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Abstract: Metabolic syndrome is a significant worldwide public health challenge and is inextricably
linked to adverse renal and cardiovascular outcomes. The inhibition of the transient receptor potential
cation channel subfamily C member 6 (TRPC6) has been found to ameliorate renal outcomes in the
unilateral ureteral obstruction (UUO) of accelerated renal fibrosis. Therefore, the pharmacological in-
hibition of TPRC6 could be a promising therapeutic intervention in the progressive tubulo-interstitial
fibrosis in hypertension and metabolic syndrome. In the present study, we hypothesized that the
novel selective TRPC6 inhibitor SH045 (larixyl N-methylcarbamate) ameliorates UUO-accelerated
renal fibrosis in a New Zealand obese (NZO) mouse model, which is a polygenic model of metabolic
syndrome. The in vivo inhibition of TRPC6 by SH045 markedly decreased the mRNA expression of
pro-fibrotic markers (Col1α1, Col3α1, Col4α1, Acta2, Ccn2, Fn1) and chemokines (Cxcl1, Ccl5, Ccr2) in
UUO kidneys of NZO mice compared to kidneys of vehicle-treated animals. Renal expressions of
intercellular adhesion molecule 1 (ICAM-1) and α-smooth muscle actin (α-SMA) were diminished in
SH045- versus vehicle-treated UUO mice. Furthermore, renal inflammatory cell infiltration (F4/80+
and CD4+) and tubulointerstitial fibrosis (Sirius red and fibronectin staining) were ameliorated
in SH045-treated NZO mice. We conclude that the pharmacological inhibition of TRPC6 might
be a promising antifibrotic therapeutic method to treat progressive tubulo-interstitial fibrosis in
hypertension and metabolic syndrome.
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1. Introduction

Chronic kidney disease (CKD) is characterized by progressive loss of kidney function.
The main risk factors of developing CKD are the combination of obesity, diabetes and
hypertension, which is commonly referred to as metabolic syndrome. Other contributors
are autoimmune diseases (e.g., glomerulonephritis), environmental exposures and genetic
risk factors [1,2]. Morphologically, persistent low-grade renal inflammation and tubuloin-
terstitial fibrosis are key hallmarks of CKD [3,4]. The complex interplay of fibroblasts,
lymphocytes, tubular, and other cell types in the kidney lead to excessive extracellular
matrix deposition and the further deterioration of renal function [5,6]. Although unspe-
cific treatments strategies are available (e.g., medications lowering blood pressure), CKD
progression is still poorly controlled.

In recent years, novel drug targets, such as transient receptor potential cation channel,
subfamily C, and member 6 (TRPC6), emerged [7,8]. TRPC6 mutations lead to glomerular
injury and proteinuria, presumably involving the Ca2+ signaling pathway and resulting
in progressive kidney failure [9–12]. Both TRPC6 gain-of-function and loss-of-function
cause familial forms of focal segmental glomerulosclerosis (FSGS) [11,13]. Interestingly, in a
murine model of kidney injury (unilateral ureteral obstruction (UUO)), Trpc6−/− deficiency
and pharmacological blockade with BI-749327 ameliorated renal fibrosis in C57BL/6J
mice [7,8]. Remarkably, these beneficial effects were not observed in the acute stage of
kidney injury (AKI) [14]. Thus, TRPC6 inhibition may have effects on renal fibrogenesis
during AKI-to-CKD transition. Given this state of affairs, TRPC6 inhibition seems to
represent a promising new therapeutic approach to combat progressive renal failure since
it potentially affects CKD at later stages after kidney injury. However, it is unknown
whether TRPC6 inhibition is effective for inhibiting progressive tubulo-interstitial fibrosis
in hypertension and metabolic syndrome.

Recently, by the chemical diversification of (+)-larixol originating from Larix decidua
resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was
developed as a novel, highly potent, subtype-selective inhibitor of TRPC6 [15]. In the
present study, we hypothesized that this novel selective TRPC6 inhibitor (SH045) [15]
could ameliorate renal fibrogenesis in the New Zealand obese (NZO) mouse model, which
is a polygenic model of metabolic syndrome [16]. We studied the therapeutic effects of
the in vivo inhibition of TRPC6 by the novel blocker SH045 in the UUO mouse model of
accelerated renal fibrogenesis utilizing these mice.

