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Purpose: Myocardial fat infiltrations are associated with a range of car-
diomyopathies. The purpose of this study was to perform cardio-respiratory
motion-correction for model-based water-fat separation to image fatty infiltrations
of the heart in a free-breathing, non-cardiac-triggered high-resolution 3D MRI
acquisition.
Methods: Data were acquired in nine patients using a free-breathing,
non-cardiac-triggered high-resolution 3D Dixon gradient-echo sequence and
radial phase encoding trajectory. Motion correction was combined with a
model-based water-fat reconstruction approach. Respiratory and cardiac motion
models were estimated using a dual-mode registration algorithm incorporating
both motion-resolved water and fat information. Qualitative comparisons of fat
structures were made between 2D clinical routine reference scans and reformat-
ted 3D motion-corrected images. To evaluate the effect of motion correction the
local sharpness of epicardial fat structures was analyzed for motion-averaged and
motion-corrected fat images.
Results: The reformatted 3D motion-corrected reconstructions yielded qualita-
tively comparable fat structures and fat structure sharpness in the heart as the
standard 2D breath-hold. Respiratory motion correction improved the local sharp-
ness on average by 32%± 24% with maximum improvements of 81% and cardiac
motion correction increased the sharpness further by another 15%± 11% with max-
imum increases of 31%. One patient showed a fat infiltration in the myocardium
and cardio-respiratory motion correction was able to improve its visualization
in 3D.
Conclusion: The 3D water-fat separated cardiac images were acquired during
free-breathing and in a clinically feasible and predictable scan time. Compared
to a motion-averaged reconstruction an increase in sharpness of fat structures by
51%± 27% using the presented motion correction approach was observed for nine
patients.
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1 INTRODUCTION

Adipose tissue can infiltrate the myocardium, which is
associated with a range of ischemic and non-ischemic car-
diomyopathies.1 These include chronic myocardial infarc-
tion (MI), muscular dystrophy (MD), dilated cardiomyopa-
thy (DCM), or arrhythmogenic right ventricular cardiomy-
opathies (ARVC).2–6 It was reported that fatty metapla-
sia in MI and MD is possibly related to arrhythmia and
could influence the prognosis of DCM.7–9 Cardiac MRI
can non-invasively characterize chemical tissue compo-
nents in the heart.10 Fat can be visualized by suppress-
ing the water signal (spectral suppression). The differ-
ence in resonance frequencies (chemical shift) between
the water and fat signal also allows their separation using
acquisitions at different echo times (Dixon imaging).10

In cardiac applications, fat is usually suppressed using
spectral fat suppression methods; however, multi-echo
water-fat separation techniques have several advantages.
Imaging fat with a positive contrast mitigates any errors
due to incomplete suppression experienced with spec-
tral methods.11,12 Also, acquiring multiple echoes allows
accounting for B0 field inhomogeneities in the reconstruc-
tion.13,14 Separation techniques are also able to resolve
ambiguities in late gadolinium enhancement (LGE) imag-
ing: fatty infiltrations can be mistaken as fibrotic tis-
sue in T1-weighted sequences because both have a low
post-contrast T1 value.12 Furthermore, chemical shift arti-
fact induced misregistrations between water and fat can be
suppressed in multi-point water-fat imaging.15,16

For water-fat separation, images are typically recon-
structed at different echo times and then separated into
water and fat images. Model-based water-fat reconstruc-
tion on the other hand obtains water and fat maps directly
from the acquired multi-echo k-space data. This has the
advantage that the regularization can be applied to the
water and fat images directly rather than on the intermedi-
ate individual-echo images. This ensures that the obtained
fat and water images are consistent with the obtained
k-space data. This model-based approach has been com-
bined with compressed sensing regularization17 and with
XD-GRASP for motion-resolved imaging applications in
the abdomen.18,19

In clinical routine water-fat imaging is performed by
acquiring multiple 2D slices with a high in-plane resolu-
tion but a large slice thickness of 4–8 mm. One or multi-
ple breath-holds are typically required to cover the heart
leading to misalignment of the slices and posing a chal-
lenge to the patient. Imaging is routinely performed as
cine,20 resolving the cardiac motion or is electrocardio-
graph (ECG) triggered to mid-diastole to mitigate motion
artifacts caused by the heartbeat.

Fat infiltration in the heart can be very small and irreg-
ularly distributed in the myocardium. Therefore, it can
be poorly resolved or even missed with multi-slice 2D
imaging. High-resolution 3D water-fat imaging has been
proposed to alleviate this problem,21 but the main chal-
lenges remain the long scan time and respiration- and
heartbeat-induced motion artifacts. These can be reduced
using gating and triggering, respectively.4,22–25 Respira-
tory motion-corrected image reconstruction (MCIR)26 has
been proposed for water-fat imaging,27,28 but cardiac trig-
gering still reduces scan efficiency and can lead to scan
times that are longer than clinically feasible.

The purpose of this study was to perform
cardio-respiratory motion-correction for model-based
water-fat separation to image fatty infiltrations of the heart
in a free-breathing, non-cardiac-triggered high-resolution
3D MRI acquisition. The data acquisition is performed
after the injection of a bolus of contrast agent with a
non-triggered and free-breathing gradient-echo Dixon
sequence which covers the whole heart using a radial
phase encoding (RPE) trajectory.29 Images are recon-
structed with a regularized model-based water-fat
framework. Respiratory and cardiac motion is estimated
from the data based on synergistic non-rigid registration
using both water and fat images. While other methods rely
on the final reconstruction on resolving the motion19,30–32

this work aims to correct for it. To resolve the motion
only a fraction of the data are used for each frame and
strong regularization is required to ensure that undersam-
pling artifacts are suppressed. In this work, the computed
patient-specific motion models are combined with all
acquired data and incorporated into the encoding model
to reconstruct a single cardio-respiratory motion state to
minimize motion artifacts and improve the accuracy of fat
visualization.

