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Abstract

Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which
causes cumulative disability and is refractory to current treatments. Drug development to
prevent disease progression is an urgent clinical need yet is constrained by an incomplete
understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on
fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive
MS pathogenesis and traced their origin in relation to spatially distributed stages of
neurodegeneration. By resolving ligand—receptor interactions in local microenvironments we
discovered defunct trophic and anti-inflammatory intercellular communications within areas of
early neuronal decline. Proteins associated with neuronal damage in patient samples showed
mechanistic concordance with published in vivo knockdown and CNS disease models,
supporting their causal role and value as potential therapeutic targets for progressive MS. Our
findings provide a new framework for drug development strategies, rooted in an understanding
of the complex cellular and signaling dynamics in human diseased tissue, that facilitate this

debilitating disease.



Main text

Introduction

Multiple sclerosis (MS) is a common and disabling autoimmune disease of the central nervous
system (CNS), presenting in most patients with a relapsing-remitting course followed by an
overt progressive disease phase'. Current disease modifying therapies are highly effective in
preventing symptomatic relapses?, which are characterized by white matter lesions caused by
inflammatory CNS-infiltrating immune cells. In contrast, progressive disease, where gray
matter atrophy and neurodegeneration predominate3-, is unresponsive to treatment beyond

suppressing a residual relapsing-remitting disease component’=.

Developing new treatment options for progression could greatly benefit from systematically
measuring and understanding underlying molecular pathways of neurodegeneration in situ in
human post-mortem brain tissue from MS patients'®. Here we applied spatial transcriptomics'!
with high sensitivity proteomics'®'® and integrated our data with published scRNA-seq and in
vivo perturbation model data to (i) systematically dissect underlying disease components of
progressive MS with high granularity in the context of spatially resolved neurodegeneration,
(i) identify ligand-receptor interactions associated with these components and (iii) prioritize
CNS-enriched receptors as new drug targets that can address the complex pathogenesis of

progressive MS.

Results

Spatial transcriptomics tracks neurodegeneration

To systematically delineate neurodegenerative pathways across cortical gray matter regions

with intact neurons towards regions characterized by neuronal decline, we performed spatial



transcriptomics on fresh-frozen post-mortem cortical brain tissue from 13 progressive MS
patients and 5 controls (Fig. 1a) (Supplementary Table 1). Given the low treatment prevalence
in this cohort (Supplementary Table 1) and that none of the applied therapies have shown a
clinically significant effect on progressive MS in large phase Il studies’, or to the patients
analyzed here, a potential drug bias on our results is unlikely. The tested cohort was
comprised of patients with a long average disease duration of 22.6 years, who had converted
from a relapsing-remitting to a secondary progressive disease course on average 11.6 years
before the time of death and of which 11 out of 13 patients persistently required a wheelchair
before they died (Supplementary Table 1). Thus, in line with common clinical experience and
the current literature, the patient collective studied here is expected to be largely
representative of a phase of MS, where continuous neurodegeneration-associated disease
progression predominates over relapse associated blood-brain-barrier breaches’. A total of
37 tissue sections were analyzed (32 MS sections and 5 control sections), all of which included
cortical gray matter tissue, except for one control section that only consisted of white matter.
Up to 6 regions (6.5 mm x 6.9 mm) per section were sampled with 1,007 spatially barcoded
mRNA-capturing spots. Hematoxylin / eosin (HE) stained microscopy images were available
for all sections and were assessed by neuropathologists for structural features; accordingly,
the images and spot transcriptomes were annotated on a pixel-wise basis, allowing the
computational isolation of gray matter areas from contamination by white matter, sulcus areas
or meninges (Fig. 1a). After filtering for gray matter spots transcriptomes in this manner, 174
of 210 sampling areas were used for a focused analysis of neurodegeneration. In gray matter
spot transcriptomes, a mean of 4,328 unique molecular identifiers (UMIs) were recovered and

2,191 genes were detected.

To track neurodegeneration in the gray matter, we first mapped an intact neuronal signature
to all spot transcriptomes, which was extracted in contrast to non-neuronal cell types from
publicly available single nuclei RNA-sequencing (snRNA-seq) datasets of healthy cortical
brain tissue (Extended Data Fig. 1, Supplementary Table 2)'*'. Comparison of MS patients
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with control cases revealed a striking reduction of the intact neuronal signature in MS patients,
identifying a shift towards an MS-associated neurodegenerative state (Fig. 1b). This was
further corroborated by neuropathologic assessment of adjacent tissue sections that identified
lesions corresponding to our transcriptomic readout (Extended Data Fig. 2). Strikingly, utilizing
spatial transcriptomics data in this manner was able to provide an enhanced resolution of the
heterogenous distribution of neurodegeneration within the tissue and across patients (Fig.
1c,d). Thus, when combining all sampling areas, a pseudo-temporal pattern of
neurodegeneration could be defined, allowing us to infer early events in neurodegeneration
when therapeutic intervention could prove most beneficial. Specifically, we could identify gray
matter (GM) areas in MS patient brains, which showed an enrichment of the intact neuronal
signature within the same range as control samples, which we classified as ‘MS GM intact’
(Fig. 1b). These intact areas were also defined in contrast to areas with a reduced intact
neuronal signature compared to control tissue, classified as ‘MS GM degenerating’ (Fig. 1b),

allowing the identification of upstream events that contribute to neurodegeneration.

