1, TBX20, NKX2-5, and TAFAZZIN. One of the CMP genes found by Mazzarotto et al.
to be causative for LVNC only, and curated with limited evidence in ClinGen for DCM
(https://clinicalgenome.org/; accessed on 18 April 2022) has recently been investigated
in more detail, namely PRDM16. Both, contractile dysfunction and partial uncoupling of
cardiomyocytes were the result of modelling of PRDM16 haploinsufficiency and a human
truncation mutant in zebrafish [9]. There was also evidence of impaired cardiomyocyte pro-
liferative capacity [9]. Genome editing of PRDM16 in human iPSC-derived cardiomyocytes
(iPSC-CMs) recapitulated the proliferative defects associated with LVNC at the single-cell
level [43]. Varying expression levels of mutant allele-specific mRNA expression between
mild DCM and LVNC were used to explain the spectrum of clinical manifestations in
LVNC [43]. Two murine genetic models with cardiomyocyte-specific Prdm16-null mutation
were described [44,45]. In one model, using the Myh6-Cre driver, cardiac conduction
abnormalities and a CMP phenotype were found [45]. Another mouse model deactivating
Prdm16 with the Mesp1-Cre driver demonstrated predisposition to heart failure in response
to metabolic stress [44]. Genetic lineage tracing revealed that compact myocardial myocytes
are more proliferative than trabecular cardiomyocytes [46]. Impaired proliferation and
expansion of the compact myocardium with premature cardiomyocyte maturation was

https://gnomad.broadinstitute.org/
https://clinicalgenome.org/
https://clinicalgenome.org/
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suggested in the developing mouse heart to underlie LVNC [47]. In a more recent study,
two new conditional Prdm16 knock out models recapitulated the LVNC phenotype with
LV-specific dilatation and dysfunction [48]. In summary, the correct timing and spatial
organization of cardiomyocyte proliferation and maturation is indispensable for normal
left ventricular wall morphology and function.

Murine models were also used to test the hypothesis that LVNC may result from a com-
bination of genetic variants. Evidence for oligogenic inheritance of LVNC was shown for a
combination of three inherited heterozygous missense variants in the MKL/myocardin-like
protein 2 (Mkl2), Myh7, and the transcription factor NK2 homeobox 5 (Nkx2-5) underlying
familial LVNC. These triple compound heterozygous mice recapitulate signs of human
LVNC [49]. Oligogenic inheritance was also supported by a study in which an increasing
number of genetic variants in patients with LVNC strongly correlated with several markers
of disease severity [50].

4. Diagnosis

The diagnosis of LVNC is made according to the morphologic criteria and made
irrespective of the presence of LV systolic dysfunction or dilation [4,12]. This means that
LVNC is a distinct but not necessarily pathological phenotype [51,52]. A wide spectrum
of individuals meet the diagnostic criteria of LVNC without an underlying CMP. The
genetic causes of LVNC are heterogeneous, reflect the underlying CMP such as DCM
or HCM and most of them are not specific for the diagnosis of LVNC. Some acquired
and reversible forms of LVNC strengthen that LVNC may be a physiologic, reversible
phenotype [53–55]. LV trabeculations occur in response to increased LV loading conditions
in pregnancy [56]. In one study, a high proportion of young athletes fulfil criteria for LVNC
which suggests that the current diagnostic criteria, if used in an elite athletic population, are
non-specific [57]. Ethnic considerations were described in which LVNC was more common
in black individuals among an adult population fulfilling LVNC criteria supporting that
LVNC might be a physiologic phenotype [26,58].

In an attempt to separate the individuals with pathologic from physiologic phenotype
the term LVNC-CMP was introduced to specify those LVNC individuals with CMP [26].
When LV dilation and dysfunction are present, which are defining DCM, the diagnosis of
LVNC-CMP may be more supported by using the DCM phenotype than by the trabecular
morphology. In those cases, the diagnosis of DCM with LVNC morphology might be more
suitable and practical. Both possibilities, either LVNC or CMP as the leading descriptor,
provide the phenotype and diagnosis [4]. The morphology should be clearly described and
practical to understand.

4.1. How to Reach and Confirm a Diagnosis

The different subtypes of pediatric LVNC are summarized in Figure 1. For the di-
agnosis of a CMP in the presence of LVNC, the following investigations are usually per-
formed [26,36,38,59].