The model-based reconstruction is validated on data
acquired from nine patients using clinical 2D images as a
reference. The effect of cardio-respiratory motion correc-
tion (MoCo) on adipose cardiac tissue is assessed with a
local edge sharpness metric applied to the reconstructed
fat images.

2 METHODS

In the following, two developments are described: first,
to perform MCIR the incorporation of motion models
into a model-based water-fat reconstruction framework
is presented. Secondly, to extract the motion models
required for MCIR, the application of a synergistic registra-
tion algorithm to water-fat separated and motion-resolved
images is described.
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F I G U R E 1 Overview of reconstruction workflow. A
self-navigator (B) is extracted from the acquired data (A). It is used
to bin the data into respiratory states (C) and extract a respiration
model from the motion-resolved image series. Subsequently, it is
combined with the ECG (D) to reconstruct a respiration-corrected
and cardiac motion resolved image series. From this, a cardiac
motion model is extracted, combined with the respiration model (E)
and used to reconstruct a fully 5D motion-corrected image.

2.1 Overview image reconstruction
workflow

A schematic overview of the reconstruction workflow used
is given in Figure 1. Several image reconstruction and
motion estimation steps are performed where each of the
steps incorporates information obtained in the previous
ones.

The surrogate signals necessary for relating the data to
the individual motion states are available in the form of
an ECG for cardiac motion (Figure 1A) or a self-navigator,
which is extracted from the acquired k-space data for res-
piration (Figure 1B). Data are either binned based on the
cardiac phase or respiratory amplitude.

The respiratory self-navigator was obtained from the
data itself. The readouts at the phase encoding point
ky = kz = 0 are extracted and Fourier transformed along
the readout yielding a time-resolved projection of the 3D
image volume onto the foot-head axis. The temporal res-
olution of this navigator depends on the time intervals in
which the phase encoding point ky = kz = 0 is sampled,
which in this work yielded a resolution of 48*TR = 394 ms.

From these data, the respiratory surrogate signal
is extracted using principal component analysis (PCA)
over the readout- and receiver channel dimension where
the component with the largest singular value was

selected as the respiratory signal. Subsequently, it was
interpolated to the resolution of TR using a spline
interpolation.

Coil sensitivity profiles were estimated from the
acquired data33 and no coil calibration scan was required.

For the estimation and correction of motion, a
two-step strategy is applied. Both respiratory and car-
diac motion-resolved images are reconstructed, and the
4D motion is estimated for both motion modes individ-
ually. First, the data are reconstructed resolving the res-
piratory motion, followed by a registration step extract-
ing a respiratory motion model (Figure 1C). Subse-
quently, this respiration model is included in the recon-
struction of cardiac-resolved images, followed again by
registration to model the cardiac motion (Figure 1D).
The images underlying the cardiac motion estimation
are, however, already corrected for respiratory motion.
Cardio-respiratory motion is then generated by combin-
ing the two individual motion modes by concatenation
of cardiac and respiratory motion to yield both cardiac
and respiratory motion-corrected and water-fat separated
images (Figure 1E). Details on the individual steps are
described in the following.

All reconstructions were performed using a custom
implementation in MATLAB (The Mathworks, Natick,
MA) and Python.34

2.2 Motion-resolved model-based
water-fat separated image reconstruction

A model-based framework is used to reconstruct
motion-resolved 3D water-fat images (W,F). Images are
reconstructed by optimizing the cost function

(W∗
,F∗) = argmin

(W ,F)
||E(W ,F) − k||22 + 𝜆TV ⋅ ‖∇x(W ,F)‖1

+ 𝜆TVT ⋅ ‖∇t(W ,F)‖1 (1)

where (W*,F*) is the reconstructed water-fat image, E is
the encoding operator modeling the data acquisition as
described below, k is the acquired data, ∇x and ∇t are the
finite difference operators along the 3D spatial (∇x) and
motion (∇t) direction with their respective weights𝜆TV and
𝜆TVT.

The data acquisition is modeled by the encoding oper-
ator E(c,TE ,m) for coil channel c, echo time TE and motion
state m for the water-fat images is described by:

kc (TE,m) = E(c,TE ,m)(W ,F)

= Pm
(

(

Cce2πiΦTE ⋅Wm
)

+D (TE)
(

Cce2πiΦTE ⋅ Fm
))
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where (Wm,Fm) is the water-fat image in motion state m,
Φ is the field inhomogeneity off-resonance, D(TE) is a
six-peak spectral chemical shift model,19,35 F is the Fourier
transform, Cc is the coil sensitivity profile for channel c,
and Pm grids the k-space data onto the non-cartesian tra-
jectory of motion state m. The assignment of phase encod-
ing points to a motion state in the operator Pm is based on
a surrogate signal for the motion. For respiration-resolved
reconstruction, the data are amplitude-binned based on a
self-navigator extracted from the data themselves and for
cardiac motion are phase-binned based on an externally
acquired ECG signal.

A reconstruction using this approach and cost func-
tion and data acquisition with a stack-of-stars trajectory
has previously been proposed as XD-GRASP.18,19,30 In
this work, however, the sampling of non-cartesian data
points is not performed in the readout direction but the
phase-encoding direction instead.