MS neurodegenerative pathways act across cell types

To characterize the biological components of neurodegeneration in progressive MS, we first
identified groups of genes (modules) whose expression was jointly altered across different
stages of neuronal decline represented in distinct sampling regions (Fig. 2a,b). Each module
was annotated functionally, as defined by gene ontology (GO) term enrichment analyses (Fig.
2b, Extended Data Fig. 3, Supplementary Table 3). Biological processes represented within
these modules included synapse assembly, synaptic communication and plasticity, regulation
of neuronal projections, myelination, immune cell activation and tissue remodeling.
Subsequent integration with single cell data''® showed that the genes identified in each
module were predominantly expressed by only one cell type. However, numerous edges
bridging across modules in the co-expression graph revealed that their regulation was highly

connected between cell types, implying a strong co-dependency of pathogenic processes in



progressive MS that is mediated by intercellular communication (Fig. 2b,c). To then prioritize
the most relevant modules associated with the progression of neurodegeneration, and to
determine the directionality of their regulation, we correlated the summarized expression
(eigengene) values of each module with the reduction of the intact neuronal signature in the
same gray matter locations (Fig. 2d—g). Modules relating to synaptic communication, synaptic
plasticity and maintenance of neuronal projections showed progressively diminishing
expression with greater neurodegeneration (Fig. 2d). In contrast, processes relating to
inflammation and tissue remodeling that mapped to innate immune cells and astrocytes were
increasingly upregulated (Fig. 2f). Interestingly, oligodendrocyte-driven myelination was also
upregulated with reduction of the intact neuronal signature, indicating that neurodegeneration
occurs in progressive MS despite active myelination pathways (Fig. 2f). Notably, inflammatory
pathways were minimally expressed in areas with normal expression of the intact neuronal
signature (Fig. 2f). However, downregulation of pathways relating to synapses and axons was
already observed in intact MS gray matter, implying that these changes are triggered early
during neurodegeneration and are not explained by the influence of inflammation alone (Fig.

2d).

To confirm our results at the protein level, we applied high sensitivity mass spectrometry to
spatially defined samples (<0.06 mm?3) of adjacent tissue regions'?'3. A total of 4,541 unique
proteins were identified in 65 gray matter samples from 14 progressive MS patients (56
samples) and 7 controls (9 samples) (Fig. 3a,b, Supplementary Table 1). Enrichment of the
previously defined intact neuronal signature was then tested across the tissue. Again, we
observed a comparable pseudo-temporal continuum of reduced intact neuronal signature, as
seen in the transcriptomic data (Fig. 3c). We then assessed the 4,093 genes with matching
protein data to test for multimodal concordance of relationships between co-expression
modules and neurodegeneration, as previously generated using all 12,674 genes (Fig. 3b,d).
Directional agreement of modules in relation to neurodegeneration between the RNA and
protein level was observed for all modules, with the exception of module 4 (‘neuron
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projections’) and module 8 (‘Axo-dendritic protein transport’), which did not correlate with
neurodegeneration on the protein level. These were subsequently excluded from further

downstream analysis (Fig. 3d).

Early intercellular communication in MS neurodegeneration

Spatial transcriptomics provides a powerful discovery tool to identify ligand—receptor
interactions governing disease components directly in the tissue'®. Accordingly, to relate
multimodally validated disease pathways to intercellular communication, we sought to identify
ligand-receptor interactions that were altered with neurodegeneration. We assessed the
expression of 1,396 curated ligand—receptor pairs'® in 83,256 gray matter niches, deriving
combined expression values where both partners were expressed within < 200 um of one
another (Fig. 4a, methods); a threshold which was based on established operating ranges of
juxtacrine and paracrine signals'®. This analysis yielded spatially resolved expression data for
428 ligand—receptor interactions, which, when further correlated with enrichment of the intact
neuronal signature, allowed us to relate intercellular communication to a pseudo-temporal

continuum of neurodegeneration (Fig. 4a).

Within this data set, we intentionally focused on the contrast between MS gray matter areas
with preserved intact neuronal signature (‘intact MS gray matter’) compared to non-MS control
tissue (‘control gray matter’) to identify ligand—receptor interactions important in the earliest
stages in the pathogenic evolution of neurodegeneration, where therapeutic intervention is
likely most feasible (Fig. 4b-l). In total, this approach yielded 61 ligand—receptor pairs: of
these, 15 were decreased in intact MS gray matter and were further reduced in degenerating
MS gray matter, and 46 were increased in intact MS gray matter, of which 16 were also
increased in degenerating MS gray matter, while 30 were reduced to or below control levels
(Fig. 4d). To test for a potential age- or sex-based bias in our results, owing to an imbalance

between the MS patient samples and the controls (Supplementary Table 1), we systematically



explored which genes in the human genome show age- or sex-dependent expression changes
in the human cortex in n = 336 donors from the GTEx consortium (Extended Data Fig. 4a—c,
methods). No systematic age- or sex-bias was observed in the set of differentially co-
expressed ligand/receptor genes and thus these were not considered to be potential

confounders in our results.