2. Results
2.1. SH045 Treatment Does Not Affect Renal Function and Trpc Expression in UUO Model

To investigate the impact of in vivo TRPC6 inhibition on renal function, target molecules
and fibrosis, we performed UUO in the NZO mice. During the one week period, we admin-
istrated SH045 (TRPC6 inhibitor) or vehicle once daily (Figure 1A). After 7 days, urinary
tract obstruction led to hydronephrosis (Figure S1). Consistent with our previous findings,
Trpc6 expression significantly increased in UUO kidneys. SH045 affected neither Trpc6
mRNA expression nor the expression of other TRPC channels, including Trpc1, Trpc2, Trpc3
and Trpc4 (Figure 1B and Figure S2A–D). SH045 had no impact on renal function. Serum
creatinine (p = 0.1098; Figure 1B) and blood urea nitrogen (BUN) (p = 0.928; Figure 1C),
serum cystatin C, urine albumin, and urine albumin-to-creatinine ratio in SH045-treated
mice were unchanged (Figure 1D–F). In addition, we found no differences in serum levels of
glucose, sodium, potassium, ionized calcium, total CO2, hemoglobin, hematocrit, and anion
gap in SH045-treated animals compared to the vehicle group (Table S1). SH045-treated
mice exhibited a slightly higher serum chloride concentration (p = 0.047), albeit within the
normal physiological range.
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Figure 1. Impact of SH045 administration on renal function and Trpc6 expression in UUO model. 
(A) Experimental design of unilateral ureteral obstruction (UUO) model. NZO mice were subjected 
to UUO and then injected with SH045 (n = 11) or vehicle (n = 11) once every 24 h between day 0 and 
day 7. All mice were euthanized on day 7 after UUO surgery. (B) Renal mRNA levels of Trpc6 (con-
trol n = 10, UUO n = 11). Control group includes kidneys that were not subjected to the UUO. (C) 
Serum levels of creatinine, (D) blood urea nitrogen, and (E) cystatin C in the experimental UUO 
groups. (F) Urine albumin and (G) ratio of albumin to creatinine in the experimental UUO groups 
(UUO vehicle n = 10–11, UUO SH045 n = 8–11). Data expressed as means  ±  SD. Two-way ANOVA 
followed by Sidak’s multiple comparisons post hoc test. ** p < 0.01 and **** p < 0.0001 defined as 
significant. ns, not statistically significant. AU, arbitrary units. 

2.2. SH045 Treatment Does Not Alter Kidney Parenchymal Damage 
Morphologically, UUO increased mesangial matrix deposition, leading to glomeru-

lar hypertrophy, and tubular dilatation (Figure 2A–D). The expressions of renal damage 
markers, kidney injury molecule-1 (Havcr1) and Lipocalin-2 (Lcn2), were increased in 
UUO kidneys compared to control (Figure 2E,F). However, SH045 did not affect these 
parameters in both UUO and control kidneys (Figure 2A–F). These results indicate that 
TRPC6 inhibition per se has no impact on the damage to renal parenchyma (glomerular 
or tubular) caused by UUO. 

Figure 1. Impact of SH045 administration on renal function and Trpc6 expression in UUO model.
(A) Experimental design of unilateral ureteral obstruction (UUO) model. NZO mice were subjected
to UUO and then injected with SH045 (n = 11) or vehicle (n = 11) once every 24 h between day 0
and day 7. All mice were euthanized on day 7 after UUO surgery. (B) Renal mRNA levels of Trpc6
(control n = 10, UUO n = 11). Control group includes kidneys that were not subjected to the UUO.
(C) Serum levels of creatinine, (D) blood urea nitrogen, and (E) cystatin C in the experimental UUO
groups. (F) Urine albumin and (G) ratio of albumin to creatinine in the experimental UUO groups
(UUO vehicle n = 10–11, UUO SH045 n = 8–11). Data expressed as means ± SD. Two-way ANOVA
followed by Sidak’s multiple comparisons post hoc test. ** p < 0.01 and **** p < 0.0001 defined as
significant. ns, not statistically significant. AU, arbitrary units.