The field off-resonance map Φ used in the forward
model was computed using the three individual echoes
using a dedicated region-growing algorithm14 before the
reconstruction and kept constant concerning the optimiza-
tion afterward.

2.3 Motion-corrected model-based
water-fat separated Image reconstruction

To include motion correction in the reconstruction, the
forward model was modified to include a non-rigid motion
transformation. The transformation is applied as coordi-
nate transforms Tm ∶ R3 → R3, r → Tm(r), and defined as
maps from an arbitrary reference motion state m= 0 to the
motion state m as:

(Wm,Fm) (r) = (W0,F0) ◦Tm(r).

Replacing (Wm,Fm) (r) by this expression in the above
forward model yields:

kc (TE,m) = E(c,TE ,m)(W ,F)

= Pm
(

(

Cce2πiΦTE ⋅W0◦Tm
)

+D (TE)
(

Cce2πiΦTE ⋅ F0◦Tm
))

where all variables are kept the same as in the for-
ward model for the motion-resolved reconstruction
above. Using this forward model in the optimization of
Equation (1), adding the additional motion information
of Tm(r) yields water and fat images in the reference state
m = 0 instead of a motion-resolved reconstruction. This
motion model, however, must first be computed from the
data as described in the following section.

2.4 Synergistic registration

In the forward model underlying the motion-corrected
reconstruction, the motion transformation Tm is assumed
to be known. One way to obtain this information is
to use an image registration algorithm on a set of
motion-resolved water-fat separated images (Wm,Fm).
The registration algorithm used in this work is based
on an algorithm previously used in dual-modality
image registration in simultaneous cardiac PET-MR.36

To use both water and fat information for motion
estimation, we use a synergistic approach where we
estimate motion fields that describe both water and
fat images. The registration algorithm is formulated
as an optimisation problem with the associated cost
function:

C (Tm) = w ⋅ S (W0◦Tm,Wm)
+ (1 − w) ⋅ S (F0◦Tm,Fm) + ρ ⋅ R (Tm) (2)

where S is a similarity metric, w weights the contribu-
tion of water relative to fat (i.e. w = 1 corresponds to
water only, w = 0 to fat only), and 𝜌 is the weight asso-
ciated to an explicit regulariser R. The transformation
Tm is parametrized with B-splines,37 which adds fur-
ther implicit regularization. In this work, S was set to
normalized mutual information, and the explicit term R
was set to the so-called bending energy (i.e., the absolute
value of the second spatial derivative) of the transfor-
mation.37,38 Larger bending energy forces the computed
Tm toward a more locally linear transformation. The
hyperparameters passed to the registration consist of a
triplet (w, ΔB, 𝜌), with w and 𝜌 as above, and ΔB as the
spline support point distance in the parametrization of
Tm. The parameters for the individual registrations have
been determined experimentally and kept constant for all
datasets. Registration was performed with a spline-based
image registration tool (Medical Image Registration
ToolKit (MIRTK),37).

2.5 Combination of cardiac
and respiratory motion correction

To perform simultaneous cardiac and respiratory motion
correction, the data are double binned such that the
motion index m is comprised of a respiratory and car-
diac motion state: m = (r, c). As the motion transformation
is not estimated on double-binned reconstructed images,
but the cardiac motion is only estimated in end-exhale to
apply both motion models at the same time, the cardiac
motion model must be transformed from the end-exhale
motion state into the other respiratory motion states by
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concatenation of respiratory and cardiac motion trans-
form: T(r,c) = Tc◦Tr.

This ensures that the correction of the heartbeat is
moved to the individual respiratory motion states. This
combination of motion modes is possible if the respiratory
motion is an affine transformation in the regions where
the heartbeat is corrected. This can be assumed to be true
for the central region of the thorax where the heart exe-
cutes a respiratory-induced combination of translation and
rotation.

2.6 Parameters in image
reconstruction workflow

In a first step, the respiratory self-navigator is extracted
and used to bin the data into Nresp = 6 respiratory motion
states based on respiratory amplitude with a 10% over-
lap between adjacent bins. This yielded an undersam-
pling factor of three for respiratory reconstruction. Bin-
ning for respiration (as well as cardiac motion later) was
performed by adaptively choosing the bin width, such
that all bins contain the same amount of data points
to ensure a similar undersampling artifact level upon
reconstruction. The binned data are reconstructed into
water and fat content using a TV and TVT regulariza-
tion strength of 𝜆TV = 0.05 and 𝜆TVT = 0. The resulting
image series are subsequently registered using the dual
water-fat registration defined in Equation (2) with (w,
ΔB, 𝜌) = (0.7, 8, 0) yielding motion fields that describe
the respiratory motion model. In a second step, the data
are binned into Ncard = 12 cardiac motion states based
on cardiac phase using the ECG signal. For cardiac bin-
ning, a 0% overlap between adjacent bins was used. This
yielded an undersampling factor of 6 for the cardiac
reconstruction. The resulting data are reconstructed into
water and fat modes using a regularization strength of
𝜆TV=0.025 and 𝜆TVT=0.05 while simultaneously applying
the previously generated respiration model for respiratory
MoCo. The resulting image series resolves the heartbeat
motion, and each image itself is already free of artifacts
caused by respiration. The image registration with (w,ΔB,
𝜌) = (0.5, 2, 2*10−3) was applied to determine the cardiac
motion fields. Eventually, both motion models were com-
bined into a cardio-respiratory motion model and applied
to reconstruct a single, motion-free fat and water sep-
arated image. Finally, three reconstructions were com-
pared: the motion-averaged (AVG), respiratory-corrected,
cardiac-averaged (r-MCIR), and the cardio-respiratory cor-
rected (cr-MCIR). Each was reconstructed with 𝜆TV=0.015
(as there is only one reconstructed, motion-corrected
image TVT regularization cannot be performed, i.e.
𝜆TVT = 0.)