- Assessment of medical and family history
- Electrocardiography (ECG)
- Echocardiography with functional assessment of LV size and function
- Holter-ECG (24 h)
- Cardiopulmonary exercise testing (CET)
- Cardiac magnetic resonance (CMR) imaging
- Genetic testing

Family history should include a three-generation pedigree. ECG changes are usually
unspecific and arrhythmias detected by Holter-ECG may include ventricular ectopic beats
and sustained or non-sustained ventricular tachycardia. Echocardiography data show LV
dilatation and/or systolic/diastolic dysfunction. An early marker of systolic impairment
is a reduced global longitudinal strain (GLS). CET is a measure for cardiovascular perfor-
mance and possible arrhythmias. CMR imaging is used to characterize LV size and function
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and markers such as late gadolinium enhancement (LGE) are able to provide noninvasive
tissue characterization and measure of fibrosis. Genetic testing should only be performed,
if a CMP is diagnosed clinically.
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Figure 1. Clinical diagnosis and subgroups in pediatric LVNC. ARVC, arrhythmogenic right ven-
tricular cardiomyopathy; CHD, congenital heart defects; CMP, cardiomyopathy; DCM, dilated
cardiomyopathy; HCM, hypertrophic cardiomyopathy; ECG, electrocardiogram; LVET, left ventric-
ular excessive trabeculation; LVNC, left ventricular noncompaction; LVNC-CMP, left ventricular
noncompaction cardiomyopathy; RCM, restrictive cardiomyopathy.

With respect to subclinical CMP which can be detected by the newer imaging tech-
nologies there is still some uncertainty and no general agreement but the following is
suggested. If strain is abnormal with normal LV-EF, the criteria for a CMP are not ful-
filled according to the current AHA/ESC guidelines. These patients do not have CMP.
LVNC with normal LVEF and without any other cardiovascular abnormalities, isolated
LVNC, should be named LVET (Figure 1). Subclinical CMP (abnormal strain, clinically
asymptomatic) requires clinical monitoring with echocardiography but genetic testing is
not recommended.

4.2. The Importance of Imaging Modalities

Both imaging modalities, echocardiography and CMR imaging, are essential to deter-
mine the morphology (Figure 2). The echocardiographic criteria by Jenni et al [12]. remain
the gold standard for the LV phenotype “noncompaction” and are most widely used [11].

Several studies have proposed CMR criteria to improve the diagnostic sensitivity and
specificity [11]. Most of these studies have integrated Jenni’s criteria. Petersen et al. were
the first to propose CMR criteria: “an NC/C ratio greater than 2.3 in a long axis end-diastolic
image, in at least two consecutive segments” [14]. Further CMR studies demonstrated
that the numerical cutoff may not be sufficient for the diagnosis and other biomarkers or
deeper phenotyping was necessary [60]. Nevertheless, CMR provides important long-term
prognostic information. CMR may differentiate patients with high rates of cardiac events
from those with an excellent prognosis [54].

LV dilatation, systolic dysfunction, and late gadolinium enhancement (LGE) were
independent predictors of poor outcome [54]. Interestingly, the extent of LV trabeculation
failed to have a significant prognostic impact in this study [54]. In another study, at
multivariate analysis LGE was the only independent predictor of impaired systolic LV
function [61]. LGE was identified as an additional risk factor in adult LVNC patients
without severe LV systolic dysfunction [36]. To guide the management of patients, a risk
prediction model was developed and validated [36].
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Figure 2. Echocardiography and cardiovascular magnetic resonance (CMR) imaging in left ventricular
noncompaction (LVNC) of a 14-year-old girl with LVNC. The upper and middle panel show 4, 2, and
3 chamber views (CV) of representative echocardiographic and CMR images, respectively. The lower
panel depicts the CMR short axis view at the basis, midventricular site, and apex of the same heart.