Then, as a validation of our approach, we calculated log2 fold changes of ligand and receptor
gene expression in intact MS gray matter compared to control gray matter both for spatial
transcriptomics and high sensitivity proteomics data. Ligands and receptors detected at the
RNA and protein level showed significant positive correlation between the modalities (r = 0.41,
FDR-adjusted p value = 0.044, Extended Data Fig. 4d). Furthermore, several of the identified
ligand-receptor pairs, including CXCL12-CXCR4, CCL5-CCR1, POMC-MC1R, CD47-SIRPA
and IL6-IL6R/IL6ST have well established roles in MS pathology?>-%® (Fig. 4d). However, the
majority of our findings have not previously been described for progressive MS and thus reveal

a wealth of novel, mechanistic and potentially therapeutic insights into this disease.

To identify mechanistic patterns in the intercellular communication of early stages of MS
neurodegeneration, we annotated each ligand—receptor pair with previously published
biological functions (Supplementary Table 4). The most pronounced themes were anti-
inflammatory interactions (25% of all candidate interactions, defined as immunosuppressive),
pro-inflammatory interactions (25%, defined as facilitating immune responses) and trophic
interactions (31%, defined as growth factors contributing to development, proliferation or cell

survival) (Fig. 4d).

Competing pro- and anti-inflammatory communications were present in intact MS gray matter
and appeared to both have multiple layers of redundancy (Fig. 4d—h). For example, the potent
innate immunity suppressors GAS6-TYRO3 and CD47-SIRPA%2" were downregulated in
intact MS gray matter and further repressed in degenerating gray matter (Fig. 4d—h). In their
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place, other anti-inflammatory interactions surged in intact MS gray matter, some of which
were further upregulated in degenerating areas, such as HLA-F-LILRB1 and BST2-
LILRA4%%2° while the majority were reduced in degenerating areas, as exemplified by
CX3CL1-CX3CR1, POMC-MC1R and PROS1-AXL?'3%3" (Fig. 4d,h). In parallel, we also
observed pro-inflammatory interactions, including C3—C3AR1, CCL5-CCR1 and ALOX5-
ALOXSAP, arising in the intact MS gray matter that largely remained present or increased
further in degenerating cortical gray matter areas?5*233 (Figure 4d-h). The balance of pro- and
anti-inflammatory stimuli in intact MS gray matter matched the overall low expression of
inflammation-associated gene modules we observed early during neurodegeneration (Fig. 2f)
and revealed receptors that could be therapeutically targeted to potentially preserve or induce

such a state.

A second, striking theme that we observed was how trophic interactions, which support cell
viability and growth, were reduced in intact MS gray matter compared to non-MS control
tissue, with further reductions seen in degenerating areas. Interacting partners included
members of the growth factor families TGF, FGF and VEGF and PSAP-GPR37L13* (Fig. 4d,i—
I, Supplementary Table 4). Compensatory trophic interactions were upregulated in their place
in intact MS gray matter, but were also reduced in degenerating areas (Fig. 4d,i—l,
Supplementary Table 4). These findings suggest that the growth factor environment in the
gray matter of progressive MS patients is altered, even in the absence of overt

neurodegeneration and is fully suppressed in its presence.

To contextualize these findings, we next sought to map them to specific cell types. For this
purpose, we integrated our spatial transcriptomics data with snRNA-seq data of cortical gray
matter'*' and scRNA-seq data of blood immune cells'® using enrichment score-based
deconvolution®. We validated the robustness of this approach by comparing these findings
against three alternative integration methods: RCTD?, spatialDWLS?% and SPOTIlight®. Each
method generated significantly correlated results, both in comparison with each other, as well
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as with our primary enrichment score-based deconvolution method (Extended Data Fig. 5).
Based on the cell type deconvolution the contribution of CNS-resident and -invading cell types
to ligand-receptor interactions could then be modeled (Fig. 5a—i). Notably, due to method-
inherent constraints, this approach cannot distinguish between differential gene expression
and differential cell type composition of spot transcriptomes, in all cases. For example, a pro-
inflammatory interaction may either occur because microglial cells have upregulated a pro-
inflammatory ligand, or because microglia expressing this ligand move into this location. In

either scenario, a pathogenic mechanism is identified and thus has potential therapeutic value.

Interactions reduced in intact MS gray matter compared to controls (‘Up in contr. GM’) typically
occurred between neurons, oligodendrocytes and astrocytes (Fig. 5d,g). These interactions
frequently included trophic interactions and some guidance cues for myelination and neuronal
projections. Interestingly, multicellular trophic interactions revealed that oligodendrocytes,
astrocytes and endothelial cells expressed the receptors, with neurons providing the ligands.
For example, neuronal expression of FGF9 and NECTIN1, as ligands for FGFR3 on astrocytes
and neuronal expression of PSAP, as ligand for GPR37L1 on oligodendrocytes (Fig. 5d,g).
Conversely, growth factor receptors on neurons were predicted to be stimulated by
interactions among neurons, as exemplified by neuronal VEGFA production and neuronal
expression of the VEGF receptors NRP1 and NRP2 (Fig. 5d,g). These findings highlight
neurons as important sources of survival signals in the CNS and suggest that

neurodegeneration may precipitate the degeneration of other cell types.