F I G U R E 2 The k-space trajectory. Radial phase encoding
trajectory with sunflower phase encoding pattern. Left: schematic
depiction of sampled trajectory in 3D k-space (omitting the use of
an angle-dependent shift for simplicity). Right: arrangement of
phase encoding points in the ky-kz plane in infinitely radially
interleaved circles, generating a sunflower-seed pattern.

2.7 Trajectory

Sampling k-space using a radial phase encoding (RPE)
trajectory has been proposed before and used in several
cardiac imaging applications.29,39,40 An RPE trajectory per-
forms parallel, cartesian readouts that are arranged in
a non-cartesian pattern in the phase-encoding plane of
k-space.

For this work, a novel trajectory was implemented,
which aims to generate a phase encoding sampling scheme
more suitable for compressed sensing applications. It
should have a uniform and random distribution after the
data are binned into cardiac or respiratory motion states,
but at the same time provide ideal coverage of the phase
encoding plane when all sampled data points are used in
an MCIR. Since the readouts are parallel and cartesian
samples the subsequent analysis considers phase encoding
points only.

We present a phase encoding sampling strategy for RPE
that decouples radial and angular undersampling for the
arrangement of the phase encoding points. The resulting
trajectory is shown in Figure 2.

The trajectory in the phase encoding plane is given by
the following formula:

(
ky,kz

)
= (Re, Im)

((
nrdr + 𝚫

(
n𝛗

))
⋅ ei⋅n𝛗d𝛗)

Where (Re,Im) take the respective part of a com-
plex number, dr is the step size along the radial
direction, Δ

(
nφ

)
is an angle-dependent shift, dφ is

the step size along the angular direction, and the
indices run as nr = (−Nr/2,…Nr/2–1), and nφ = (0,… ,
Nφ). The angle-dependent shift is given by the
function:

Δ
(

nφ
)
= dr

2
(
2 ⋅mod

(
nφ,Φ

)
− 1

)
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Where Φ = 1+
√

5
2

is the golden ratio and mod the
modulo operator on floating-point numbers. This
angle-dependent shift applies the principle of golden-ratio
increments previously used in the angular direction for
radial-readout41 or RPE sampling39 to the radial direction.
Hence, the points are arranged on infinitely interleaved
circles where no two points have the same distance to
the center of the phase encoding plane. However, as the
readout in the center point of the ky-kz-plane, which is
required for robust motion binning and self-navigation,
is shifted away from its position at ky = kz = 0, the read-
out of the first radial point of each angle (nr = -Nr/2) is
used to acquire ky = kz = 0. This yields a pattern in the
phase encoding plane of the arrangement of sunflower
seeds. This pattern was previously generated with a spiral
readout.42

During the acquisition, this decouples the notion of
the radial FOV from the radial sampling distance dr ∶ an
undersampling of the radial direction by a factor of Fr can
be compensated by an angular oversampling by a factor of
Fφ, i.e., Nr → Nr∕Fr while Nφ → Nφ ⋅ Fφ. The gaps in the
radial direction are automatically filled by the additional
angles, leaving the sampling pattern invariant. The tempo-
ral order of the sampling and the generation of the pattern
are shown in Supporting Information Videos S1–S3, which
are available online, for an example trajectory of Nr = 64,
Nφ = π ⋅ Nr and Fr = Fφ ∈ [1, 4].

This particular pattern is only generated using a radial
shift as above for linear angle increments dφ = π

Nφ
. How-

ever, in this work, a golden-angle increment was used:
dφgold = π(Φ − 1). Assuming a homogenous angular dis-
tribution after sampling all angles with dφgold the same
pattern can be generated by reordering the shift accord-
ing to Δ

(
nφ

)

gold = (−1)U(nφ)Δ
(
Π
(

nφ
))

, where Π
(

nφ
)

is
the permutation that sorts the sampled angles into a lin-
early increasing order and U

(
nφ

)
=
(
Re

(
ei nφ dφgold

)
> 0

)

accounts for the direction of the shift.

2.8 Data acquisition

Nine patients were scanned on a 1.5T Siemens Avanto
using a 32-channel cardiac phased coil array. Patients
included in the study were suffering from myocarditis or
muscular dystrophy. The study was conducted in accor-
dance with the Declaration of Helsinki, each patient pro-
vided informed written consent.

Data were acquired with a 3D three-echo Dixon
(TR = 8.,2 ms, TE = 2.90 ms, 4.48 ms, 6.06 ms, α = 15◦,
acquisition time [TA] = 13:26 min) FLASH sequence. The
reconstructed FOV in each direction was 288 mm at a
1.5 mm isotropic resolution, covering the entire thorax.
Fourier encoding was performed with the readout (kx)

along the head-foot direction and for the ky − kz direc-
tions using the sunflower trajectory as described above
The radial direction was undersampled by Fr = 4 and
a total of 2048 different phase encoding angles were
sampled.

Data acquisition was carried out during free breath-
ing without cardiac triggering. Patients’ ECG signals were
recorded. Each patient was given a T1 contrast agent for
clinical reasons before the data acquisition (0.2 mmol/kg
ProHance, except for patient 9, 0.15 mmol/kg Regadeno-
son).