Myocardial extracellular volume (ECV) reflects diffuse myocardial fibrosis with CMR
T1 mapping. Zhou et al. found elevated native T1 values in LVNC patients compared to
normal controls [62]. LGE negative patients had elevated native T1 compared to normal
controls which suggested that native T1 mapping can be applied to detect myocardial
fibrosis in LVNC patients earlier than by LGE imaging [62]. In comparison, ECV was normal
in most of the pediatric LVNC patients and was not related to cardiac function [63]. This
was explained by their younger age and that the patients were clinically asymptomatic [63].
Midwall fibrosis (MWF) can be detected by LGE CMR and predicts adverse outcome in
adults with non-ischemic DCM [64]. MWF was common in pediatric DCM, but was unable
to predict heart failure in the pediatric study [65]. Data on MWF in LVNC would be of
special interest and are not available so far.

Speckle-tracking echocardiography (STE) can detect subclinical changes in LV function,
and may complement the echocardiographic assessment of LVNC patients in clinical
routine. Although altered LV deformation in LVNC phenotype by STE does not enable
the diagnosis of a definite CMP it can be helpful in clinical assessment. Particularly
circumferential parameters are impaired in LVNC and can help to predict cardiovascular
outcomes of LVNC [66].

LV trabeculation was found to be correlated with reduced myocardial deformation
indexes, even if left ventricular ejection fraction (LV-EF) was normal [67]. Children with
LVNC and normal LV function myocardial deformation patterns measured by tissue
tracking analysis are significantly impaired compared to controls [68,69]. Rigid body
rotation (RBR) is characterized by impaired LV twist with apex and base rotating in the
same direction and can be used as a measure of cardiac mechanics in echocardiography
and CMR. RBR was associated heart failure and MACE in pediatric DCM [65]. In adult
LVNC patients, increased RBR was shown in LVNC with preserved EF when compared
with controls [70]. In children, LV twist had good predictive value in diagnosing LVNC in
young patients [71]. In summary, the findings indicate that ECV, RBR, and tissue tracking
analysis may serve as novel markers of disease severity and permit earlier detection of LV
functional impairment in pediatric LVNC.



J. Cardiovasc. Dev. Dis. 2022, 9, 206 8 of 14

4.3. Indication for Genetic Testing

With regard to genetic testing the American Heart Association, the Heart Failure
Society of America, and the American College of Medical Genetics and Genomics propose
guidelines following a common line [25,72,73]: “Genetic testing should be considered in
individuals with CMP co-occurring with LVNC according to the recommendations for the
associated CMP [73]. Genetic testing is not recommended when the LVNC phenotype is
identified in asymptomatic individuals with otherwise normal cardiovascular phenotype
(Figure 1) [25,72]. The same causes of familial HCM and DCM common in adults are also
found throughout childhood and may be associated with LVNC [25]. Mitochondrial disease
genes, metabolic causes of CMP, and genetic syndromes should be tested following the
suspected underlying disorder according to the cardiovascular phenotype and additional
extracardiac clinical features of the individual” [25].

5. Prognosis and Outcome

Because existing diagnostic criteria lack specificity prognosis and outcome are dif-
ficult to determine, LVNC includes both, physiological conditions or adjustments and
pathological disease [74]. In cohorts retrieved from tertiary centers, it has repeatedly been
demonstrated that LVNC was associated with an increased risk of heart failure, systemic
embolisms, and ventricular arrhythmias, which are the clinical symptoms and events
that guide therapy [38,75]. Reduced LV ejection fraction was the variable most strongly
associated with MACE in adult and pediatric patients with LVNC [36,39,76,77].

5.1. Adult and Paediatric LVNC Outcome

Data on outcome of pediatric LVNC are scarce and therefore studies of adult patients
are often taken into consideration. Overall survival was reduced in patients with LVNC
compared with the expected survival of age- and sex-matched US population [76]. In this
study by Vaidya et al. however, survival rate in the individuals with normal LV-EF and
isolated apical noncompaction was comparable with that of the general population [76].
In multivariate cox regression analysis in adult LVNC, age, LV-EF < 50%, and extent of
LVNC were significantly associated with all-cause mortality [76]. In a metanalysis Aung
et al. systematically searched 28 eligible studies enrolling 2501 adult LVNC patients, mostly
all studies with patients with reduced LV-EF, and reported the adverse outcomes [77].
Patients with LVNC had a similar outcome when compared with DCM patients [77]. LV-EF,
not the extent of trabeculation, was a factor of adverse outcomes in LVNC patients [77].
In another large adult LVNC study population, the risk of MACE was related to factors
such as familial aggregation, male sex, cardiovascular risk factors, older age at diagnosis,
certain ECG abnormalities, and LGE on CMR, and like in so many other studies, to reduced
LV-EF [36]. From all these studies, no concrete conclusions can be made for pediatric LVNC.

