
 
Repository of the Max Delbrück Center for Molecular Medicine (MDC) 
in the Helmholtz Association  
 
http://edoc.mdc-berlin.de/21741/ 
 
 
 
 
 
ClearCNV: CNV calling from NGS panel data in the presence of 
ambiguity and noise 
 
May V., Koch L., Fischer-Zirnsak B., Horn D., Gehle P., Kornak U., Beule D., Holtgrewe M. 
 
 
 
 
 
This is the final version of the accepted manuscript. 
 
 
This is a pre-copyedited, author-produced PDF of an article accepted for publication in 
Bioinformatics following peer review. The version of record 
 
Vinzenz May, Leonard Koch, Björn Fischer-Zirnsak, Denise Horn, Petra Gehle, Uwe Kornak, Dieter 
Beule, Manuel Holtgrewe, ClearCNV: CNV calling from NGS panel data in the presence of 
ambiguity and noise, Bioinformatics, Volume 38, Issue 16, August 2022, Pages 3871–3876 
 
is available online at https://academic.oup.com/bioinformatics/article/38/16/3871/6617832 or 
https://doi.org/10.1093/bioinformatics/btac418.  
 
 
 
Bioinformatics 
2022 AUG 15 ; 38(16): 3871-3876 
2022 JUN 25 (first published online: final publication) 
DOI: 10.1093/bioinformatics/btac418 
 
Publisher: Oxford University Press 
 
Copyright © The Author(s) 2022. Published by Oxford University Press. All rights reserved. 
 

http://edoc.mdc-berlin.de/21741/
http://edoc.mdc-berlin.de/21741/
https://doi.org/10.1093/bioinformatics/btac418
https://corp.oup.com/


Bioinformatics, YYYY, 0–0 

doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: DD Month YYYY 

Manuscript Category 

 

Sequence Analysis 

ClearCNV: CNV calling from NGS panel data in 

the presence of ambiguity and noise 
Vinzenz May1, Leonard Koch2, Björn Fischer-Zirnsak2,3, Denise Horn2, Petra 

Gehle4,5, Uwe Kornak3,6, Dieter Beule1 and Manuel Holtgrewe1,* 

1 Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Bioinformatics (CUBI), 

Charitéplatz 1, 10117 Berlin, Germany 
2 Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-

Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Augustenburger Platz 1, 

13353 Berlin, Germany 
3 Max-Planck-Institut für Molekulare Genetik, FG Development & Disease, 14195 Berlin, Germany,  

4 Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Uni-

versität zu Berlin, Department of Internal Medicine - Cardiology, Berlin, Germany 
5 DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany 
6 Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany. 

*To whom correspondence should be addressed. 

Associate Editor: XXXXXXX 

Received on XXXXX; revised on XXXXX; accepted on XXXXX  

Abstract 
Motivation: While the identification of small variants in panel sequencing data can be considered a 

solved problem, the identification of larger, multi-exon copy number variants (CNVs) still poses a con-

siderable challenge. Thus, CNV calling has not been established in all laboratories performing panel 

sequencing. At the same time such laboratories have accumulated large data sets and thus have the 

need to identify copy number variants on their data to close the diagnostic gap. 

Results: In this manuscript we present our method clearCNV that addresses this need in two ways. 

First, it helps laboratories to properly assign data sets to enrichment kits. Based on homogeneous 

subsets of data, clearCNV identifies CNVs affecting the targeted regions. Using real-world data sets 

and validation, we show that our method is highly competitive with previous methods and preferable in 

terms of specificity. 

Availability: The software is available for free under a permissible license at {{https://github.com/bi-

health/clear-cnv}} 

Contact: manuel.holtgrewe@bih-charite.de  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction 

Hybrid capture methods (Ng et al., 2009) allow for targeted sequencing 

ranging from whole exome sequencing to panel sequencing of few known 

disease genes. They have thus made high throughput sequencing afforda-

ble for clinical applications by strongly reducing the required sequencing 

data. From the perspective of bioinformatics there are few differences in 

analyzing small panels, whole exome (WES), or whole genome (WGS) 

sequencing data for single nucleotide variants (SNVs), and small inser-

tions and deletions. 

However, the detection (commonly also referred to as calling) of copy 

number variants (CNVs) is considerably harder because of structured but 

very inhomogeneous variances in depth of coverage that are typical for 

hybrid capture methods. Reasons for such variance include GC content of 

the targeted regions, biochemical properties of the used enrichment kits, 

and batch effects in producing the enrichment reagents (Daniel et al. 2011, 

Benjamini 2012).  
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Nevertheless, CNVs are of large interest as they account for 4.5 to 12 

percent of genome variation in humans (Sudmant,P.H. et al. 2015, Collins, 

R.L. et al. 2020) and are implied in many diseases (Nowakowska 2017, 

Conrad et al. 2010, Zhang et al. 2009). Copy number variants are a sub-

class of structural variants; the latter is commonly defined as variation 

with a size of larger than 50bp. The size of CNVs can range from the lower 

limit to the loss or amplification of whole chromosome arms or chromo-

somes. 

From the authors’ experience, CNV calling for panel sequencing data 

has not been systematically established in many laboratories performing 

targeted panel sequencing yet despite the wide use of panel sequencing. 

While many centers are now introducing WES or even WGS into standard 

care, they have considerable numbers of panel sequencing data already 

available (Marshall et al. 2020). Obviously, being able to reanalyze this 

data for CNVs is highly desirable to solve more cases without additional 

sequencing. 

Various tools for the CNV analysis of panel sequencing have recently 

been published in the literature including CoNVaDING (Johansson et al. 

2016) and AtlasCNV (Chiang et al. 2019). Further, tools for the analysis 

of exome data have been enabled for the analysis of panel data, including 

panelcn.MOPS (Povysil et al. 2017) or ExomeDepth (Plagnol et al., 2012). 

Some methods have been developed and evaluated solely for a single 

panel such as AtlasCNV while others can be used more widely such as 

panelcn.MOPS or ExomeDepth. Approaches to combine CNV calling 

tools to achieve the highest possible accuracy can differ in their results by 

a lot given different datasets (Moreno-Cabrera et al. 2020, Sadedin et al. 

2018) 

However, centers wishing to analyze their panel data in hindsight often 

also face unexpected challenges. From the experience of the authors, these 

also include missing, incomplete or incorrect documentation of which 

gene panel or gene panel version was used for a particular sample. 

In this manuscript we present our software package clearCNV that (1) 

contains a program that helps users to properly assign panel sequence data 

to the used panel and to separate sequencing batches, (2) provides a novel 

method that allows to analyze their data for copy number variations, and 

(3) provides an easy-to-use visualization of the coverage data and the 

called CNVs. 

2 Methods 

2.1 CNV Calling algorithm 

The first part of our method is the implementation of a novel algo-

rithm for the identification of CNVs from targeted sequencing data. Some 

steps are built on the ideas of already existing algorithms. The steps of the 

algorithm are described below and illustrated in Fig. 1. 

1. Target file creation. Overlapping and nearby targets are merged to avoid 

ambiguities further downstream. 

2. Fragment counting. We count the number of fragments (reads or read 

pairs) per target. Fragments overlapping with multiple targets are assigned 

to the one closest to the center. The results are tabulated in a matrix x with 

entries 𝑋(𝑖, 𝑗) in row i and column j; that is the number of fragments of 

sample j on target i. Samples with a median fragment count smaller than 

five are excluded to avoid downstream problems. 

3. Data normalization. The matrix is first normalized per sample (per col-

umn) by dividing each column’s values by the column’s median 

𝑋’(𝑖, 𝑗) ≔  𝑋(𝑖, 𝑗) / median(𝑋’(𝑖,∙)) and then per target (per row) 

𝑋’’(𝑖, 𝑗) ≔  𝑋’(𝑖, 𝑗) / median(𝑋’(∙, 𝑗)), where " ∙ " indicates all elements 

in that dimension. 