Water-fat separated images were acquired in two-,
three-, and four-chamber views using a standard
ECG-triggered 2D Cartesian acquisition scheme in
three patients. The proposed 3D acquisition was then
reformatted to these orientations and compared.

Additional, a qualitative assessment was performed
regarding a retrospectively gated reconstruction. To this
end, data from the three cardiac motion frames with the
largest motion and the end-inhale phase were excluded
and the resulting reconstructions were compared qualita-
tively to using all acquired data.

2.9 Computation of local image
sharpness

To assess the effect of motion correction on the image qual-
ity, the sharpness of small structures in the fat images was
evaluated.43–46 An example for one patient in one view is
depicted in Supporting Information Figure S1. To this end,
the fat images were reformatted to two- and four-chamber
view and a Canny edge detection algorithm was applied
to the reformatted fat images to generate the local mag-
nitude of the image edges. Two fat structures from each
view were marked with a curve of length l. Both the edge
magnitude and the image magnitude were subsequently
extracted along this curve in a 10-pixel corridor, yielding
a patch of size l x 10 whose central line is the marked
curve. The extracted patches for both image and edge val-
ues were averaged along the direction of the curve and
the maximum was computed over the width of the patch,
yielding the values (img) and (edg) for the image and
edge information respectively. Finally, the edge sharpness
was defined as Σ = edg

img
. This sharpness score was evalu-

ated for four different locations each yielding the score Σl,
two locations in two-chamber and two- in four-chamber
view. Exemplary locations for one patient are depicted in
Figure 8. For each patient, the sharpness score was the
average sharpness over all four locations.

Additionally, a comparison of the image sharpness
between the 2D ECG-triggered reference images and
reformatted 3D AVG and cr-MCIR reconstructions was
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F I G U R E 3 Motion-resolved patient data reconstructions as
fat and water images. Two example patients 3 (top) and 8 (bottom)
are depicted. The intensity of undersampling artifacts is larger in
the reconstructions for patient 8, while cardiac and respiratory
resolved images show similar intensities of undersampling artifacts.
Fat and water are displayed for both respiratory (left) and cardiac
(right) motion in the respective states of ex- and inhale, and diastole
and systole. Yellow bars indicate the exhale position to which the
cardiac-resolved images are already corrected to. Yellow arrows
indicate cardiac motion which mainly leads to a contraction of the
heart and a thickening of the myocardium.

performed for the patients in which the reference was
available (patients 1, 2, and 3).

3 RESULTS

3.1 Qualitative evaluation of water-fat
reconstructions

Motion-resolved reconstructions for two patients are dis-
played in Figure 3. For both patients, water and fat images
in end-exhale, end-inhale, diastole and systole are dis-
played. One patient is shown in sagittal and one in coro-
nal view to highlight the 3D isotropic resolution of the
acquired data.

For both patients, changes in the anatomy due to respi-
ratory motion are visible in water and fat reconstructions.
In the cardiac-resolved images, the respiration has been

corrected as indicated by the position of the liver and
diaphragm. For patient 8, the contraction of the heart from
the diastolic to systolic phase is visible both in water and
fat images.

In Figure 4, the effect of the estimated motion fields
for example patient is shown as coordinate transforma-
tions from exhale to inhale for respiration and diastole to
systole for cardiac motion. The motion transformations
do not show non-physical properties such as overlapping
coordinate lines and are well-regularized. The successful
transport of the cardiac motion along the path defined
by the respiratory motion can be seen in the combined
cardio-respiratory motion field.

Motion-corrected images for two patients are shown
in Figure 5. Both fat and water images are shown for
AVG, r-MCIR, and cr-MCIR from left to right. Regions,
where improvements in the fat structure are visible, are
depicted in a separately zoomed-in square. Cyan arrows
indicate additional locations where motion-blurring in the
epicardial fat structures is visibly reduced by the applica-
tion of the proposed motion-corrected image reconstruc-
tion. Patient 1 shows a reduction of motion blurring after
the application of the respiratory model, especially in the
abdominal region. Motion blurring due to the heartbeat
can be further reduced by an additional application of
the cardiac motion model in both epicardial fat struc-
tures as well as for the coronary vessel. Patient 6 shows
very strong blurring in the motion-averaged case, of which
the abdominal fat and the structure at the apex could
be improved with respiratory MoCo. Cardiac MoCo could
further improve the basal fat structure. A similar improve-
ment can be also seen in the complimentary water image
where the coronary arteries become visible using cr-MCIR.
In addition to a reduction in blurring also respiratory
motion artifacts in the ventricle are reduced with MoCo.

A comparison between 2D clinical acquisitions in two-,
three-, and four-chamber view and 3D fat cr-MCIR recon-
structions reformatted to the same views are displayed
for two patients in Figure 6. The depiction of fat struc-
tures acquired is comparable between both scans. Nev-
ertheless, it is important to note that the 2D data were
acquired during a breath-hold using cardiac triggering
and hence might show a different motion state than
cr-MCIR.