2.2. SH045 Treatment Does Not Alter Kidney Parenchymal Damage

Morphologically, UUO increased mesangial matrix deposition, leading to glomerular
hypertrophy, and tubular dilatation (Figure 2A–D). The expressions of renal damage
markers, kidney injury molecule-1 (Havcr1) and Lipocalin-2 (Lcn2), were increased in
UUO kidneys compared to control (Figure 2E,F). However, SH045 did not affect these
parameters in both UUO and control kidneys (Figure 2A–F). These results indicate that
TRPC6 inhibition per se has no impact on the damage to renal parenchyma (glomerular or
tubular) caused by UUO.
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Figure 2. SH045 impact on kidney histopathology after UUO. (A) Representative images of UUO-
injured glomerulus (magnification: 400×). Kidney sections were stained with periodic acid–Schiff 
staining (PAS). (B) Quantification of glomerular damage (control n = 6, UUO n = 8). (C) Representa-
tive images of UUO-injured tubules (magnification: 400×). Kidneys sections were stained with peri-
odic acid–Schiff staining (PAS). Arrows indicate tubular injury. Scale bars are 50 µm. (D) Semi-
quantification of tubular damage (control n = 6, UUO n = 8). (E) Renal mRNA levels of kidney injury 
molecule 1 (Havcr1) and (F) Lipocalin 2 (Lcn2) (control n = 10, UUO n = 11). Data expressed as 
means ±  SD. Two-way ANOVA followed by Sidak’s multiple comparisons post hoc test. * p < 0.05, 
*** p < 0.001 and **** p < 0.0001 defined as significant. ns, not statistically significant. AU, arbitrary 
units. 

2.3. SH045 Treatment Ameliorates Renal Expression of Inflammatory Markers 
Next, we measured the renal mRNA expression of inflammatory cytokines and 

chemokines using qRT-PCR. The expression of inflammatory molecules was markedly 
increased in kidneys subjected to UUO compared to control groups (Figure 3). The mRNA 
expression of chemokine (C-X-C motif) ligand 1 (Cxcl1), chemokine (C-C motif) ligand 5 
(Ccl5), and chemokine (C-C motif) receptor 2 (Ccr2) was significantly lower in UUO kid-
neys of SH045-treated mice (SH045 UUO kidneys) compared to UUO kidneys of vehicle-

Figure 2. SH045 impact on kidney histopathology after UUO. (A) Representative images of UUO-
injured glomerulus (magnification: 400×). Kidney sections were stained with periodic acid–Schiff
staining (PAS). (B) Quantification of glomerular damage (control n = 6, UUO n = 8). (C) Repre-
sentative images of UUO-injured tubules (magnification: 400×). Kidneys sections were stained
with periodic acid–Schiff staining (PAS). Arrows indicate tubular injury. Scale bars are 50 µm.
(D) Semi-quantification of tubular damage (control n = 6, UUO n = 8). (E) Renal mRNA levels of
kidney injury molecule 1 (Havcr1) and (F) Lipocalin 2 (Lcn2) (control n = 10, UUO n = 11). Data
expressed as means± SD. Two-way ANOVA followed by Sidak’s multiple comparisons post hoc
test. * p < 0.05, *** p < 0.001 and **** p < 0.0001 defined as significant. ns, not statistically significant.
AU, arbitrary units.

2.3. SH045 Treatment Ameliorates Renal Expression of Inflammatory Markers

Next, we measured the renal mRNA expression of inflammatory cytokines and
chemokines using qRT-PCR. The expression of inflammatory molecules was markedly
increased in kidneys subjected to UUO compared to control groups (Figure 3). The mRNA
expression of chemokine (C-X-C motif) ligand 1 (Cxcl1), chemokine (C-C motif) ligand
5 (Ccl5), and chemokine (C-C motif) receptor 2 (Ccr2) was significantly lower in UUO
kidneys of SH045-treated mice (SH045 UUO kidneys) compared to UUO kidneys of vehicle-
treated mice (vehicle UUO kidneys) (Figure 3A–C). The expressions of chemokine (C-C
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motif) ligand 2 (Ccl2), chemokine (C-X-C motif) ligand 2 (Cxcl2), and intercellular adhesion
molecule 1 (Icam1) were increased in both SH045 UUO and vehicle UUO kidneys compared
to control kidneys, although there were no differences between SH045 UUO and vehicle
UUO kidneys (p = 0.056, p = 0.068 and p = 0.076, respectively) (Figure 3D–F). Furthermore,
immunofluorescence staining of ICAM-1 markedly increased in UUO kidneys in compar-
ison to control kidneys (Figure S3A–C). Additionally, the pharmacological inhibition of
TRPC6 by SH045 decreased ICAM-1 expression after UUO in comparison to vehicle-treated
kidneys (Figure S3A–C). Whereas ICAM1 expression was similar in the vessels of UUO
kidneys, vehicle-treated kidneys had a much higher expression in SH045-treated UUO
kidneys due to more ICAM-1-positive immune cell infiltration (Figure S3A).
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2.4. SH045 Treatment Leads to Less Renal Immune Cell Infiltration 
To evaluate inflammatory cell infiltration in UUO kidneys, we examined macro-