Interactions most abundant in intact MS gray matter (‘Up in MS GM intact’) were characterized
by a remarkable increase in cell type diversity involving multifaceted communication between
neurons, oligodendrocytes, oligodendrocyte precursor cells (OPC), endothelial cells,
astrocytes, microglia and monocytes (Fig. 5e,h). In this network, neurons received trophic
input from GDF11-expressing oligodendrocytes and provided alternative growth factors to the
tissue such as MET to HGF-expressing astrocytes, WNT5A to FZD5-expressing
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oligodendrocytes and PDGFB and PDGFC to PDGFRA-expressing OPCs (Fig. 5e,h).
Simultaneously, inflammation-associated interactions arose that involved microglia and
endothelial cells in communication with the other cell types. For example, we observed
oligodendrocytes providing microglia with CSF1 driving their activation and survival®, invading
monocytes providing microglia with TNFSF10, known to increase cytokine production®® and
endothelial cells providing cues that undermine blood-brain barrier integrity (ANGPT2—-TEK)
and serve to attract invading immune cells from the blood (CCL2-ACKR1)*4! (Fig. 5e,h). This
surge in pro-inflammatory communication was counterbalanced by anti-inflammatory signals
from neurons including PROS1, POMC and CX3CL1 and from astrocytes via TGFB2** (Fig.

5e,h).

Interactions further upregulated in degenerating MS gray matter (‘Up in MS GM degen.’) were
dominated by microglia together with some contributions by endothelial cells and invading
monocytes. Neuronal growth factor expression and control of inflammation was no longer
apparent at this stage and only some anti-inflammatory cues were provided by astrocytes via
ANXA1 (Fig. 5f,i). Notably, while we now observed the presence of several chemotactic and
activating stimuli for microglia including ALOX5AP, C3, HEBP1*® and CCL5, the role of
microglia in neurodegeneration is potentially heterogenous. For instance, microglia expressed
GRN that limits inflammation by blocking TNF receptors on monocytes* and BST2 that

restrains microglial cytokine production by interaction with LILRA4.

When taken together, seemingly intact gray matter areas in progressive MS patients appear

to exhibit competing protective and pathogenic features, where the outcome of cell survival

may depend on specific anti-inflammatory and trophic cues in addition to inflammation itself.
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Animal models validate a role of target genes in CNS-damage

To test whether our prioritization of ligand-receptor interactions associated with early
neurodegeneration in progressive MS had successfully identified causal genes, which are
suitable for therapeutic targeting, we employed two complementary strategies. Firstly, we
tested the phenotypic effect of all candidate sets of ligand—receptor genes (pro-inflammatory
candidates, anti-inflammatory candidates and trophic candidates) using published data from
a genome-wide in vivo knock-down screen for essential CNS genes* (Fig. 6a). Secondly, we
systematically assessed the effects of perturbations of our candidate genes using multiple
published in vivo CNS disease models representing a broad spectrum of CNS-injury pathways

(Fig. 6b, Supplementary Table 5).

Published in vivo knock-down data for our candidate ligand-receptor gene sets revealed
significant depletion of CNS cells (phenotype strength) when compared to ligand—-receptor
gene sets of the same mean size, randomly selected from the input data (95%-confidence
interval) (Fig. 6a,c). Furthermore, our candidate gene sets contained significantly more
essential CNS genes (symptomatic knockdowns) overall (Fig. 6c¢), with the strongest
protective effect observed for the set of trophic candidates (99%-confidence interval).
Interestingly, the set of pro-inflammatory genes also contained several genes, which
contributed to the survival of CNS cells, placing the eligibility of proinflammatory targets for

therapeutic inhibition in progressive MS into question.

A systematic literature search for published experiments involving our candidate genes, as
well as several classes of in vivo CNS disease models, resulted in 2,945 identified studies that
included combinations of our search terms in the title and/or abstract (Fig. 6b, Supplementary
Table 5). Manual annotation of all publications was performed to select only those
experiments, where one of our candidate genes was specifically perturbed in vivo (i.e.