Supporting Information Figure S3 shows the effect of
retrospective motion gating in one example patient. It can
be seen that the exclusion of data with large motion ampli-
tudes increases the visibility of fine structures for AVG and
r-MCIR reconstruction, however, not for cr-MCIR. This,
however, is accompanied by a loss in overall image qual-
ity as fewer data were available for the reconstruction.
Different levels in undersampling artifacts between AVG
gated and (c)r-MCIR images are likely to occur since the
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F I G U R E 4 Registration results for an
example patient. From left to right:
inhalation, from top to bottom: cardiac
contraction. The reconstructed reference
motion state is shown in the background as
a static reference. The grid spacing is 4 pixels
in both directions for the identity map on
the top left. All motion fields are
well-regularized and do not exhibit
non-physical properties such as noise-like
local transformations. One can see how the
cardiac contraction is registered in the
center of the left ventricle, as well as that the
registered inhalation transports heart and
abdomen downward. The red arrows
indicate where the contraction of the heart
is transported to a different location by the
inhalation when combining the estimated
cardiac and respiratory motion.

F I G U R E 5 Motion-corrected patient data. Motion-corrected
water-fat-separated image reconstruction of two patients 1 (top) and
6 (bottom). Yellow squares are zoomed in on areas where respiratory
(rMCIR) and subsequent cardio-respiratory (cr-MCIR) motion
correction improve the sharpness of both water and fat mode. Cyan
arrows additionally highlight improvements in fat structures.

reconstructed k-space is not oversampled after gating and
motion-correction can potentially increase undersampling
artifacts.26 Furthermore, a comparison between AVG,
AVG-gated and cr-MCIR in two-chamber view is depicted
for three patients in Supporting Information Figure S4.
While for one patient gating was very effective in removing
most of the motion-artifacts, the patients showed resid-
ual motion artifacts in the AVG gated reconstructions.
In contrast, motion correction was able to remove more
motion-artifacts in all three patients than gating.

A patient with fat-infiltration in the septum is dis-
played in Figure 7. The reconstructed fat images are
displayed in axial and sagittal views for both AVG and
cr-MCIR. It can be observed that MoCo led to an improved
depiction of the fat in the sagittal view. The sagittal slice
shows the fine structure of the fat infiltration strongly
blurred for the AVG reconstruction. In addition, many
motion-artifacts make it difficult to identify these small
structures. The proposed cr-MCIR reduced motion arti-
facts and blurring and strongly improved the visibility of
the fat infiltration. This can also be seen in a water-fat
overlay of the sagittal slice.

3.2 Quantitative evaluation of image
sharpness

A quantitative assessment of the fat structure sharpness Σ
is displayed in Figure 8. On the left, the locations where
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F I G U R E 6 Comparison with clinical standard reference.
Images of 3D fat cr-MCIR reformatted to clinical routine four-,
three-, and two-chamber view (left to right) for two patients. The
top row for each patient shows the clinical standard cardiac
triggered reference exam obtained during breath-hold. The bottom
row shows the reformatted images generated from the
free-breathing motion-corrected cr-MCIR 3D data. Green arrows
point out fine fat structures that the 3D data can resolve. Red arrows
show residual motion blurring due to imperfect cardiac MoCo.

the sharpness is evaluated are shown for patient 4 on
cr-MCIR fat images. On the right, the values of Σ are
displayed for AVG, r-MCIR, and cr-MCIR. The distribu-
tions show an increase in sharpness for the inclusion of
each motion type. The increase in sharpness due to car-
diac motion correction is smaller compared to respiratory
motion correction.

A comprehensive overview of the measured values
is given in Table 1. The effect of r-MCIR leads to an
increase in fat structure Σ for every patient, with improve-
ments ranging between 1% and 81% with 32%± 24% on
average. The effect of additional cardiac MoCo is highly
patient-specific. For some patients, it can further improve
Σ by 31% for other patients it does not lead to any fur-
ther improvement. On average cardiac MoCo increaseΣ by
15%± 11%.

The result of the statistical tests between AVG and
r-MCIR of as well as cr-MCIR led to p-values prMCIR=0.008
and pcrMCIR = 0.008, also between r-MCIR and cr-MCIR
the p-value was pcard = 0.008. This suggests that correct-
ing for both the respiratory and the cardiac motion yields

F I G U R E 7 Patient with myocardial fat infiltration.
Comparison of AVG and cr-MCIR for a patient with myocardial
fat-infiltrations. Axial (top) and sagittal (center) slices are depicted.
The fat-infiltration is indicated by a blue arrow. The proposed
cr-MCIR water-fat separated image reconstruction reduces motion
artifacts and blurring, improving the visibility of the fat infiltration.
This is also visible in a water-fat overlay (bottom).

a significant improvement in the fat structure Σ of the
overall heart.

The quantitative comparison is presented in Support-
ing Information Figure S2. In this patient subset, the
sharpness increases between AVG and cr-MCIR recon-
structions on average by 38%, and the reference data shows
an increased sharpness by 19% compared to the cr-MCIR
reconstruction.

The effect of gating on the sharpness metric was
assessed by comparing the sharpness metric of AVG,
AVG-gated, and cr-MCIR. While gating increased the
sharpness metric mean by 16% from AVG to AVG-gated,
it was increased further by 25% in cr-MCIR (Supporting
Information Figure S5).

4 DISCUSSION

In this work, we presented a model-based water-fat recon-
struction with cardiac and respiratory motion correction.

With the presented reconstruction framework com-
pressed sensing regularization could be successfully
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F I G U R E 8 Σ computed for patient data reconstructions. Left:
cr-MCIR of patient 4 in two- and four-chamber view, with the
curves along which the metric was evaluated marked in red. Right:
distribution and boxplot of the fat structure Σ metric for AVG (left),
r-MCIR (center), and cr-MCIR (right). Orange bars indicate the
median, the box includes second and third quartile, and the whiskers
span 1.5 times the box height from the median. The r-MCIR and
cr-MCIR have a higher median than the AVG data set. (**p < 0.01).