phages and T cell presence using immunofluorescence. Kidney cross sections were immu-
nolabelled with the macrophage marker F4/80 and T cell marker CD4 as described previ-
ously [17]. As shown in Figure 4A,B, excessive CD4-positive cells infiltration was ob-
served in renal interstitium of UUO kidneys in comparison to control kidneys (Figure 
4A,B). Similarly, the number of F4/80-positive cells in UUO kidneys was also markedly 
increased compared to control kidneys (Figure 4C,D). In accordance with ameliorated in-
flammatory cytokine and chemokine expression, SH045 treatment decreased UUO-in-
duced macrophage and T cell infiltration (Figure 4A–D). Thus, these data suggest that 
TRPC6 inhibition reduces renal inflammation in the UUO model of NZO mice. 

Figure 3. SH045 impact on renal expression of inflammatory markers. (A) Renal mRNA levels of
chemokine (C-X-C motif) ligand 1 (Cxcl1), (B) chemokine (C-C motif) ligand 5 (Ccl5), (C) chemokine
(C-C motif) receptor 2 (Ccr2), (D) chemokine (C-C motif) ligand 2 (Ccl2), (E) chemokine (C-X-C motif)
ligand 2 (Cxcl2), and (F) intercellular adhesion molecule-1 (Icam1) (control n = 10, UUO n = 11). Data
expressed as means ± SD. Two-way ANOVA followed by Sidak’s multiple comparisons post hoc
test. * p < 0.05, ** p < 0.01, and **** p < 0.0001 defined as significant. ns, not statistically significant.
AU, arbitrary units.

2.4. SH045 Treatment Leads to Less Renal Immune Cell Infiltration

To evaluate inflammatory cell infiltration in UUO kidneys, we examined macrophages
and T cell presence using immunofluorescence. Kidney cross sections were immunolabelled
with the macrophage marker F4/80 and T cell marker CD4 as described previously [17].
As shown in Figure 4A,B, excessive CD4-positive cells infiltration was observed in renal
interstitium of UUO kidneys in comparison to control kidneys (Figure 4A,B). Similarly, the
number of F4/80-positive cells in UUO kidneys was also markedly increased compared to
control kidneys (Figure 4C,D). In accordance with ameliorated inflammatory cytokine and
chemokine expression, SH045 treatment decreased UUO-induced macrophage and T cell
infiltration (Figure 4A–D). Thus, these data suggest that TRPC6 inhibition reduces renal
inflammation in the UUO model of NZO mice.
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images of control and UUO-injured kidneys stained with CD4+ T cells (magnification: 400×). Rec-
tangles represent single-cell magnifications. Scale bars are 50 µm. (B) Quantification in renal infil-
tration of CD4+ T cells (control n = 6, UUO n = 8). (C) Representative images of control and UUO-
injured kidneys stained with F4/80+ macrophages (magnification: 400×). Rectangles represent sin-
gle-cell magnifications. Scale bars are 50 µm. (D) Quantification in renal infiltration of F4/80+ mac-
rophages (control n = 6, UUO n = 8). Data expressed as means  ±  SD. Two-way ANOVA followed 
by Sidak’s multiple comparisons post hoc test. * p < 0.05, *** p < 0.001, and **** p < 0.0001 defined as 
significant. ns, not statistically significant. AU, arbitrary units. 
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Since progressive fibrosis is a typical lesion occurring after UUO [18], we examined 

the impact of SH045 administration on renal fibrosis. We measured the renal mRNA ex-
pression of pro-fibrotic markers, including collagen I (Col1a2), collagen III (Col3a1), colla-
gen IV (Col4a3), α-smooth muscle actin (Acta2), connective tissue growth factor (Ccn2), 
and fibronectin (Fn1). All these fibrosis-associated genes were upregulated after UUO 
(Figure 5A–F). Notably, SH045 treatment significantly reduced Col1a2, Col3a1, Col4a3, 
Acta2, Ccn2, and Fn1 expressions in the UUO kidney (Figure 5A–F). 