knockout, overexpression, activating treatment, inhibiting treatment) and a clinically relevant
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readout was reported (amelioration, exacerbation or no effect on the model) (Fig. 6b,d). The
tested classes of disease models comprised a broad spectrum of etiologies, including primary
neurodegeneration such as Alzheimer's disease (AD) and Parkinson’s disease (PD),
inflammation-mediated CNS-injury, such as in experimental autoimmune encephalitis (EAE,
commonly used as a model for relapsing-remitting MS) and CNS hypoxia (stroke). In total,
308 perturbational experiments could be identified, which included matches for 58 out of 106
(55%) candidate ligand—receptor genes. This amounted to relevant perturbation data for at
least one interaction partner for 46 out of 61 (75%) ligand—receptor pairs that were differentially
co-expressed between intact MS gray matter and control samples (Supplementary Table 5).
Underscoring the causal nature of our candidate genes, the majority of assessed genes
showed a net positive or net negative effect on in vivo CNS disease models, with only 6 genes
showing no conclusive effect (Fig. 6d). However, we note that a reporting bias may artificially
reduce this number. Pro-inflammatory candidates were mostly detrimental to CNS disease
models, whereas anti-inflammatory and trophic candidates largely played protective roles (Fig.
6d). Notably, pro-inflammatory and anti-inflammatory candidate genes often had ambiguous
effects between different disease models and sometimes within one disease model. For
example, the majority of published experiments suggested a detrimental role for CSF1R in
CNS disease models, but this effect was predominantly driven by AD models and EAE,
whereas stroke models could go either way and ALS models were positively affected (Fig.
6d). Echoing the results from the genome-wide knockdown screen, this may suggest that
targeting inflammation-associated molecules to amend neurodegeneration in progressive MS
could have ambiguous effects. Conversely, most trophic candidate genes were
unambiguously protective. A notable example where mechanistic ambiguity has been
resolved through experimentation is the anti-inflammatory interaction between CD47 and
SIRPA. Here, published in vivo disease model data is almost exclusively in EAE, where these
factors are required for the initiation of the disease, thus demonstrating a detrimental function
(Fig. 6d). However, a more detailed dissection of this phenotype? has shown that SIRPA-
CD47 interactions provide a protective role when there is evidence of CNS injury in established
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disease, which parallels other lines of evidence suggesting both an anti-inflammatory and

neuroprotective role6-46.47,

Prioritizing new therapeutic targets for MS neurodegeneration

To investigate the relationship between ligand—receptor interactions and underlying processes
of neurodegeneration, we correlated the occurrence of each ligand-receptor interaction to the
regulation of gene co-expression modules in the same gray matter locations (Fig. 7a). We
observed that most modules strongly correlated with the presence of at least one candidate
ligand—receptor interaction that was up- or downregulated in intact MS gray matter (Extended
Data Fig. 6). For example, module 1 (‘synapse assembly’) showed a strong relation with
CD47-SIRPA, module 3 (‘myelination’) was strongly positively correlated with FGF1-FGFR3
and module 7 (‘myeloid cell differentiation’) was positively associated with homophilic
interaction of ESAM (Extended Data Fig. 6). Moreover, a subset of interactions exhibited
broad connectivity with several modules. For example, PSAP-GPR37L1 was among the most
strongly correlated interactions for module 1 (‘synapse assembly’), module 2
(‘neurotransmitter secretion’), module 3 (‘myelination’), and module 7 (‘myeloid cell
differentiation’) (Extended Data Fig. 6). To formalize and stratify the breadth of the relations
between candidate interactions and modules we derived the mean absolute correlation of
each candidate ligand-receptor interaction with all modules (Fig. 7a,b, Supplementary Table
4). The scores of interactions ranged from 0.14 to 0.45, topped by PSAP-GPR37L1 (0.45),
GAS6-TYRO3(0.41), CD47-SIRPA (0.40), CADM3-CADM4 (0.40) and FGF1-FGFR3(0.38)
(Fig. 7b, Supplementary Table 4). The strong overall module correlation of these candidates
was driven by positive association with CNS-related processes, such as synaptic
communication and myelination as well as negative correlation with immune related processes
(Fig. 7b, Extended Data Fig. 6). Taking the mean absolute module correlation for all
interactions into account, we observed a significant separation of trophic and anti-

inflammatory interactions from the group of pro-inflammatory interactions (Fig. 7b,c). The co-
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expression of most pro-inflammatory interactions was narrowly linked to individual immune-
related components of MS neurodegeneration and correlated poorly with CNS-related
components (Fig. 7b). Conversely, the spatial co-expression of trophic and anti-inflammatory
interactions was associated with modulation of a larger spectrum of pathogenic pathways,
including immune-associated and CNS-related processes (Fig. 7b). These findings imply that
chronic, inflammatory stress alone does not habitually lead to the full extent of multicomponent
neurodegeneration in cortical brain tissue of MS patients, but that association with a local

failure of trophic and anti-inflammatory intercellular communication appear to be required.