Genetic factors play a more important role in children than in adults with LVNC and
severe forms of LVNC tend to be diagnosed in childhood [8,38]. LVNC had a high mortality
rate in children in a tertiary center, resulting in an 18% incidence of death or transplantation
in the total cohort [78]. Cardiac dysfunction or ventricular arrhythmias were associated
with increased mortality, which was also significantly higher in children diagnosed in the
first year of life [78]. Children with normal LV diameters and normal function were at low
risk for sudden death [78]. Data from the Paediatric Cardiomyopathy Registry (PCMR)
suggest the specific CMP phenotype that is associated with LVNC predicts outcome in
children [79]. Pediatric patients with isolated LVNC have the best outcome compared to
patients with LVNC and an associated DCM/HCM [79]. 20% of cases may be familial,
therefore with the diagnosis of LVNC in a child family screening is recommended [79].

A systematic review by van Waning et al. in a large cohort of genetically confirmed
561 LVNC patients found worse clinical outcome in children compared to adults [32]. The
study included children with genetic syndromes, chromosomal defects, and neuromuscular
symptoms. The composition of the study cohort might explain the worse clinical outcome
in children caused by the severe underlying disorder [32]. Non-sarcomere non-arrhythmia
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CMP genes, X-linked genes, arrhythmia genes, MYBPC3, and TTN were associated with
MACE in multivariate analysis [32]. The severe outcome of children with multi-systemic
disorders implies that diagnostic and therapeutic procedures should be guided by age at
presentation [32].

Schultze-Berndt et al. detected a higher percentage of asymptomatic children than
asymptomatic adult LVNC patients in their study cohort with primary CMP [39]. Reduced
LV systolic function was identified as the main risk factor for MACE in the pediatric
subcohort by multivariate analysis. The LV-EF reduction in children was the main risk
factor, and LV-EF had a higher independent risk than a lower BSA or increased LVEDD [39].

In summary, in pediatric LVNC lower BSA and younger age are considered risk factors
for MACE [32,39]. Congestive heart failure at diagnosis and reduced LV systolic function
are independent risk factors in pediatric LVNC cohorts [30,39].

5.2. Genetic Variants and Risk of MACE

With respect to direct genotype-phenotype correlations in LVNC, several studies
produced conflicting results. In a retrospective study of LVNC detected ≤21 years of age, it
was less likely to find the genetic cause in isolated LVNC than in LVNC-CMP (0% versus
12%, respectively) [80]. Isolated LVNC individuals had a negative CMP gene panel result.
This genetic yield in pediatric LVNC was lower compared with previous reports in adults
(41% and 29%) [28,34] and in children (38% and 28%), respectively [30,39]. This low genetic
yield is difficult to explain in the context of several other studies, but might be due to the
imaging criteria for the diagnosis of LVNC. The severity of LVNC by imaging criteria was
not associated with a positive genetic test result in this study [80]. Anyhow, children and
young adults with isolated LVNC, in the absence of a family history of CMP, were not
advised to undergo CMP gene panel testing [80]. No pathogenic variants were identified in
another study in adult patients with isolated LVNC in the absence of cardiac dysfunction
or syndromic features [81]. A study including pediatric LVNC patients (45% of the cohort
were <18 years of age) suggested that LVNC might be driven by mutational burden [50].
The number of genetic variants was associated with the extent of noncompaction and
LV systolic dysfunction. Left ventricular hypertrabeculation (LVHT) and LVNC might
be the result of genotype accumulation which leads to differences in the expression of
the phenotype [50]. It remains elusive, if and when a mutational burden might reach
a threshold for the development of LVNC and after all, impaired cardiac function and
clinical symptoms.