4. Match scores are a distance metric to identify samples with similar cov-

erage patterns (similarly used in the context of CNV calling by Johannson 

et al. (2016). A match score m of two samples (vectors) s and k is defined 

as the mean difference of two vectors. clearCNV additionally removes the 

𝜆 greatest differences before computing the mean: 

𝑚𝑠,𝑘 : =  mean(quantile1−𝜆(abs(𝑠 − 𝑘))), where 𝜆 (default is 0.02) is a 

user-adjustable factor that attributes for expected uneven variance. Such a 

Fig. 1. CNV calling algorithm. This figure is an illustrates the steps described in the main text. In step 3, green indicates a sample that is normalized in 

that step. In steps 5 & 6 orange indicates the sample group background and blue the CNV calling sample. In steps 6 and 7, green indicates the 

calculated (and scaled) z-score. 
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variance includes signals for CNVs as well as forms of noise. The final 

visualizations (Fig. 2) help to adjust this factor. 

5. Sample group. Each sample S gets assigned a set of background sam-

ples. Any sample x in each sample group satisfies that its match score 𝑚𝑥,𝑆 

is below the median match score of all match scores of all samples multi-

plied by a user-specifiable constant θ (default 2): 

𝑚(𝑥, 𝑆) ≤ median(𝑚(∙,∙)) ∙ 𝜃. This way each sample gets assigned an in-

dividually sized sample group. We determined the default value for θ em-

pirically by inspecting histograms of all match scores. No CNV calls are 

generated on a sample that has a sample group size below a user-specifia-

ble threshold γ (default 20), however it may appear in another sample’s 

sample group. θ and γ were determined by choosing a relative optimum 

between the number of samples and the variance in a sample group. In 

CNV calling, a subset of fragment counts normalized per sample is chosen 

according to the selected sample group of sample S. Let this table be 𝑋𝑆
′ . 

6. Data normalization II & III. 𝑋𝑆
′  is normalized per target to get 𝑋𝑆

′′ and 

the vector 𝑋𝑆
′′(∙, 𝑆) in 𝑋𝑆

′′ containing all values of S is extracted. 

𝑋𝑆
′′ without S (𝑋𝑆

′′  \ 𝑆) is again normalized per target to remove any effect 

of S on the sample group’s statistics which yields 𝑋𝑆
′′′. The 10% columns 

of 𝑋𝑆
′′′ with greatest variance are then dropped from 𝑋𝑆

′′′ to further reduce 

variance. 

7. Scaled z-scores. z-scores are calculated for sample S, which is found in 

𝑋𝑆
′′ on each row i: 𝑧(𝑖) ∶=  𝑋𝑆

′′(𝑖, 𝑆) / 𝜎(𝑖), where σ is the vector of per 

row standard deviations of 𝑋𝑆
′′′. The resulting z-scores are then scaled to 

reduce the effects of noise in CNV calling: 𝑧’(𝑖) ∶=  𝑧(𝑖)2−α, where z(i) is 

the z-score of target i of sample S. The value α is the user-provided factor 

which is 0.65 by default. We determined the default for α in comparison 

with plotted heatmaps and checked where most CNV calls aligned with 

our judgement. The resulting vector of z’ is saved in a matrix Z which 

contains all scaled z-scores of all samples.  

8. r-scores approximate a copy number of a target in a sample. r-scores 

are created in the previous step on the vector 𝑋𝑆
′′(∙, 𝑆). Ideally, a r-score 

of 1.0 indicates a wild type, while 0.5 indicates a heterozygous deletion, 

1.5 indicates a heterozygous duplication and 2.0 indicates a homozygous 

duplication and so on. These values are saved to a matrix R for each target 

and sample. This matrix holds all r-scores at the end. 

9. CNV calling. Two types of CNVs are called: a) multi-exon CNVs and 

b) single-exon CNVs.  

9a) At first, the Viterbi algorithm is used on a Gaussian HMM (Hidden 

Markov Model). The means of the three states (deletion, wild type, dupli-

cation) are semi-automatically adjusted. For deletion, the mean is calcu-

lated as 𝑚𝑑𝑒𝑙 = −3 𝜎, for wild type it is 𝑚𝑤𝑡 = �̅�, and for duplication it 

is 𝑚𝑑𝑢𝑝 = 4 𝜎, with 𝜎 the st.dev., and �̅� the median of all scaled z-scores. 

The Viterbi algorithm is then run on the z-scores in Z. The covariances are 

set to 1.0. The transition probability matrix is created from the user-ad-

justable transition probability τ (default τ = 0.001): 

(

1 − (τ ∗ 2) τ τ

τ 1 − (τ ∗ 2) τ
τ τ 1 − (τ ∗ 2)

). 

The resulting hidden states of each sample are saved in a matrix H that 

holds all hidden states of all targets and all samples. For each sample S, a 

consecutive interval T of targets is aggregated to a single CNV if the av-

erage ratio score 𝑟 = mean(𝑅(𝑇, 𝑆)) satisfies 𝑟 <  𝜇 (default is 0.75) or 

𝑟 >  𝜔 (default is 1.35) and all hidden states of H(T,S) are the same and 

not the wild type. µ and ω were chosen under the assumption that they 

separate the ratio scores well. The score function c of a CNV is the abso-

lute value of the mean of scaled z-scores of all contributing targets 

c(T,S) = mean(abs(Z(T,S))). 

9b) To call single-exon CNVs, two thresholds are applied to Z. A single 

target t of sample S is called a deletion if 𝑍(𝑡, 𝑆) <  − 3.5 and 

𝑅(𝑡, 𝑆) <  0.75 or a duplication if 𝑍(𝑡, 𝑆) >  4.5 and 𝑅(𝑡, 𝑆) >  1.35 and 

only if it is not contained in an already called multi-exon CNV by the 

HMM-guided method. All default values for parameters were determined 

by empirical methods, including comparisons with data visualizations. 

10. Output. The CNV calls are saved in a tabular file containing the gene 

names, aberration, size, score, and sample score. Furthermore, the scaled 

Z-scores matrix Z and the ratio-scores matrix R and a list of samples that 

failed to have a sufficient sample group size are written to output files. 

 

2.2 Result Visualization 

The second part of our method is a web browser—based visualization 

for the relative copy numbers per target and per sample represented by the 

ratio scores, as well as the scaled z-scores. This allows the user to visually 

screen the results of their experiments as well as the results of the CNV 

calling algorithm. 

Scaled z-scores and ratio-scores are both visualized in responsive 

heatmaps. Each heatmap additionally shows a track of mappability, target 

size and GC-content at each target. These are calculated from the target 

file, the reference and a uniqueness-of-reference file. The scaled z-scores 

are clipped to the interval [-6,6]. The ratio-scores are clipped to the inter-

val [0,2]. An example of such a heat map is shown in Fig. 2. 