Notably, the prioritization of targets with broad effects in the CNS raises the possibility of
undesired pleiotropic effects in other organs throughout the body potentially limiting the clinical
applicability of such strategies due to side effects. To begin to address this concern, we
analyzed the expression of our candidate receptors in a large post-mortem tissue data set
from the Genotype-Tissue Expression (GTEXx) project comprising 16,704 RNA-sequencing
samples from 52 tissues of 948 donors*®. For each receptor we compared mean expression
in the brain cortex to mean expression in non-CNS tissues resulting in a CNS specificity score
(Fig. 7d, Supplementary Table 4). With these, we determined the position of target receptors
in a coordinate system defined between pleiotropic connection to multicomponent
neurodegeneration (mean absolute module correlation) and enrichment in the CNS (CNS-
specificity score) (Fig. 7d), where ideal therapeutic targets would maximize both traits. We
observed several receptors that showed no enrichment for the CNS. For example, PDGFRA,
whose spatial co-expression with PDGFC was broadly correlated with biological processes
underlying neurodegeneration (mean absolute correlation coefficient 0.35), was expressed in
a number of non-CNS tissues (CNS-specificity score 0.27), many of which showed a more
pronounced expression, such as ovaries (Fig. 7e). Importantly, we found that several
candidate interactions possessed both relatively broad correlation with processes underlying
neurodegeneration (mean absolute correlation coefficient = 0.35) as well as CNS-enriched
receptor expression (CNS-specificity score > 1). These included GPR37L1, TYROS3, SIRPA,
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CADM3 and FGFR3 (Fig. 7d-h, Supplementary Table 4). Immunohistochemistry data from
the human protein atlas*® was available for several of our targets and validated their CNS-
enriched expression on the protein level (Fig. 7i-l, Extended Data Fig. 7a,b). In addition to
quantifying CNS specificity our approach also allowed us to qualify the observed expression
patterns outside of the CNS. For instance, CADM3 and GPR37L1 showed relevant non-CNS
expression only in the tibial nerve, where they are thought to carry out similar beneficial roles
as in the CNS%%-%2, High non-CNS expression of SIRPA was only observed in the blood, where
it is well known to limit innate immunity?®. Agonistic targeting of SIRPA in MS would therefore

be expected to have a desirable effect both on the CNS and on the peripheral immune system.

Discussion

Progressive MS is representative of a larger class of neurodegenerative diseases, including
Alzheimer’s disease, where a lack of knowledge about early events in neurodegeneration
prohibits the identification of effective therapeutic approaches, leaving millions of patients
without treatment options®. By applying spatial transcriptomics with high sensitivity
proteomics directly in post-mortem human MS brain tissue, we tracked the changes of >4000
paired genes and proteins across spatially distributed stages of neurodegeneration. Crucially,
ordering these micro-areas by increasing severity, in the manner of a pseudo-temporal
trajectory of neuronal decline, exposed biological processes that are predicted to occur in early
stages of neurodegeneration. These pathways were characterized by multiple levels of
redundancy as well as high distribution across cell types. Further, we identified a local failure
of trophic and anti-inflammatory cellular communication in early stages of neurodegeneration
as well as demonstrating how pro-inflammatory factors can have ambiguous roles in disease
pathogenesis. Together, these results would suggest that current drug targets fail to prove
efficacious either through their restriction to specific cell types or due to their inability to impact

those pathways identified here.
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To validate potential novel drug targets for progressive MS from our findings, we assessed
the mechanistic functions of the identified target candidates in a broad selection of in vivo CNS
disease models, which supported their causal role in neurodegeneration. Furthermore, we
incorporated the results of our detailed dissection of pathogenic components of progressive
MS into the stratification of our target candidate list, prioritizing targets predicted to impact the
maximal number of components of progressive MS pathogenesis at once. These targets
included CNS-enriched receptors such as GPR37L1, TYRO3, SIRPA and FGFR3, some of

which are already within drug development pipelines for human use -8

To conclude, our study exemplifies the importance of understanding complex diseases directly

within the affected tissue, permitting a wealth of new clinical insights and providing a unique

biomedical source for new treatment modalities.

17



Acknowledgments

We thank Professor Margaret Esiri, University of Oxford, for advice and assistance in
characterization of the post-mortem brain tissue and Professor Gil McVean, Big Data Institute,
University of Oxford, for analytical support. MK is supported by a Clinician-Scientist Fellowship
from the Stifterverband fir die Deutsche Wissenschaft and a Walter- Benjamin-Fellowship of
the Deutsche Forschungsgemeinschaft (KA5554/1-1, KA5554/1-2). FC is supported by the
European Union’s Horizon 2020 research and innovation program under grant agreement No
846795 (Marie Sktodowska-Curie Fellowship). PMM is supported by the Edmond J Safra
Foundation and Lily Safra, an NIHR Senior Investigator Award and the UK Dementia
Research Institute, which receives its funding from UK DRI Ltd., funded by the UK Medical
Research Council, Alzheimer’s Society and Alzheimer's Research UK. MAF is supported by
intramural funds of the University Medical Center Hamburg-Eppendorf, the Deutsche
Forschungsgemeinschaft (SFB1328, SPP1738, KFO296, FOR2289, FOR2879, FOR5068,
FR1720/11-2), the Gemeinnltzige Hertie-Stiftung, the Deutsche Multiple Sklerose
Gesellschaft (DMSG; V6.2) and the Bundesministerium fir Bildung und Forschung (Target
validation, 16GWO0308K). MM is supported by the Max Planck Society for the Advancement
of Science and the Novo Nordisk Foundation (grant agreement NNF14CCO0001 and
NNF15CC0001), the European Union’s Horizon 2020 research and innovation program under
grant agreement 686547 (MSmed Project). LF is supported by the Wellcome (100308/Z/12/Z),
the Medical Research Council UK (MC_UU_12010/3), the Oak Foundation (OCAY-15-520),

and the NIHR Oxford BRC.