Figure 4. SH045 impact on renal inflammatory cell accumulation after UUO. (A) Representative
images of control and UUO-injured kidneys stained with CD4+ T cells (magnification: 400×). Rectan-
gles represent single-cell magnifications. Scale bars are 50 µm. (B) Quantification in renal infiltration
of CD4+ T cells (control n = 6, UUO n = 8). (C) Representative images of control and UUO-injured
kidneys stained with F4/80+ macrophages (magnification: 400×). Rectangles represent single-cell
magnifications. Scale bars are 50 µm. (D) Quantification in renal infiltration of F4/80+ macrophages
(control n = 6, UUO n = 8). Data expressed as means ± SD. Two-way ANOVA followed by Sidak’s
multiple comparisons post hoc test. * p < 0.05, *** p < 0.001, and **** p < 0.0001 defined as significant.
ns, not statistically significant. AU, arbitrary units.

2.5. SH045 Treatment Reduces Renal Expression of Fibrotic Markers

Since progressive fibrosis is a typical lesion occurring after UUO [18], we examined
the impact of SH045 administration on renal fibrosis. We measured the renal mRNA
expression of pro-fibrotic markers, including collagen I (Col1a2), collagen III (Col3a1),
collagen IV (Col4a3), α-smooth muscle actin (Acta2), connective tissue growth factor (Ccn2),
and fibronectin (Fn1). All these fibrosis-associated genes were upregulated after UUO
(Figure 5A–F). Notably, SH045 treatment significantly reduced Col1a2, Col3a1, Col4a3, Acta2,
Ccn2, and Fn1 expressions in the UUO kidney (Figure 5A–F).
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(Control n = 10, UUO n = 11). Data expressed as means  ±  SD. Two-way ANOVA followed by Sidak’s 
multiple comparisons post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 defined as 
significant. ns, not statistically significant. AU, arbitrary units. 

To further confirm our qPCR data, Sirius red (SR) and fibronectin immunofluores-
cence staining was performed. Control kidneys exhibited small SR-positive (+) areas. In 
contrast, UUO kidneys displayed markedly increased SR+ areas compared to control kid-
neys, indicating that UUO caused considerable collagen deposition (Figure 6A,B). SH045 
effectively decreased this collagen deposition (Figure 6A,B). Similarly, immunofluores-
cence staining revealed increased fibronectin deposition and chromogenic immunohisto-
chemistry increased α-smooth muscle actin (α-SMA) expression in UUO kidneys in com-
parison to control kidneys, which were reduced by SH045 treatment (Figure 6C–F). Taken 
together, these data suggest that renal fibrosis and inflammatory reactions are ameliorated 
in response to in vivo TRPC6 inhibition by SH045. 

Figure 5. SH045 impact on expression of renal fibrotic markers UUO. (A) Renal mRNA levels of
collagen type I α 1 (Col1α2), (B) Collagen type III α 1 (Col3α1), (C) Collagen type IV α 1 (Col4α1),
(D) α-Smooth muscle actin (Acta2), (E) Connective tissue growth factor (Ccn2), and (F) Fibronectin
(Fn1) (Control n = 10, UUO n = 11). Data expressed as means ± SD. Two-way ANOVA followed
by Sidak’s multiple comparisons post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001
defined as significant. ns, not statistically significant. AU, arbitrary units.

To further confirm our qPCR data, Sirius red (SR) and fibronectin immunofluorescence
staining was performed. Control kidneys exhibited small SR-positive (+) areas. In contrast,
UUO kidneys displayed markedly increased SR+ areas compared to control kidneys, indi-
cating that UUO caused considerable collagen deposition (Figure 6A,B). SH045 effectively
decreased this collagen deposition (Figure 6A,B). Similarly, immunofluorescence staining re-
vealed increased fibronectin deposition and chromogenic immunohistochemistry increased
α-smooth muscle actin (α-SMA) expression in UUO kidneys in comparison to control
kidneys, which were reduced by SH045 treatment (Figure 6C–F). Taken together, these
data suggest that renal fibrosis and inflammatory reactions are ameliorated in response to
in vivo TRPC6 inhibition by SH045.
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3. Discussion