T A B L E 1 Quantitative analysis of Σ evaluated for each
patient

Patient
alias Stat Resp Dual

𝚫Resp

(%)
𝚫Card

(%)
𝚫Dual

(%)

1 0.22 0.25 0.33 15 30 50

2 0.16 0.26 0.29 65 9 81

3 0.16 0.22 0.28 38 31 80

4 0.26 0.31 0.32 22 3 26

5 0.24 0.25 0.25 1 2 3

6 0.34 0.41 0.51 20 24 49

7 0.21 0.27 0.29 32 7 42

8 0.42 0.48 0.57 16 18 37

9 0.16 0.29 0.31 81 6 92

Mean 0.24 (8) 0.31 (8) 0.35 (11) 32 (24)* 15 (11)* 51 (27)*

Note: ΔResp is the increase of Σ for resp MCIR relative to Stat, ΔCard is the
increase of Σ for dual MCIR relative to Resp, ΔDual is the increase of Σ for
dual MCIR relative to Stat.
*p < 0.01.

applied for motion-corrected image reconstruction of fat
and water images. In Figure 3 two example reconstruc-
tions were presented that showed the motion-resolved
reconstruction of Nresp = 6 and Ncard = 12 motion states.
The TV and TVT regularization were able to suppress
artifacts while at the same time preserving motion
amplitudes.

The motion resolved images could then be used to esti-
mate and subsequently correct for respiratory and cardiac
motion. The image quality of both water and fat images

was improved by reducing motion artifacts and blurring.
This could be seen in both an improved delineation of
epicardial fat structures, as well an improved depiction of
coronary vessels and their surrounding fat structures.

While the scan time in this study with 13:26 min
was still long, it was predictable and the same for every
patient. The 2048 sampled phase encoding angles yielded
a net phase encoding oversampling of 67%. The oversam-
pling was deemed necessary to ensure sufficient image
quality.

A reduction to 0% oversampling could reduce the
acquisition time to 8 min, which could be achieved by
appropriate changes to the regularization parameters in
the reconstruction. A retrospective undersampling analy-
sis could not be performed. As the ideal temporal ordering
of the sampled trajectory is computed based on the number
of sampled angles retrospective discarding around 70% of
the sampled point leaves large gaps in k-space. Analysis of
the reconstructions at a reduced scan time would require
new acquisitions. In this study, we used a three-echo
Dixon acquisition to ensure a field inhomogeneity
map without the appearance of water-fat swaps.14 Scan
time could be further reduced when using a two-point
method.28

The data for this study were acquired after the injec-
tion of a T1 contrast agent resulting in a good contrast
between myocardium and blood which is beneficial for
the estimation of cardiac motion. Yet, due to the pos-
itive contrast of fat and the use of both water and fat
information in the motion estimation the cardiac motion
of the fat could also potentially be accurately measured
without a contrast agent, which would require further
studies.

Quantitatively the improvements of cardiac fat struc-
tures were analyzed by computing a local edge sharpness
metric Σ for epicardial fat structures. The data showed a
large improvement of 32%± 24% of the selected epicardial
fat structures when including a respiratory motion model
in the reconstruction process. Cardiac motion modeling
further increased Σ by an additional 15%± 11%. Statistical
tests showed that both respiratory and cardiac (p < 0.01)
MoCo led to a statistically significant increase in sharpness
Σ. The increase inΣ is highly patient dependent, especially
for cardiac motion (Figure 8 and Table 1). This effect is
expected as cardiac motion is much more patient-specific
than respiratory motion. The impact of cardiac motion
modeling depends on how long the systolic phase is rela-
tive to the whole cardiac cycle and how strongly the heart
contracts during systole.

Residual motion artifacts could be observed for the
reformatted 2D cr-MCIR reconstructions. A quantitative
comparison with ECG-triggered 2D images acquired dur-
ing breath-hold (2D BH) in three patients showed a higher
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sharpness by 19% for the 2D BH in this patient subset.
However, this comparison is challenging as the respiratory
motion state can differ between the reformatted 3D and
the 2D reconstructions. Detailed quantification of resid-
ual motion artifacts would require more datasets with
available 2D BH. The residual artifacts can be due to
residual intra-bin blurring or an inaccurately estimated
motion model. As no ground-truth motion is available
the accuracy of the estimated motion models cannot be
computed. To assess whether the motion models with
the largest motion amplitudes are inaccurate and impair-
ing the reconstructions, retrospective motion gating was
applied to the AVG, r-MCIR and cr-MCIR reconstructions,
leaving out the motion with the largest amplitudes (sys-
tole, and end-inhale). A qualitative comparison between
gated and un-gated reconstructions for one patient is
displayed in Supporting Information Figure S3. Gating
reduces motion blurring of the AVG and r-MCIR recon-
struction, however, not for the cr-MCIR. This suggests that
the motion models can accurately describe also the motion
with large amplitudes in systole and end-inhale. This
is also supported by Supporting Information Figure S4
where the comparison between AVG, AVG-gated and
cr-MCIR for three patients shows that the level of remain-
ing motion-artifacts after gating is very patient-dependent
while the patient-specific motion models can correct for
motion artifacts present in the data. Also, the data pre-
sented in Supporting Information Figure S5 show that
while gating of the extreme motion states does improve
the image sharpness metric on average by 16% from
AVG to AVG-gated, the application of cr-MCIR can fur-
ther increase the average sharpness metric by 25% from
AVG-gated to cr-MCIR reconstructions.