Author contributions

In order of appearance in the author list. Conceptualization, MK, ALS, KEA, MAF and LF;
methodology, MK, ALS, RS, FC, CAD, AM, GCD and JL; validation, MK, FC and JFN,;

formal analysis, MK; investigation, MK, ALS, RS, FC, CAD, AC, GK, HGE, JFN, JKS, CM,

18



GCD and KEA; resources, AM, JL, PMM and MAF; data curation, MK; writing - original
draft, MK, ALS, KEA, MAF and LF; writing - review & editing, MK, ALS, GCD, PMM, KEA,
MAF and LF; visualization, MK; supervision, MAF, MM and LF; funding acquisition, MM

and LF. We note that RS and FC (the third and fourth author) contributed equally.

Declaration of interests

GCD has received research funding from Merck-Serono, travel expenses from Bayer
Schering, Biogen ldec, Genzyme, Merck Serono, Novartis and honoraria as an invited
speaker/faculty/advisor for Novartis and Roche. JK and AM are scientific consultants for 10X
Genomics. PMM has received consultancy fees from Roche, Adelphi Communications,
Celgene, Neurodiem and Medscape, honoraria or speakers’ fees from Novartis and Biogen
and has received research or educational funds from Biogen, Novartis and GlaxoSmithKline.

The remaining authors declare no competing interests.

Figure legends

Fig. 1: Spatial transcriptomics enables continuous tracking of neurodegeneration in
progressive MS.

a, Summary of data collection. b, Comparison of intact neuronal signature enrichment in gray
matter spot transcriptomes of MS patients (n = 73,182) compared to controls (n = 10,096).
Statistical significance assessed by an unpaired two-tailed t-test. The exact p value is 2.22e-
308. ¢, Mean intact neuronal signature enrichment (Intact neuronal sign. enr.) of n = 174 gray
matter sampling regions plotted separately by donor identity. d, Mapping of intact neuronal

signature enrichment values onto gray matter.

Fig. 2: Neurodegeneration involves distinct biological processes across interacting cell

types.
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a, Graphical representation of spatial gene co-expression analysis. b, Gene co-expression
network of n = 174 sampling regions in the gray matter. Nodes represent genes, edges
indicate co-expression. Modules with more than 100 genes were downsampled for visual
clarity. ¢, Predicted cell-type expression for genes in b. d—f, Relationship between enrichment
of the intact neuronal signature and summarized module expression (module eigengene
values) based on n = 156 MS sampling regions. Underlying data shown as dot plot, data points
exceeding y axis limits displayed on plot edge. Intact (MS GM intact) and degenerating MS
gray matter (MS GM degen.) are indicated. d, Modules downregulated with progressing
neurodegeneration. e, Modules unchanged with progressing neurodegeneration. f, Modules
upregulated with progressing neurodegeneration. g, Projection of module eigengene values

onto gray matter in comparison to enrichment of the intact neuronal signature.

Fig. 3: High sensitivity proteomics validates biological processes associated with MS
neurodegeneration on the protein level. a, Graphical summary of spatial proteomics. b,
Overlap between genes / proteins detected in the spatial transcriptomics and proteomics data
sets. ¢, Intact neuronal signature enrichment in proteomic data for n = 56 MS and n = 9 control
samples. d, Comparison between transcriptome and proteome for modules associated with
neurodegeneration. n = 4,093 jointly detected genes / proteins are plotted. Correlation

coefficients based on Pearson correlations.

Fig. 4: A spatially resolved ligand-receptor interactome reveals trophic factor
deprivation and deregulated inflammatory processes.

a, Graphical summary of ligand-receptor co-expression analysis. b, Categorization of gray
matter sampling regions into control (n = 18), intact MS gray matter (n=111) and degenerating
MS gray matter (n = 45), based on intact neuronal signature enrichment. FDR-adjusted
unpaired two-sided t-tests. ¢, Representative example of predicting ligand-receptor
interaction by spatially resolving expression of matching binding partners. See e for region
localization. d, Heatmap summarizing scaled expression of significantly (FDR-adjusted
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unpaired two-sided t-tests, p value < 0.1) up- or down-regulated interactions between non-MS
control gray matter (Contr. GM, n = 18) and intact MS gray matter (MS GM intact, n = 111)
and tracking of the same interactions in degenerating MS gray matter (MS GM degen., n =
45). e,i, Representative projections of spatially co-expressed ligand-receptor interactions for
indicated groups. e, GAS6—-TYRO3 exemplifying anti-inflammatory interactions. C3-C3AR1
exemplifying pro-inflammatory interactions. i, BMP4-BMPR1B_BMPR2 exemplifying trophic
interactions downregulated in intact MS GM intact. WNT5A-FZD1 exemplifying trophic
interactions upregulated in intact MS GM intact. f,j, Quantification of interactions shown in e
and i for n = 18 non-MS control tissue regions, n = 111 intact MS gray matter regions and n =
45 degenerating MS gray matter regions. FDR-adjusted unpaired two-sided t-tests. gk,
Correlation of interactions highlighted in e and i with intact neuronal signature reduction of n
= 156 MS gray matter samples. FDR-adjusted p values and correlation coefficients based on
two-sided Pearson correlations. Exact p value for GAS6—-TYRO3 = 1.75e-24. Exact p value
for WNT5A-FZD1 = 4.11e-21 h,l, Mean expression of all trophic and inflammation-associated

interactions in indicated groups based on the same samples as used in f.