Renal fibrosis is the final common outcome of progressive CKD, which is often ob-
served in metabolic syndrome [19]. To date, there are few clinical treatments that success-
fully target fibrosis in CKD. Thus, developing new drug treatments is the current focus.
Increasing evidence indicates that TRPC6 could play a critical role in kidney fibrosis [20].
In our previous study using Trpc6–/– mice, we found that TRPC6 deficiency ameliorated
renal fibrosis and immune cellular infiltration in the UUO model [7]. However, the results
were difficult to interpret due to confounding genomic and non-genomic effects of other
TRPC channels, e.g., TPRC1, TRPC3, TRPC4 and TRPC5. Previous studies identified SH045
(larixyl N-methylcarbamate) as a novel, highly potent, subtype-selective inhibitor of TRPC6
channels [15]. In our previous study, we found that the in vivo inhibition of TRPC6 by
SH045 had no effects on acute kidney injury (AKI) [14]. However, there are no studies on
the effects of SH045 in kidney fibrosis. In the present study, we tested the hypothesis that
SH045 ameliorates UUO-accelerated renal fibrosis in NZO mice.

Our results show that SH045 ameliorates fibrotic processes in UUO kidneys. Ex-
pressions of all investigated fibrosis or fibrosis-related genes were ameliorated by SH045
treatment. The histological assessment of deposited collagen and extracellular matrix
protein confirmed the expression data of the genes. Of note, renal fibrosis arises after an
insult, whereas resident kidney fibroblasts and cells of hematopoietic origin differentiate
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into myofibroblasts [21–23]. Myofibroblasts acquire a contractile/proliferative phenotype
upon activation by profibrotic factors and become principal kidney collagen-producing
cells [24]. Considerable evidence indicates that renal inflammation plays a central role
in the initiation and progression of fibrosis [19]. Myofibroblasts are regulated by a vari-
ety of means, including paracrine signals derived from lymphocytes and macrophages.
Critical chemokines recruiting macrophages and lymphocytes are CCL2/CCR2, CCL5,
and CXCL1/2. ICAM-1 is an endothelial- and leukocyte-associated transmembrane pro-
tein in facilitating leukocyte endothelial transmigration [25]. Interestingly, our results
show that SH045 inhibits the overexpression of these chemokines and the infiltration of
numerous immune cells, suggesting that TRPC6 inhibition may antagonize renal fibrosis
by affecting inflammatory processes. TRPC6 is expressed in a wide range of cell types,
including neutrophils, lymphocytes, platelets and the endothelium, which might be a
modulator of tissue susceptibility to inflammatory injuries [26,27]. Some studies suggested
that TRPC6 channels may enhance chemotactic responses by increasing Ca2+ concentra-
tion, which promotes actin-based cytoskeleton remodeling [28,29]. Furthermore, Ca2+

currents within T-lymphocytes are influenced by TRPC6, which can affect the function of
T-lymphocytes [30]. Novel myeloid cell subsets could be targeted to ameliorate injury or
enhance repair, including an Arg1+ monocyte subset present during injury and Mmp12+
macrophages present during repair [31]. It is intriguing to speculate that TRPC6 inhibition
might ameliorate fibrotic processes in UUO kidneys by modulating the function(s) of theses
cell types.

On the other hand, TRPC6 was also reported to contribute to fibroblast transdifferen-
tiation and healing in vivo [32]. Thus, the beneficial effects of TRPC6 inhibition seen in the
UUO model might also involve fibroblasts. A TPRC6 blockade may decrease Ca2+ dependent
activation of MEK/ERK signaling pathway [33]. Of note, this pathway was implemented in
the detrimental differentiation and expansion of kidney fibroblasts [34]. The inhibition of the
ERK1/2 pathway by trametinib ameliorated UUO-induced fibrosis through the mammalian
target of rapamycin complex 1 (mTORC1) and its downstream targets.

In the present study, SH045 did not affect renal function parameters in 7-day-UUO
mice, which is not surprising. In this short-term UUO model, the kidney function of
contralateral undamaged kidney remained preserved and compensated for the loss of the
obstructed kidney at the early stage [35]. We used the NZO inbred obese mouse strain,
which carries susceptibility genes for diabetes and hypertension, conditions similar to
metabolic syndrome and CKD in humans [36]. Our data observed in UUO induced fibrosis
in NZO mice, and thus might be of importance in mimicking human CKD pathophysiology.