Fig. 2. Example heatmap of r-scores. This is a small example of a 

heatmap showing the ratio scores of each target (row) for each sample 

(column). A darker spot indicates a lower r-sore and vice versa. Aligned 

to the targets are three tracks: 1. Mappability, GC-content and log bp, 

which is the size of a target in bp then log transformed. Each of these 

three tracks show a value of 0 if the colored curve is on the left side. The 

Mappability and GC-content tracks have a value of 1 if the curve is on 

the right side. Log bp can be any size if on the right side but it scales 

with the maximum value in the track. Additionally, we marked several 

phenomena in the heatmap to illustrate its potential. a) shows a possible 

copy number gain, b) shows a target with high variance (or copy number 

variability), c) shows a low-quality sample with high variance, d) shows 

several samples that were too noisy and whose r-scores were set to 1.0 

(imputed). 
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2.3 Sample to Panel re-assignment 

The third part of our method supports users in the assignment of aligned 

sequencing results in BAM format to panel target information in BED 

(Browser Extensible Format) files. This is important for retrospective 

analyses in the presence of artifacts such as sample swaps or erroneous 

documentation of the used sequencing kit. A BED file is a text file con-

taining genomic regions, e.g., exons. The following steps are illustrated in 

Fig. 3. The projection by PCA and TSNE, as well as the clustering can be 

interactively worked with in a plotly Dash app (https://plotly.com/dash/). 

When applied with clearCNV, batch separation (see 2.4) should be done 

before the CNV calling step. 

1. BED file merging. The panel re-assignment algorithm starts with 

merging all input target files to one union of target files. This is necessary 

to make the given samples comparable. 

2. Fragment counting is done the exact same way as in the CNV calling 

algorithm. An entry in the resulting matrix is addressed as 𝑋(𝑖, 𝑗) for the 

i-th row (target) and j-th column (sample).  

3. Binary matrix. We are interested only whether a target is covered and 

not in the depth of coverage. Since we expect off-target effects in the en-

richment, we call a target covered only if the per target fragment counts 

divided by target size is above 1/50. In the case of reads of 100bp size, 

this, for example, would correspond to a read depth coverage of two. The 

final matrix X is binary (1 = covered, 0 = uncovered). 

4. PCA and transformation. A principal component analysis (PCA) 

transformation is applied to X with δ dimensions (default is 20, adjustable 

by the user) yielding 𝑋’. The default of δ is chosen according to the order 

of magnitude of the number of targets per panel. 

5. TSNE. A t-distributed stochastic neighbor embedding (TSNE) pro-

jects 𝑋’ to a latent space (here with two components) which allows fast 

and simple clustering on the resulting matrix 𝑋’’. The random process 

within the TSNE makes it necessary for the user to occasionally re-run the 

process to arrive at a desired projection and clustering result. 

6. Clustering. An agglomerative clustering on 𝑋’’ finds the clusters. 

7. Cluster assignment. The resulting clustering is mapped to the pro-

vided target files. A majority vote is used to assign each cluster to a target 

file. This implies the constraint that each cluster must have a majority of 

correctly assigned samples to a target file. 

8. Output. At this point the data sets are untangled and new lists of bam-

files are written to the according output files. 

 

2.4 Batch separation 

We observed separable subsets in the data, which were not explained by 

erroneous sample–panel assignments. We suspect that limited numbers of 

well plate units may have introduced such batch effects. We suspected 

even more possible reasons such as the design of custom enrichment kits 

or flow cell biases. 

Batch separation is done for each cluster with its previously assigned 

panel resulting from the sample re-assignment. The batch-separation al-

gorithm is like the sample re-assignment algorithm. Again, the interactive 

parts are implemented in a plotly Dash app. 

1. Fragment counts sub setting. The matrix containing the fragment 

counts per target is subset to the samples found in the given cluster. The 

targets are subset from the union BED-file to contain only targets that are 

present in the assigned panel. Differently to the panel re-assignment pro-

cedure, the resulting matrix is not reduced to a binary matrix but holds the 

per sample and per target normalized fragment counts. 

2. PCA and transformation. Analog to panel re-assignment step 4. 

3. TSNE. Analog to panel re-assignment step 5. 

4. Clustering. The interactive interface lets the user control the number 

of batches on each set of samples for each panel. 

5. Output. A list of alignment file paths (BAM format) per identified 

batch is written to an output file for each found cluster. This file can be 

used in the CNV calling step. 

 

2.5 Evaluation 

To evaluate the performance of our algorithm, we compared it to exist-

ing approaches to call CNVs on targeted sequencing data. The tool selec-

tion was limited to those having a scientific publication and being freely 

available for research applications. We chose ExomeDepth (Plagnol et al., 

2012), CoNVaDING (Johansson et al. 2016), panelcn.MOPS (Povysil et 

al. 2017) to evaluate comparatively with clearCNV. We chose not to use 

Fig. 3. Sample to Panel re-assignment and batch separation. The steps are numbered according to the  main text’s steps. Sub figure A 

illustrates the sample re-assignment and sub figure B illustrates the batch separation. 𝑋, 𝑋′, 𝑎𝑛𝑑 𝑋’’ illustrate matrices, where “ . “ means any 

numerical entry. Colors blue and orange indicate different clusters (or with yellow different batches). Frames overlaying a matrix indicate the 

vector that is subject to an operation. 

https://plotly.com/dash/
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the recent tool Atlas-CNV by Chiang et al. (2019) in the evaluation be-

cause it was designed to find single Exon CNVs in the eMERGESeq panel, 

which we did not use (an earlier evaluation showed no competitive results 

on our data set, data not shown). A brief overview of the tools’ features 

can be found in the supplement section S8. 

We wrote CNV calls and internal or explicit scorings of clearCNV, 

CoNVaDING, ExomeDepth and panelcn.MOPS, each to a uniformly for-

matted file for a comparative evaluation. 

We attempted to evaluate all four tools on simulated targeted sequenc-

ing data. The data was simulated with CapSim (Cao 2018). A detailed 

analysis of the generated simulated data showed that important properties 

and biases that we observe in real-world data are not captured appropri-

ately in the simulation, in particular missing correlation between adjacent 

exons. Nevertheless, simulated data allows to evaluate tool performance 

with a known ground truth. 

The results on the simulated data can be summarized as follows. 

ClearCNV is competitive with the other tools on simulated data and 

showed the highest positive predicted value (PPV) at the cost of some sen-

sitivity. ExomeDepth shows good performance overall, CoNVaDING and 

panelCN.MPOS showed a very high false positive rate for certain samples 

(we were unable to determine the root cause for this). 

All details regarding the simulation, analysis, and performance results 

can be found in the Supplementary Sections S6 and S7. 

To compare the results of the CNV calling of each tool on real-world 

data, we used two different approaches. First, we compared the scores 

given to each single target in each sample for each tool. We did this before 

we chose a subset of CNV calls to be validated via quantitative PCR 

(qPCR). The details can be found in section S2 of the supplement. Second, 

we compared the scores of the aggregated called CNVs after we had the 

qPCR results. We ranked the called CNVs for each tool to achieve com-

parability. The ranking is described in detail in the results section. Finally, 

we visualized these rankings for each tool’s results, which can be seen in 

the results section and in Fig. 5. 

Regarding the results, two different parameters were scored. First, each 

tool scores single targets for each sample. These are the target scores. Sec-

ond, CNV calls are scored and the target scores are the underlying scores. 

They are aggregated in some way, e.g., by taking the mean of the consec-

utive targets that form the called CNV. These are the CNV scores. 

Each tool has a different scoring metric per target and only Exo-

meDepth and clearCNV aggregate called CNVs. In the case of CoNVaD-

ING we chose to score the targets according to the median 

“AUTO_ZSCORE” scores which are found in the matching *.totallist 

files. panelcn.MOPS does also not provide aggregated CNV calls and no 

target scores. After very helpful correspondence with the authors, we fol-

lowed their advice to calculate scores per target and used the RC ratio 

(RC.norm/medRC.norm) to score single targets per sample. To aggregate 

called CNVs, we merged consecutive targets if they were called the same 

copy number unequal two. clearCNV generates both the target scores and 

the CNV scores. 