Variants in specific genes such as in TAFAZZIN, RBM20, Lamin A/C, TTN-truncating
variants and non-sarcomere genes are associated with worse outcome in LVNC [30,35,82,83].
In the study by Wang et al. pathogenic variants were identified in 38% of patients (mean
age 1.8 ± 0.4 years) and were independent risk factors for MACE such as death, heart
transplantation, or implantable cardioverter-defibrillator implantation [30]. Sarcomere
genes accounted for 63%. TAFAZZIN and MYH7 pathogenic variants were the most
common. Patients with pathogenic variants showed poorer prognosis, especially those
with multiple variants [30]. In the study by Schultze-Berndt et al. the genetic yield of
(likely) pathogenic variants was 31%, 28% in pediatric patients, and 35% in adult patients,
respectively. Mutations in MYH7, TTN, and MYBPC3 were most prevalent in the study,
very comparable to other recent reports in adult and pediatric populations [36,38]. Risk
stratification for MACE, depending on the individual mutation, was not possible, neither
in the pediatric nor in the adult cohort [39]. Van Waning et al. showed that in children
diagnosed <1 year of age, with multiple mutations in MYBPC3, and in (probable) genetic
LVNC, an increased risk of MACE was observed [38]. The risk for adverse events in
sporadic (non-genetic, non-familial) children was low [38]. In summary, there is evidence
that specific genetic variants have a poorer prognosis but this knowledge is not ready to be
transferred to clinical decision-making.
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5.3. Paediatric LVNC Subtypes

The impact of LVNC subtypes was systematically reviewed in a study of Van Waning
et al. [32]. Adult and pediatric cases were classified as isolated LVNC, LVNC with HCM,
LVNC with DCM, and LVNC with DCM and HCM. Overall, the LVNC-DCM phenotype
was present in 56% and therefore the most frequent subtype. LVNC-DCM was associated
with a high risk for LV systolic dysfunction and an increased risk for MACE [32]. The LVNC-
HCM/DCM phenotype was detected mostly in children, was not caused by mutations
in CMP genes, and lead to severe outcome [32]. In the study by Schultze-Berndt et al. a
higher prevalence of LVNC-HCM in the pediatric compared to the adult subcohort was
shown [39]. Patients with LVNC-HCM were younger at diagnosis, more frequently affected
by CHD, and at higher risk for MACE [39].

Genetic screening to identify family members at risk for developing CMP is useful and
named “cascade screening” [59]. From investigating LVNC families, van Waning et al. could
predict phenotype and outcome in relatives depending on the clinical features and genotype
of LVNC index cases [33]. LVNC-DCM was associated with mutations in the tail of MYH7,
LV systolic dysfunction, increased risk for MACE, and DCM without LVNC in relatives.
Mutation in the head of MYH7, asymptomatic or mild disease, and isolated LVNC in
relatives was associated with isolated LVNC. LVNC-HCM was associated with mutation of
MYBPC3 and with HCM without LVNC in relatives [33]. These interesting data show that
genetic background in families influences the cardiac phenotype associated with LVNC.

A recent study addressed the role of ion channel gene variants and correlation with
arrhythmias in a large cohort of pediatric LVNC [84]. The LVNC patients with ion channel
gene variants had nearly normal LV-EF and LVEDD, but showed a higher prevalence of
arrhythmia phenotypes [84].

Patients with CHD and LVNC primarily present to the pediatric cardiologist and there
are two possible etiologies. Pathologic remodeling induced by pressure or volume overload
in CHD may lead to LVNC. Alternatively, genetic alteration may drive LVNC in CHD. In
LVNC families, some relatives of affected members may have CHD or CMP with or without
LVNC [26]. MYH7 mutation was found in Ebstein anomaly associated with LVNC [6]. In
LVNC with or without CHD, there was no association between the likelihood of MACE
and the NC/C ratio or the number of trabeculations [85]. Van Waning et al. reported on an
increased risk in children for CHD and MACE [32].

6. Conclusions

LVNC is a phenotype that awaits classification and can be found in a spectrum from
physiologic state to mild or severe disease. Adult individuals with isolated LVNC (LVET)
seem to have the same outcome as the healthy population. The development of better
imaging technologies, specifically CMR imaging, analyzes LVNC changes more easily
and might lead to better diagnosis, if used with novel imaging biomarkers. We need
larger systematic population-based studies and follow-up to identify individuals at risk for
developing a CMP later in life specifically in the pediatric population.
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