Renal fibrosis involves complex interactions among multiple cells and cytokine signal-
ing pathways. Further studies of the TRPC6 modulation of renal fibrosis using single-cell
RNA sequencing could help to better understand the exact mechanism(s) of action in the dif-
ferent cell types. Single-cell RNA sequencing enables the precise discrimination of specific
cell type(s) or cell state(s) enriched in certain conditions (e.g., UUO) [31]. Thus, selecting
cellular labels based on gene expression markers could represent a novel approach to
determine cell type(s) or cell state(s) predominantly influenced by the inhibition of TRPC6
(by SH045) in the UUO model. Understanding the mechanisms behind TRPC6-induced
fibrogenesis is essential for developing novel therapies to slow the progression of CKD.

Our study demonstrates that the in vivo administration of SH045 ameliorates immune
cell infiltration and fibrosis in NZO mice subjected to UUO, which makes SH045 a promising
therapeutic drug strategy in CKD treatment for metabolic syndrome.

4. Materials and Methods
4.1. Animals

Male NZO mice (n = 22, NZO/BomHIDife genetic background) from Max-Rubner-
Laboratory, German Institute of Human Nutrition Potsdam-Rehbrücke (Nuthetal, Ger-
many) were used. These mice had increased weight (45.90± 4.11g b.w) and were previously
characterized [7]. Mice were held in specific-pathogen-free (SPF) condition, in a 12:12 h
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light–dark cycle, with free access to food and drinking water. All experimental proce-
dures were approved by the Berlin Animal Review Board, Berlin, Germany and followed
the restrictions in the Berlin State Office for Health and Social Affairs (LaGeSo) [37]. All
experiments were performed in accordance with ARRIVE guidelines [38].

4.2. UUO Model

UUO mouse model was performed as described earlier [7]. Briefly, NZO mice were
anaesthetized by isoflurane (2.2%) supplied with air flow at approximately 350 mL/min.
During the surgery mice were placed on a heating pad to prevent hypothermia. Preemptive
analgesia with carprofen (5–10 mg/kg b.w) was subcutaneously used. Body temperature
was maintained at 37.5 ◦C and monitored during surgery using a temperature controller
with a heating pad (TCAT–2, Physitemp Instruments, Clifton, NJ, USA). In deep anesthesia,
the anterior abdominal skin was shaved. Then, a midline laparotomy was conducted
via an incision of the avascular linea alba, and the left ureter was exposed from left side.
The ureter was then ligated twice close to the renal pelvis using a 5–0 polyglycolic acid
(PGA) suture wire (Resorba®, Nürnberg, Germany). The linea alba and skin were closed
separately. The wound was sanitized with a silver aluminium spray (Henry Schein®,
Berlin, Germany), and 0.5 mL of warm (37 ◦C) isotonic sodium chloride solution was
intraperitoneally injected. Subsequently, each mouse was placed in a cage in front of an
infrared (IR) lamp and monitored until they recovered consciousness. For the following
two days, mice received carprofen (2.5 mg/mL) in their drinking water (1:50) with a final
concentration of 0.05 mg/mL. After surgery mice had free access to drinking water and
chow. Seven days after UUO surgery, mice were sacrificed by overdose of isoflurane and
cervical dislocation. The blood samples were collected for further analysis and left kidneys
were removed immediately. The kidneys were divided into three portions. Upper part
of the kidney tissue was frozen in isopthane. Middle part of kidney was immersed in 4%
phosphate–buffered saline (PBS)-buffered formalin for histological assessment. The other
left tissue was snap frozen in liquid nitrogen for RNA preparation.

4.3. TRPC6 Inhibitor

SH045 (Larixyl-6-N-methylcarbamate) was previously described [15]. SH045 was ini-
tially dissolved in DMSO (final concentration of DMSO is 0.5%) and then in 5% Cremophor
EL® solution with 0.9% NaCl and used for intraperitoneal injection (i.p.). Mice subjected to
UUO were treated with SH045 (20 mg/kg once per day, i.p.) or vehicle daily until day 7
after surgery.