We performed our evaluation on seven custom panels manufactured by 

Agilent from different genetic rare disease fields. Data was generated in a 

diagnostic setting and all patients gave informed consent for further re-

search. Four panels have about six thousand targets, the others have about 

one or two thousand. In total, we had data from 1407 different individual 

samples. More detailed information about the data can be found in the 

supplement section S1, Table S1, and Fig. S1. 

We chose not to evaluate with simulated data as targeted sequencing 

data is known to contain a large amount of noise and biases that have not 

been comprehensively characterized and modeled yet. 

3 Results 

3.1 Sample to panel re-assignment and batch separation 

38 out of 1407 total samples were re-assigned to different panels or panel 

versions, for which the documentation was not complete anymore. 16 

Samples had a fragment-per-target count so low that they were excluded 

from any further processing by clearCNV. A detailed log of the sample 

re-assignment and batch separation process can be found in the supple-

ment section S3. 

3.2 CNV calls 

The Venn diagram in Fig. 4.A shows all called CNVs on all data sets 

by CoNVaDING, ExomeDepth, panelcn.MOPS and clearCNV. As it can 

be seen, the results show a great discordance in terms of called CNVs. To 

select a feasible number of variants for validation by qPCR, we limited 

the results to those CNVs called by three tools or more. We finally had to 

exclude samples for which no DNA for validation was available. This re-

sulted in a set of 88 CNV calls to be validated. We could confirm 35 CNV 

calls, of which 15 were duplications and 20 were deletions. One deletion 

could be confirmed by inspecting the corresponding WGS track in IGV 

highlighting extended fragment spans (see section 2 and Fig. S2 in the 

supplement). The other 34 CNVs were confirmed via qPCR, following the 

protocol detailed in Ott et al. (2010). 

 

 

 

 

Tool Total CNV 
calls 

validated calls confirmed 
calls 

clearCNV 233 73 32 

Tab. 1. CNV calls by all tools. This table shows the total number of CNV 

calls made by each tool and the according number of validated and confirmed 

CNV calls. The subsets can be inspected in Fig. 4. 

Fig. 4. Venn diagrams of called and confirmed CNVs. Sub figure A 

shows all CNV calls on all available data. CNVs selected for validation 

are marked in bold letters. Sub figure B shows only the confirmed (by 

qPCR) CNVs. Unlabeled subsets have a cardinality of zero. 
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CoNVaDING 3 711 46 17 

ExomeDepth 4 669 84 34 

panelcn.MOPS 40 081 82 33 

 

Even after several adjustments of the DNA melting temperatures, we 

were not able to identify the true copy number via qPCR of nine out of the 

88 CNV calls. We treated ambiguous results as unconfirmed calls (same 

as wild type). We analyzed mappability and GC-content of the CNV calls 

and our whole data. We found that for about 15% of the targets (data 

points) a too high GC content rendered qPCR validation infeasible. The 

details can be found in supplement section S4. 

Fig. 4B shows a Venn diagram of the 35 confirmed CNVs. The subsets 

overlapping only two or one tools are left blank, as these CNV calls were 

excluded from validation. Eleven CNV calls were made by all four tools 

and were successfully validated. Three CNV calls that were confirmed by 

qPCR were not called by clearCNV. CoNVaDING missed 18, pan-

elCN.MOPS missed two and ExomeDepth missed one. As can be seen in 

Figure 4A, the overall number of CNV calls varies greatly between the 

tools. Besides the total number of true positives, one must consider the 

rank of the true within the false positives within each tool. 

Fig. 5 shows receiver/operator characteristics-like plots for each tool. 

Each tool attaches scores to its resulting CNV calls. These scores can be 

understood as a transformed approximation of confidence. Ranking these 

scores (sort, then enumerate) allows to compare each tool’s results di-

rectly. The horizontal axis shows the (log10-scaled) rank of the curve and 

the vertical axis shows the cumulative number of positively validated 

CNVs. The curve ends for each tool where the lowest ranking CNV call 

was confirmed. 

It can be seen that ExomeDepth and clearCNV both created some true 

positive CNV calls among the highest ranks. Also, this approximation of 

specificity shows a difference in calling either deletions or duplications on 

our data set. ExomeDepth starts similarly specifically as clearCNV. The 

curve flattens and reaches into the 1000th rank to find all 20 deletions. The 

CNV calls by CoNVaDING and panelcn.MOPS start with lower ranks and 

end with very low ranks. But in the case of duplications, CoNVaDING’s 

results show even a slightly higher specificity than ExomeDepth’s. Over-

all, clearCNV misses three CNV calls but shows superior specificity when 

compared to other tools. A detailed analysis of the three missed CNVs can 

be found in Supplement section S5. All results can be downloaded from 

the supplementary repository (https://github.com/bihealth/clear-cnv-sup-

plementary). 

4 Discussion 

clearCNV showed competitive sensitivity and excellent specificity on 

different real-world data sets, which were partially very heterogeneous in 

the underlying batches and unknown variances (more details in Supp. sec-

tion S3). High specificity is important in clinical applications as it reduces 

the number of false positive and effort for validation. 

Differences in specificity of the different tools can be attributed to dif-

ferent design decisions by their authors. panelcn.MOPS was not designed 

to operate at a high specificity, which is an intentional choice by the au-

thors who worked with very high quality data (see discussion on GitHub: 

https://github.com/bioinf-jku/panelcn.mops/issues/19). CoNVaDING and 

ExomeDepth were designed to handle noise and more difficult data, but 

both rely on the user to discard low-quality samples or to isolate reference 

samples which have low noise to be used as models to fit their models on. 

clearCNV works without such preparatory steps by clustering the data be-

forehand and then filtering out low quality samples. 

clearCNV also allows the user to visualize the results of the clustering 

and filtering steps to validate the parameter choices and allow to adjust 

parameters for fine-tuning when necessary. 

Adding preprocessing steps, such as clustering, and batch separation 

allowed clearCNV to compensate for greater structural difficulties observ-

able in the data. Other tools take similar but not as far-reaching approaches 

by finding subsets of samples that form a common statistical background 

for any single sample. clearCNV does that in addition to the two previous 

steps of panel-re-assignment and batch separation, which are also embed-

ded in a user-friendly interactive Dash interface. 
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S1 Data overview 

 
Table S1 shows the core characteristics of the panels used in our evaluation. 

Panel ID Panel 

Version 

Disease Field # 

Genes # Exons 

and targets 

Mbp target # Cases input # Cases resolved 

A (BM) 1 Bone Mass Disorders 76 833 0.21 172 164 

B (CBM) 2 Bone Mass Disorders 383 5866 1.60 95 94 

C (CBM2) 3 Bone Mass Disorders 384 6194 1.15 270 281 

D (SDAG1) 1 Skeletal Disorders 407 6538 1.22 117 104 

E (SDAG2) 2 Skeletal Disorders 408 6233 1.71 345 340 

F (TAAD) 1 Connective Tissues 

Disorder 

37 972 0.13 252 252 

G (TAAD2) 2 Connective Tissues 

Disorder 

89 1953 0.52 156 156 

 

 

Fig. S1. Venn diagram of panels A,C,E, and G. Panels A,C,E, (and B,D) all share a relatively great set of common genes, whereas G 

(and F) have relatively many exclusive genes. Eleven genes are part of each panel. 
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S2 WGS read pair gap size based confirmation. 

We had a small subset of patients sequenced both as a WGS (whole genome sequencing) and a targeted sequencing panel sample. One CNV 

was found in both samples. This CNV could be validated via visual inspection in IGV. The corresponding screenshot is found in Fig. S2. 

S3 Sample to panel re-assignment and batch separation 

The following steps were done with clearCNV in its interactive plotly Dash environment. The graphics are screenshots taken from the 

responsive plots and all parameters are reported separately. The shown Figures represent the actual data (1407 samples in seven sequencing 

panels) and solutions we worked with. The final output was then used as the input of clearCNV’s CNV calling pipeline. 