The presented motion-correction approach only con-
siders spatially smooth transformations on the scale of the
spline distance ΔB, which is further increased depending
on the regularization weight ρ in Equation (2). The spline
distance was ΔB = 2 voxel for cardiac and ΔB = 8 for res-
piration. Motion below this scale is smoothed out, and dis-
continuous motion elements could be wrongly displaced
by the motion model.

Cardiac motion is more challenging to estimate than
respiratory motion. While respiration is similar for most
patients and occurs mainly in the head-foot direction, the
heartbeat leads to much more complex motion patterns
which are more difficult to distinguish from any residual
image artifacts. Finding a single set of patient-independent
parameters for the registrations yielding high-quality
registrations is very challenging and could reduce the
accuracy of the motion models. Adapting the registra-
tion to be more patient-specific could be supported by
machine learning.47,48 Further temporal regularization

could be used during the registration to improve the accu-
racy of motion estimation.49–51 Also, machine-learning
approaches could further improve the estimated motion
quality.52

Also, residual flow artifacts can be seen e.g. in the aorta
which cannot be compensated for using MCIR. They are
also present after the exclusion of systolic phases in the
reconstructions (see Supporting Information Figure S6).

The two-step approach of combining two 4D motion
modes into a cardio-respiratory motion model relied on the
assumption the transport of the cardiac motion fields into
different respiratory states leaves the motion fields invari-
ant. This is equivalent to the respiratory motion being
affine in the region of the cardiac motion. As the respira-
tory motion of the heart is a combination of rotations and
translations this is fulfilled. At the lung-ribcage interface,
for example, this assumption would fail, however, at these
positions the motion due to the heartbeat vanishes and no
erroneous correction occurs.

Figure 7 shows the improvement in image quality and
visualization of fat structures infiltrating the myocardial
tissue. The displayed patient’s fat image was strongly
deteriorated by motion blurring and other motion arti-
facts and showed the largest improvement in fat structure
sharpness Σ for all patients using respiratory MoCo. In
axial view both in AVG and cr-MCIR, the structure was
visible; however, only after MoCo, the structure could be
identified as a coherent infiltration permeating a large
part of the cardiac tissue.

While work was aimed at imaging fine adipose struc-
tures in the heart, the motion-corrected reconstructions
presented here could be also used to compute pixel-wise
fat fraction maps, as well as the fat volume surrounding
the heart.53

5 CONCLUSIONS

In this work, a cardio-respiratory motion-corrected and
model-based water-fat separated image reconstruction
framework were presented. The 3D high-resolution
water-fat separated images could be acquired during
free-breathing and in a clinically feasible and predictable
scan time. The effectiveness of the motion-correction
approach could be shown for nine patients.
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Figure S1. Step-by-step description of the computation of
the local sharpness metric exemplified for one position and
one patient.
Figure S2. Comparison of sharpness metric computed in
AVG, cr-MCIR and cartesian reference data for patients 1,
2, and 3.
Figure S3. A qualitative comparison of reconstructions
obtained using motion-correction, and motion-correction
with retrospective motion gating for one patient.
Figure S4. Comparison of AVG, AVG-gated and cr-MCIR
fat reconstructions for three patients in 2 chamber
view.
Figure S5. Boxplot comparison of the sharpness metric
computed for AVG, AVG-gated and cr-MCIR reconstruc-
tions for all patients.
Figure S6. Comparison of reconstructions obtained
using motion-correction, motion-correction together with
retrospective gating concerning the appearance of a
flow-artifact
Video S1. The temporal ordering of the proposed
phase-encoding pattern for F= 1, one readout at a time for
F = 1. The ky = kz = 0 point is toggled between a large red
and blue dot to emphasize that the first readout of each
angle is used to sample the centre of the ky-kz-plane.
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Video S2. The temporal ordering of the proposed
phase-encoding pattern for F = 1, all readouts for one
angle.
Video S3. The temporal ordering of the proposed
phase-encoding pattern for F = 4, all readouts of the same
angle at four times higher frame rate as in S2, yielding
the same number of phase encoding points per unit time
interval as in S2.

How to cite this article: Mayer J, Blaszczyk E,
Cipriani A, et al. Cardio-respiratory
motion-corrected 3D cardiac water-fat MRI using
model-based image reconstruction. Magn Reson
Med. 2022;88:1561-1574. doi: 10.1002/mrm.29284



https://onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A4e53d75d-f023-423c-8e5e-5f1464c2aa45&url=https%3A%2F%2Fmrm.ismrm.org%2F&pubDoi=10.1002/mrm.29284&viewOrigin=offlinePdf

	Cardio-respiratory motion-corrected 3D cardiac water-fat MRI using model-based image reconstruction 
	1 INTRODUCTION
	2 METHODS
	2.1 Overview image reconstruction workflow
	2.2 Motion-resolved model-based water-fat separated image reconstruction
	2.3 Motion-corrected model-based water-fat separated Image reconstruction
	2.4 Synergistic registration
	2.5 Combination of cardiac and respiratory motion correction
	2.6 Parameters in image reconstruction workflow
	2.7 Trajectory
	2.8 Data acquisition
	2.9 Computation of local image sharpness

	3 RESULTS
	3.1 Qualitative evaluation of water-fat reconstructions
	3.2 Quantitative evaluation of image sharpness

	4 DISCUSSION
	5 CONCLUSIONS

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	Supporting Information