4.4. Blood Measurements and Drugs

The blood measurements of sodium, potassium, chloride, ionized calcium, total carbon
dioxide, glucose, urea nitrogen, creatinine, hematocrit, hemoglobin, and anion gap were
performed at endpoint. Nighty-five microliters of blood were taken from the facial vein,
and parameters were measured using i-STAT system with Chem8+ cartridges (Abbott
GmbH, Wiesbaden, Germany).

4.5. Quantitative Real-Time (qRT)-PCR

The qRT-PCR was performed as previously described [7]. Briefly, total mRNA from
mice was isolated from snap-frozen kidneys using RNeasy RNA isolation kit (Qiagen,
Australia), according to the manufacturer’s instructions. The concentration and quality of
RNA were determined by NanoDrop-1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Next, RNA was transcribed to cDNA using a reaction kit (Applied
Biosystems, Waltham, MA, USA). Quantitative analysis of target marker was performed
with qRT-PCR using the relative standard curve method. TaqMan or SYBR green analysis
was conducted by using an Applied Biosystems 7500 Sequence Detector (Applied Biosys-
tems, Waltham, MA, USA). The expression levels were normalized to 18S rRNA. All primer
sequences are provided in Table S2.
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4.6. Kidney Histopathology

Histological kidney assessment was performed as previously reported [39]. Formalin-
fixed, paraffin-embedded sections (2 µm) of kidneys were subjected to periodic acid–Schiff
(PAS) and Sirius red (SR) staining. The PAS reaction visualized the basement membranes
of the capillary loops of the glomeruli, through which the glomerular damage can be
evaluated [7]. In each group, 10 fields of view were randomly selected from each kidney
sample section under a 400×magnification, and the average ratio of glomerular section
area to total area within the view was calculated using the software ImageJ. SR staining
allows for a quantification of interstitial fibrosis. The severity of tubule interstitial fibrosis
was graded from 0 to 3 according to the distribution of lesions: 0, no lesion; 1, less than
20%; 2, 20–50%; 3, more than 50% [40]. Semi-quantitative glomerular damage and renal
fibrotic scoring were performed in a blinded manner at 400× magnification per sample.
All measurements were repeated three times.

4.7. Immunofluorescence and Immunohistochemistry

We performed immunostaining as previously described [7,41]. Immunofluorescence
or immunohistochemistry was performed on 3-µm ice-cold acetone-fixed cryosections of
kidneys using the following primary antibodies: anti-fibronectin, anti-CD4, anti-F4/80, anti-
ICAM-1, anti-α-SMA (AbD Serotec, Oxford, UK). For indirect immunostaining, non-specific
binding sites were blocked with 10% normal donkey serum for 30 min. Then, sections were
incubated with the primary antibody for 1 h at room temperature or overnight at 4 °C.
All incubations were performed in a humid chamber. For fluorescence visualization of
bound primary antibodies, sections were further incubated with Cy3-conjugated secondary
antibodies (Jackson Immuno Research, WG, USA) for 1 h in a humid chamber at room
temperature. Slides were analyzed using a Zeiss Axioplan-2 imaging microscope with
the computer program AxioVision 4.8 (Zeiss, Jena, Germany). For immunohistochem-
istry, after incubation with the primary antibody directed against α-SMA, biotinylated
secondary antibody (Dako REAL™ EnVision™; Dako Denmark A/S, Glostrup, Denmark)
was used. Immunohistochemical positive staining was consecutively revealed by the 3,3′-
Diaminobenzidine Peroxidase Substrate Kit (Dako REAL™ EnVision™; Dako Denmark
A/S, Glostrup, Denmark) in accordance with the manufacturer’s instructions.

Quantitative analyses of infiltrating cells (CD4+ and F4/80+) and fibroblasts (α-SMA+)
were counted in 15 non-overlapping, randomly chosen fields per kidney section under a
400× magnification. The average ratio of the fibronectin or ICAM-1-labeled area to the
total area in the view (400×) was calculated using the software ImagJ (NIH, Bethesda, MD,
USA). In addition, ICAM-1 expression was also analyzed using software ImagJ to calculate
the mean gray value (integrated density to area).

4.8. Statistics

Statistical analysis was performed using GraphPad 5.04 software. Study groups were
analyzed by two-way ANOVA using Sidak’s multiple comparisons post hoc test. Data are
presented as mean ± SD. p values < 0.05 were considered statistically significant.
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