I. The first step is the PCA transformation of the data to 20 dimensions. Depicted are the first two principal components. The 

underlying data matrix is a binary matrix (see paper section 2.4.). The colors indicate the underlying sequencing panel a sample 

is assigned to. The selected dimensions of the PCA ado not necessarily produce a nice cluster separation in the actual PCA plot, 

but rather in the following (tSNE) step. 

 

Fig. S3: Scatterplot of PCA transformed data.  The x-axis shows the first, the y-axis the second principal component of the PCA 

transformed data (samples) and coloring according to the per sample assigned panel. Note that there is no good separation visible. 

Fig. S2. IGV screenshot of heterozygous deletion found in WGS data. The top track shows the coverage per base. The aligned paired 

end reads are indicated by grey bars with thin strokes connecting them. Read pairs spanning a much larger region than a usual fragment does 

are marked in red color. The deletion can be seen in the coverage track in the form of a sudden interruption and a short area with a lower 

coverage, as well as it can be seen by the placement of the split reads. 
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II. The data is transformed by a t-distributed stochastic neighbor embedding (tSNE). This brings the dimensions down from 20 to 

two and creates a much better separation. Again, the colors indicate the underlying sequencing panel a sample is assigned to. 

 

Fig. S4: Scatterplot of tSNE transformed data.  The x-axis shows the first, the y-axis the second dimension of the transformed data. 

Again, the coloring is according to the per sample assigned panel. Note how some samples from panels D and E appear clearly displaced. 

III. The two-dimensional data is clustered, and the samples are re-assigned. 

 

Fig. S5: Scatterplot of tSNE transformed data with re-assignment of samples to panels. Agglomerative clustering finds the clusters. 

The number is defined by input sequencing panels. To assign a panel to a cluster, a majority vote is held. This procedure assumes that only a 

minority of samples is wrongly assigned at the start of the analysis. 

IV. A clustermap is plotted for the original assignment of the samples. Samples and targets (or exons) are both subject to clustering. 

The aim is to show the user the difference of the panels and at the same time to control the threshold, when a target is considered 

covered or uncovered or find the right discimination between low coverage an off-target read alignments. The threshold can be 

adjusted in the plotly Dash UI. 
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Fig. S6: Clustered heatmap of all samples on all targets from all sequencing panels. Each column represents a sample and each row a 

target (or exon). The horizontal colour-bar on top of the heatmap indicates the originally assigned sequencing panels each with one different 

colour - seven in this case. Displaced strokes indicate wrongly assigned samples. The heatmap shows if a target of a sample is considered 

covered (white or beige) or uncovered (black). 

V. The new assignment is shown again based on the clustered heatmap. A user can compare the new assignment with the clustering 

of the targets and samples. 

 

Fig. S7: Clustered heatmap with new sample-panel assignment. Same as Fig. S6. except for the color bar now showing the new sample 

to panel assignment. 
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VI. Batches are separated. The user defines the number of clusters per given panel. The clusters are found in a Gaussian mixture 

clustering. The final assignments are then printed to text files, allowing the user to use the new assignments directly in 

downstream CNV calling. 

 

Fig. S8: Scatter plots of all batch separations. The seven Subfigures show how all batches within the seven panel-associated clusters of 

samples were resolved. The scatterplots are obtained by transforming the normalized coverage data via PCA and tSNE. For each panel, 

target fragment counts were obtained based on the provided BED-file. The underlying panel is found in each Subfigure’s description. The 

identified batches are indicated by color and description. 

S4 Ambiguous qPCR results and GC content analysis 

Nine out of 88 CNV calls showed ambiguous results in the qPCR validation. After trying several different DNA melting temperatures, we 

analyzed GC-content, mappability and size of the CNV calls. Fig. S9 shows a boxplot of the GC content of all CNV calls for each qPCR 

outcome. For (1) GC-content,  (2) mappability and  (3) size we tested the differences as follows: (1): one-sided t-test at alpha level of 0.05, 

(2) one-sided t-test at alpha level oof 0.025 and (3) in a two-sided t-test at alpha level of 0.025. 
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The GC-content of all ambiguous CNV calls was significantly higher (alpha=0.05) than the GC-content of unconfirmed and 

confirmed CNV calls joined together. We tested this in a one-sided t-test resulting in nosignificant difference at p=0.0199. The presence of 

ambiguous validations on targets with a GC-content of 0.55 to 0.4 shows that GC-content plays a role. However, they do not fully explain 

the reasons for success or failure of validation of CNV calls with qPCR. Therefore, we plotted another boxplot for the mappability (36-mers 

on the hg19/GRCh37 release) for each qPCR outcome in Fig.S10. We tested for difference using a one-sided t-test at alpha level of 0.025. 

We expected ambiguous qPCR outcomes to occur with lower mappability targets. 

 

Fig. S10. Boxplot of the mappability of all confirmed, unconfirmed, and ambiguous results of the qPCR validation. The box and 

scatter plots show the same metrics as in Fig. S9. The unconfirmed CNV calls (‘not’) show regions with both low and high mappability. The 

confirmed CNV calls (confirmed) contain only targets with a mappability of 0.58 or greater. The ambiguous CNV calls have similar 

mappability values to the unconfirmed ones. 

The one-sided t-test indicates that ambiguous qPCR results don’t show a significantly lower mappability than unconfirmed 

(‘not’) and confirmed (‘confirmed’) qPCR results at p = 0.64. 

As it can be seen on Fig.S11, CNV calls can have both a moderate GC-content and a high mappability. Therefore, there must be 

another factor that determines if a CNV call can be confirmed via qPCR. 

Fig. S9. Boxplot of the GC-content of all confirmed, unconfirmed, and ambiguous results of the qPCR 

validation. Each box shows the min and max, the 0.1 and 0.9 quantiles and the median. Each box has the 

corresponding GC values left of it as scatter plots. The unconfirmed CNV calls (not) joined with the 

confirmed CNV calls (confirmed) appear to have a lower GC-content than the ambiguous ones. Note that 

CNV calls from all three classes can have a GC-content higher than 0.6. 
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Fig. S11. Scatterplot of the ambiguous qPCR results with GC-content vs. mappability. Each dot indicates the GC-content and the 

mappability of the genomic region corresponding to a CNV call that showed an ambiguous result in the qPCR validation. Note that CNV 

calls can have both a moderate GC-content and a high mappability. 

 

 

 

Fig. S12. Boxplot of the size in bp of all confirmed, unconfirmed, and ambiguous results of the qPCR validation. Each box shows the 

min and max, the 0.1 and 0.9 quantiles and the median.  The unconfirmed CNV calls (‘not’) show regions with both low and high 

mappability. The confirmed CNV calls (confirmed) contain only targets with a mappability of 0.58 or greater. The ambiguous CNV calls 

seem to be composed of mainly smaller sized regions but are not significantly smaller than the other (‘not’ and ‘confirmed’) CNV calls. We 

performed a student’s t-test 

We tested if ambiguous qPCR results are smaller in size (bp) than all others. The one-sided t-test showed no significant 

difference at p=0.6383. 

To summarize, we were not able to find a single feature or a combination of features indicating if a qPCR result was ambiguous. 

 

S5 False negatives in clearCNV’s calls 

In this section, we will investigate the false positive calls in the clearCNV results. 

 

Three true CNVs were not called by clearCNV. All three are deletions and two of them belong to the same sample. This sample 

was found in the data set corresponding to panel A, which was composed of two major batches. The failed sample was found in one of the 

two clusters (see Fig. S8 subfig. For panel A) where it failed to be assigned to a sample group of sufficient size (its group held no other 

samples). clearCNV is designed to exclude such samples that would be expected to yield many CNV calls, which would achieve a high 
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score due to extreme noise. By dropping this sample, clearCNV excluded many CNV candidates that would have been high scoring false 

positives. These false positives would have overshadowed other high scoring CNV calls which are more likely to be true positives. 

The third missed CNV call is a small deletion spanning two exons. Its region is noisy, resulting in a low scaled z-score on which 

the Gaussian HMM then did not make the call. Even though this might seem like clearCNV is biased against small CNVs, Fig. S13 shows 

that this is not the case. Small CNV calls are well present among all CNV calls of clear CNV as well as all confirmed CNV calls. 

 

 
Fig. S13. Distribution of exons per CNV call in clearCNV’s results. Sub Figure A shows the CNVs that were called by clearCNV and 

that could be confirmed by qPCR. Subfigure B shows all CNV calls made by clearCNV. Note how clearCNV called a lot of single-exon and 

other small CNVs. 

S6 Performance evaluation on simulated targeted sequencing data 

To complement our real-world data, we simulated targeted sequencing data. We could thus evaluate clearCNV, ExomeDepth, CoNVaDING 

and panelCN.MOPS with a known ground truth. This allows us to directly calculate a positive predictive value and a false discovery rate for 

each tool on any type of experiment. 

As we also show, the downside of this approach is that simulated data is not able to reproduce all variances and biases seen in 

real data. 

Simulation of reads 

An experiment E is composed of a set of samples E = {R1,R2,…,Rn} containing simulated targeted NGS reads. For each sample R, simulated 

reads on defined regions (the panel) were generated on four identical haplotypes S = (S1,S2,S3,S4). Any combination of CNVs in a final 

sample R can be achieved by sampling reads from S, which means 𝑅 ⊆ 𝑆. Given a sample R, for any given locus l, four different types of 

CNVs can be simulated as follows: 

• Homozygous deletion: no reads in S1,S2,S3,S4 that align to l are found in R. 

• Heterozygous deletion: only reads in S1 that align to l are found in R. 

• Homozygous duplication: only reads in S1,S2,S3 that align to l are found in R. 

• Heterozygous duplication: all reads in S that align to l are found in R. 

• Wild type: only reads from S1,S2 are found in R 

A wild type sample Rw is simply Rw={Sw1,Sw2}. The number of fragments NR is sampled for each sample R from the empirical 

distribution of the D (SDAG1) panel, which holds 104 samples after panel reassignment by clearCNV. After adding CNVs, the number of 

fragments changes according to the copy numbers and sizes of the CNVs. This panel comprises 407 genes in 6538 exons (and targets) on 

1.22mb of targeted sequence. 

To rephrase, we first simulate reads of targeted sequencing for each individual for four alleles of a sample. By picking two alleles 

at a locus, we simulate a wild-type locus. By picking one allele, we simulate a heterozygous deletion, by picking three alleles, we simulate a 

heterozygous duplication, and so on. This approach offers much greater simplicity over spiking CNVs into the reference and then simulating 

from a modified reference.  

We designed twelve experiments to investigate different features of each tool in different settings.  Tab. S2 shows an overview of 

all experiments. 
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The Python3-script to generate the simulated reads can be found in the according repository (https://github.com/bihealth/clear-

cnv-supplementary). 

 

 

Tab. S2. Experiment designs.  

Experiment 

name 
Characteristics 

Total 

samples 

Sample 

composition 
Sample structure 

Wild types 
Absence of true 

signal 
60 60 wt no CNVs 

Variants het 
Representative 

test 
120 60 wt + 60 

random DUP and 

random DEL 

CNV rich 

High 

prevalence of 

CNVs 

81 60 wt + 3*7 

3 samples with 

6,10,16,24,34,46,60 

CNVs each 

Low 

coverage 

Performance on 

different levels 

of low coverage 

120 120 

Three samples with 

20,000 ∗ 𝑖, 𝑖 ∈
{1, … ,20} 
fragments 

(coverage). One 

deletion and one 

duplication of any 

size per sample. 

Dels het 

small 

Performance on 

single exon 

events 

80 60 wt +20 

single heterozygous 

deletion, single 

exon 

Dels het 

medium 

Performance on 

medium events 
80 60 wt +20 

single heterozygous 

deletion, 5 to 10 

exons 

Dels het big 
Performance on 

large events 
80 60 wt +20 

single heterozygous 

deletion, 15+ exons 

Dels hom 

Performance on 

homozygous 

deletions 

80 60 wt +20 
single homozygous 

deletion, any size 

Dups het 

small 

Performance on 

single exon 

events 

80 60 wt +20 

single heterozygous 

duplication, single 

exon 

Dups het 

medium 

Performance on 

medium events 
80 60 wt +20 

single heterozygous 

duplication, 5 to 10 

exons 

Dups het 

big 

Performance on 

large events 
80 60 wt +20 

single heterozygous 

duplication, 15+ 

exons 

Dups hom 

Performance on 

homozygous 

duplications 

80 60 wt +20 
single homozygous 

duplication any size 

Tab. S1. Provides an overview of all 12 experiments. We wanted to investigate different setups, where the composition, sizes or numbers of 

CNVs or the coverage are distributed not as closely as possible to the data we have seen. This may the reader to decide which tool is best for 

given data with certain properties. The columns can be read as follows. Experiment name: The name of the experiment as it is shown in 

Fig. S14. Characteristics: key features of the experiment. Total samples: the total number of samples used in the experiment. Sample 

composition: for most experiments, we chose to use 60 background samples (“wt”) with no CNVs and an additional set of samples (of size 

20 in most cases) that carry CNV signals. The low coverage experiment is composed of only signal carrying samples. Sample structure 

summarizes the samples’ features. The CNV rich experiment is made from seven different configurations, which are implemented in three 

samples each. The first three samples carry each three deletions and three duplications. The next three samples carry five deletions and five 

duplications and so on, until 30 deletions and 30 duplications are implemented in the last three samples. The low coverage experiment starts 

with two samples from which only 20,000 fragments are simulated. For the next two samples 40,000 fragments are simulated. This is 

repeated for another 18 steps, until the last two samples have a fragment count of 400,000. The Variants het experiment is composed of 60 

samples without any CNVs (wild type) and 60 samples of which each carries one heterozygous deletion and one heterozygous duplication. 

The CNVs are picked randomly (i.i.d.) from the gnomAD SV 2.1 sites. All SVs picked are either duplications or deletions and fully cover at 

least one exon in the target regions of the D (SDAG1) panel. 

 

https://charitede.sharepoint.com/sites/CUBI/Freigegebene%20Dokumente/Manuscripts/2021%20-%20ClearCNV/ording%20reposit
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Performance evaluation 

In the following, different performance metrics are displayed with which we evaluated the results of the performance assessment 

experiments. The used metrics are defined as follows: 

Abbreviation Name Formula 

PPV Positive predictive value TP / (TP + FP) 

FPR False positive rate FP / (FP + TN) 

Sens Sensitivity TP / (TP + FN) 

FP False positives  

TP True positives  

FN False negatives  

TN True negatives  

 

In Fig. S14. The different experiments highlight certain strengths and weaknesses of all four CNV calling tools. Please note that 

the true negative CNV calls on all targets are very high numbers and to make the table in Fig. S14 more concise, we decided to display them 

in a separate table Tab. S3. 

clearCNV shows to have the highest PPV of all four tools in all experiments except variants het. In the CNV rich, low coverage, 

and the del/dup het small experiments, the PPV is highest at the cost of the sensitivity. clearCNV is very conservative on calling CNVs if the 

data seems to have a low quality or untrustworthy properties. On the other hand, the more balanced the data appears, the more clearCNV 

emphasizes a high sensitivity. The reason for such behavior is found in the use case we developed clearCNV for. We had only limited 

resources on the qPCR validation of CNV calls and aimed for a maximized positive yield. 

ExomeDepth shows a high overall performance with no outstanding biases. It appears that CoNVaDING called many false 

positives, which are not evenly distributed but concentrate on only a single or a few samples as it can be seen in Figure S15. The case for 

panelCN.MOPS is similar. We were not able to find the root cause of this behavior. 
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Fig. S14. Test results of all experiments using simulated reads. This is a summary of all evaluation results of the four selected CNV 

calling methods on twelve different experiments. The two top rows show the number of copy number neutral and copy number variable 

samples. Each four rows below that present the results of an indicated testing metric (rows B, C, D) or simply the counts (rows E, F, G). 

Each column corresponds to an experiment. The first column shows the results of the variants het experiment which carries several different 

CNVs. This experiment has no special focus and thus is best suited for a quick performance assessment. The most relevant results to quickly 

assess the overall performance are marked with an orange box. The next three columns show the results of experiments with extreme 

parameters. The Wild types experiment has no CNVs, CNV rich has a very high number of CNVs and no copy number neutral samples. Low 

coverage has samples with low coverage (40k to 400k fragments per sample). The next two blocks contain all experiments associated with 

only deletions and with only duplications. All TP, FP, TN (true negatives), and FN numbers are single exon counts. We chose to reduce the 

evaluation to single exon-level because not every tool merges adjacent CNV calls or called exons with a certain distance into one single 

CNV call. Fields showing no value and only a grey color could not be calculated due to division by zero. In the case of clearCNV in PPV 

this is the case because there were no false positive CNV calls. The wild type experiment has by design neither FNs nor TPs. Thus, the 

sensitivity could not be calculated. 
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Fig. S15. Head of sorted called exons per sample for CoNVaDING. Each row shows the top ten sorted called exons per sample for the 

results of CoNVaDING. It allows to identify that in the experiments dels het small, dels het medium, dels het big, and dels hom there is each 

time one sample on which the great majority of CNV-exons was called. 

Tab. S3. True Negative (TN) CNV called targets per tool and experiment. 

 clearCNV ExomeDepth CoNVaDING panelCN.MOPS 

variants_het 734,844 734,888 734,886 734,861 

wild_types 368,460 368,453 368,457 368,441 

noisy_samples 493,576 493,562 493,564 493,562 

low_coverage_samples 736,005 735,905 690,677 686,125 

dels_het_small 491,241 491,231 491,025 491,211 

dels_het_medium 491,148 491,114 486,965 491,119 

dels_het_big 490,775 490,725 486,541 490,752 

dels_hom 491,204 491,193 490,776 491,185 

dups_het_small 491,240 491,233 491,237 491,223 

dups_het_medium 491,135 491,129 491,131 491,110 

dups_het_big 490,822 490,817 490,820 490,804 

dups_hom 491,140 491,133 491,137 491,111 

 

 

S7 Simulated data does not capture the variances of real-world data 

A key issue to look out for when using simulated data is how well they match with real-world data. In this section, we make an in-depth 

analysis of the characteristics of the simulated data that we used and compare it to the characteristics that we observe in the real-world data. 

Such differences in data can explain different behavior on simulated vs. real-world data. 

There are very few software packages available that allow for the simulation of targeted sequencing data. We chose CapSim as 

the most promising one.  
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Fig. S16. Heatmap-like visualization of normalized coverage per exon. Both subfigures show a subset of the exons found in Panel D on 

all samples. Both plots are accompanied by three tracks in orange, green and purple, where the orange track indicates the 36-mer 

mappability, green indicates the GC-content and purple indicates the log size of the exon. Mappability and GC content range from 0 (left) to 

1 (right). Purple (log size) ranges from 1 (left) to the local maximum. In the heatmap, a row corresponds to the ratio scores. Ratio scores are 

normalized fragment counts per target. A column corresponds to a sample. Vertical dark lines indicate deletions while vertical bright lines 

indicate duplication events. Horizontal lines of mixed colors indicate exons with a high variance. The two datasets show different 

characteristics. While the simulated data shows a homogeneous variance of normalized fragment counts in all targets except for the high 

variance targets and the CNV events. The base variance of the real-world data shows some patches of slightly elevated or lowered ratio 

scores. 

The two subplots of Figure S16 show only a subset of targets on all available samples. The visualization of ratio scores allows to 

quickly spot CNV candidates and regions of high variance. It also allows to get an impression of the character of the base variance. The base 

variance of the simulated data (Subfigure B) seems to be rather homogeneous. The real-world data (Subfigure A) shows regions of slightly 

elevated or lowered coverage. These regions imply that the noise (or the variance) is not independently random. 
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Fig S17. Clustered heatmaps of sample distances in real and simulated data. Both Subfigures show clustered heatmaps of the match 

scores (distance metric) calculated and visualized by clearCNV. A dark color indicates a smaller distance, a brighter color a greater distance. 

Both matrices are symmetric. Subfigure A shows the real-world data of panel D (SDAG1) of the larger batch. Subfigure B shows the 

simulated data of the experiment variants het. It can be seen in the real-world data that there are smaller groups of samples that share a 

similar coverage profile than other samples. Subfigure B shows a rather homogeneous situation with no smaller subclusters visible and a 

maximum match score of about 0.1, which is about half as much as in the real-world data. 

clearCNV builds groups of samples that have similar profiles of this kind. Figure S17 shows a clustered heat map of distances of 

samples (match scores) of real-word data (Subfigure A) and simulated data (Subfigure B). 

So far we have described qualitative and visual observations. We attempted to derive a quantitative measure for this. We 

calculated the linear correlation (Pearson correlation) between row x and row x+i in the heatmaps. The plots in Figure S18 show the 

difference of simulated and real-world data at different distances i. 

Fig. S18. Cross-correlation plots. Both subplots show the pairwise linear cross-correlation of normalized fragment counts (ratio scores) in 

all samples. All fragment counts per exon per sample can be represented in a matrix, where a row corresponds to an exon and a column 

corresponds to a sample. To approximate any correlation, we chose to calculate the absolute Pearson-correlation between a rowx and rowx+i
. i 

corresponds to the distance axis of both plots. clearCNV separated the real-world data set into two batches to analyze them independently so 

we are presented two plots. The distance i ranges from 1 to 30. It is visible that the absolute linear correlation is much higher in the real-

world data than it is in the simulated data. Subplot A represent the larger batch of 73 samples. Subplot B represents the smaller batch of 30 

samples. The real-world data is shown in orange (real), the simulated data in blue (synth) 
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Fig. S19. Standard deviation of normalized coverage vs. GC content. Both subfigures show a scatterplot, where each dot is defined by an 

exon’s standard deviation of ratio scores (taken from all samples) and an exon’s GC content. Subplot A shows the first batch of the real-

world data of Panel D (SDAG1). Subplot B shows the simulated data of the variants het experiment. The normalized coverage (ratio scores) 

of the real-world data has the lowest standard deviation on targets with a GC content around 0.5. The more deviant the GC content, the 

higher the sd seems to be. On Subplot B, the simulated data generated with CapSim shows a rather uniform distribution which seems 

independent of the GC-content. Furthermore, a group of outliers is present which is visually different than in Subplot A.  

Another strong difference can be seen in Figure S19 which displays exon coverage standard deviation vs GC content of the 

sequence. It should be expected that the standard deviation (or variance) of the normalized coverage on an exon over all samples would 

increase with rather low or high GC-contents. The simulated data show no such characteristic. 

S8 Overview of the selected tools’ features 

Tab. S2 summarizes the considered tools’ features. The tools use quite different statistical models and algorithmic features to detect CNVs. 

Our approach uses on one hand a normal distribution assumption of the exponentially transformed z-scores, on the other hand incorporates 

many different steps to adjust to the data and to limit the influx of any distributional assumptions. This way, we try to properly capture the 

empirically observed biases and batch effects seen in the real-world data sets. clearCNV can cope relatively well with the wide variety of 

panel types, panel versions and vendor technologies present in typical heterogenous panel data collections found in rare disease research. 

Tab. S2. Name, model, and features of the selected CNV detection tools. 

Tool model features 

ExomeDepth 
Logistic regression; 

beta-binomial fit; hidden Markov model 

Construction of reference exome set; fitting of beta-binomial 

distribution of fragment counts per exon 

CoNVaDING 
normal distribution, z-scores joint 

distribution cut-off  

CNV calling on groups of selected samples; sample groups 

share a similar coverage pattern 

panelCN.MOPS 
Mixture of Poisson; expectation 

maximization algorithm 

Model adjustment to fit to each sample’s coverage pattern and 

noise in each region of interest 

clearCNV 

Normal distribution of exponentially 

transformed z-scores; hidden Markov 

model 

Prior batch separation; sample groups share a similar coverage 

pattern 

S9 Descriptive statistics on the CNV calls that were not taken to qPCR validation 

Only a small fraction of all CNV calls generated on the real-world data was validated via qPCR. We limited this selection to the CNV calls 

that at were made by at least three of the selected CNV calling tools. 
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Fig. S20. Scatter plots with marginal distributions of all exclusively called CNVs. Only CNV calls that were called by only one single 

tool are represented here. Each color represents a tool’s results. All tools are plotted as a background in light grey to compare with. CNV 

calls that were confirmed in the qPCR validation are marked as black stars. The scatter plots in subfigure A show the GC-content vs. the log 

size in bp. Subfigure A shows the GC-content vs. the mappability for each tool. The marginal distributions are displayed as histograms. The 

number of CNV calls present here are shown in the legend. 42,374 CNV calls are presented in total. By far the greatest set of CNV calls was 

generated by panelCN.MOPS (blue) with 37,000 calls. In subfigure A, panelCN.MOPS shows to have generated many very large CNV calls 

with a GC-content of around 0.4. The other tools’ results don’t exceed sizes of ~250kb (~12.5 log bp). The marginal distribution of the GC-

content for ExomeDepth show a strong peak for CNV calls at around 0.65. The marginal distribution of the size in log bp shows two peaks 

with sizes of 180 bp or 240 bp (180 bp: 12,048; 240 bp: 8,021). These CNV calls are on single exons. Larger calls are likely multi-exonic. 

Subfigure B shows that the largest group of CNV calls correspond to targets that map uniquely (mappability of 1.0, generated with 36-mers 

on Hg19). There is also a small group of CNV calls that correspond to targets which map to multiple regions in the reference (mappability of 

zero). A great portion of these calls was generated with ExomeDepth (red). 

The scatter plots in Figure S20 show that the exclusive CNV calls indicate certain biases on our data of each tool. 

panelCN.MOPS has generated a great number of very large CNV calls and a great number of total CNV calls. ExomeDepth called many 

CNVs on targets that have a low mappability, which means that these fragment count data have a high probability to represent different 

regions in the reference genome than aimed for. The CNV calls of only CoNVaDING show no specific bias, except that there are many. 

clearCNV is not restricted to high mappability targets and has also generated some very large CNV calls but shows no specific bias. 
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Fig. S21. Scatter plot with marginal distributions of all called CNVs with two tools’ support. Only CNV calls that were called by 

exactly two tools are shown in this Figure. Each combination of two tools is represented by a color. The scatter plots in subfigure A show 

the GC-content vs. the size in log bp. Subfigure B shows GC-content vs. mappability (36-mers on Hg19). The number of CNV calls present 

here are shown in the legend. 3,008 calls are presented in total. Most CNV calls presented here are either in the ‘CoNVaDING & 

panelCN.MOPS’ (purple-blue) set (1,474 calls) or in the ‘ExomeDepth & panelCN.MOPS’ (red) set (1,482). Any other tool combination 

has no great overlap. Almost all called CNVs in low mappability targets are in the ‘ExomeDepth & panelCN.MOPS’ (red) subset. It can be 

seen in the marginal distribution of the size in log bp that CNV calls of targets with size 180 or 240 bp are present in very high numbers 

(180 bp: 501; 240 bp: 855). They are single-exon CNV calls. The larger calls are mostly multi-exonic. 

In Figure S21, the overlap of CNV calls that were generated by exactly two tools is shows a much greater portion for the 

‘CoNVaDING & panelCN.MOPS’ and ‘ExomeDepth & panelCN.MOPS’. The latter shows again a bias as it does for the exclusive 

ExomeDepth calls in Figure S20. This bias is that the greater portion of CNV calls are done on targets with a very low mappability. The 

other tool combinations have only a very few CNV calls ins them, so that it is hard to make any statements about them. 
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Fig. S22. Scatter plot with marginal distributions of all validated CNV calls of three or four tools’ support. Only CNV calls that were 

called by three or more tools were taken to qPCR-validation. 88 CNV calls were selected this way. The number of CNV calls in each tools 

combination is found in the legend. Each combination of two tools is represented by a color. The scatter plots in subfigure A show the GC-

content vs. the size in log bp. Subfigure B shows GC-content vs. mappability (36-mers on Hg19. The marginal distributions of size in log bp 

and mappability are rug plots due to low numbers.  

 

Figure S.22 shows that compared to the rest, there was only a small group of 88 CNV calls selected for validation via qPCR. This 

was due to our limited capacities to do these validations. Even though the numbers are not very high here, it can be seen that the bivariate 

distribution of CNV calls on their targets’ mappability has changed a bit. There is no great group that has a mappability close to zero. 

 

S10  Supplementary data description 

The first table ( https://github.com/bihealth/clear-cnv-supplementary/blob/master/data/all_cnv_calls.xlsx ) summarizes all CNV call by all 

four tools (clearCNV, CoNVaDING, ExomeDepth, and panelCN.MOPS). The columns describe the following features: chr: chromosome; 

start: start coordinate on the chromosome from 5’ end; end: end coordinate from 5’ end; aberration: type of CNV call. Only DEL for 

deletion and DUP for duplication are called; score_[tool]: the score assigned to a CNV call by the specified tool; ranks_[tool]: the rank we 

computed from a tool’s score to compare across all tools. 

The second table ( https://github.com/bihealth/clear-cnv-supplementary/blob/master/data/validated_cnv_calls.xlsx ) summarizes 

all CNV calls that were validated via qPCR. All selected CNV calls were done by at least three of the selected tools. The columns describe 

the following features: chr: chromosome; start: start coordinate on the chromosome from 5’ end; end: end coordinate from 5’ end; 

aberration: type of CNV call. Only DEL for deletion and DUP for duplication are called; ranks_[tool]: the rank we computed from a tool’s 

score to compare across all tools; [tool]: the CNV was called by the specified tool; size: the size of the called CNV in bp; qPCR_validated: 

the status of the qPCR validation. ‘not’ means that the result indicated no change in the copy number. ‘ambiguous’ means that the result 

https://github.com/bihealth/clear-cnv-supplementary/blob/master/data/all_cnv_calls.xlsx
https://github.com/bihealth/clear-cnv-supplementary/blob/master/data/validated_cnv_calls.xlsx
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indicated no wild type nor copy number variant. ‘contrary’ means that the opposite CNV was indicated in the qPCR result. ‘no_sample’ 

means that the sample was not available. 
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