Fig. 5: Trophic factor deprivation and inflammatory interactions are connected in
multifaceted intercellular communication networks.

a, Schematic representation of cell type deconvolution for ligand / receptor co-expression. b,
UMAP plot depicting integrated human brain snRNA-seq data. ¢, Representative example of
spatial association between ligand—receptor expression and cell type distribution. d—f, Cell
type prediction scores for all ligand—receptor interactions from Fig. 4d. g—i, Chord diagrams
summarizing intercellular communications via ligand—receptor interactions. Cell types with
prediction scores above the 90th percentile are shown. Chord color indicates the ligand-

providing cell type.

Fig. 6: Multiple animal models support the mechanistic involvement of MS ligand-
receptor candidates in CNS-damage.
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a, Graphical summary of assessing mechanistic involvement of candidate LR gene sets in
neurodegeneration using an shRNA-based genome-wide in vivo screen for essential CNS
genes®. b, Graphical summary of assessing the effects of candidate gene perturbations on
published in vivo CNS disease models. AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; EAE, experimental autoimmune encephalitis; PD, Parkinson’s disease; TBI,
traumatic brain injury. All search queries and identified perturbations are listed in
Supplementary Table 5. ¢, Assessment of mechanistic involvement of candidate genes in
neurodegeneration as shown in a. The X-axis represents the fraction of genes in each gene
set that were identified as essential CNS genes in Wertz et al.*°. The Y-axis depicts the mean
phenotype strength for each gene set, i.e. the degree to which knockdown of these genes led
to depletion of CNS cells. Gray data points represent 10,000 ligand—receptor gene sets
randomly selected from all input ligand—receptor genes with the same mean set size as for
the candidate gene sets. Moderate jittering is applied to the random data to avoid overplotting.
Confidence ellipses are drawn to indicate gene sets that are significantly enriched for essential
CNS genes including the candidate gene sets. Experiment based on n = 86 C57BI/6 mice
treated with stereotactic injections of shRNA-carrying lentiviruses into both striata. d,
Assessment of the mechanistic effect of specific perturbations of candidate genes on 7
different in vivo models for CNS diseases as shown in b. The number of experiments in favor
of CNS protection is plotted for indicated genes with negative values representing
experiments, in which the gene contributed to an exacerbation of the disease model.
Experiments in which perturbation of candidate genes showed no effect are included in the n
number indicated on the left. Net effects across all experiments for one candidate gene are

color-coded as indicated in the legend.

Fig. 7: Prioritizing new therapeutic targets to broadly address mechanisms of
neurodegeneration in progressive MS.

a, Graphical summary of prioritization approach for therapeutic targets. b, Mean absolute
correlation coefficient for each candidate interaction and all co-expression modules (n = 156
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MS gray matter samples). 95%-bootstrap confidence intervals are shown centered around
mean absolute module correlations. Modules are separated by vertical lines within bars. c,
Comparison of mean absolute module correlation between pro-inflammatory (n = 15), anti-
inflammatory (n = 15) and trophic (n = 19) ligand-receptor interactions. Box plot centered on
median, bounds defined between the 25" and 75" percentile with minimum and maximum
defined as median + 1.5 x interquartile range and whiskers extending to the lowest / highest
value within this range. FDR-adjusted unpaired two-sided t-tests. d, CNS-specificity of each
receptor plotted in relation to mean absolute module correlation (n = 16,704 RNA-sequencing
samples from 52 tissues of 948 donors)*. e—h, Expression of indicated receptors in GTEx
human post mortem tissues. Tissue (sub-)categories are represented on the x-axis in
alphabetical order. For tissues used see methods. i—l, Immunohistochemistry of indicated
proteins in representative tissues. Image credit: Human Protein Atlas*. For image URLs see

Supplementary Table 6.
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Methods

Study cohort

Fresh-frozen brain tissue from MS patients or non-MS / non-neurological controls for spatial
RNA-sequencing and proteomics was obtained from the UK Multiple Sclerosis Society Tissue
Bank (registered charity 207495). This project falls under the umbrella of ethical approval
obtained by the MS Society Tissue Bank (08/MRE09/31+5) and the MS Society Tissue Bank
ensured informed consent was obtained by participants. Donor characteristics of all human
tissue donors are summarized in Supplementary Table 1. The requirements for inclusion of
samples into the study cohort were a minimum RNA integrity number (RIN) of 6, a limited
postmortem interval before sampling (<= 30 h) and no other competing diagnoses of brain
diseases except for MS. In addition to our cohort size being in line with other spatial
transcriptomics studies®®%°, the number of patient samples relative to controls was
proportionately increased to address the substantial spatial heterogeneity that was expected

between sampling areas within and across patients.

Spatial transcriptomics

Spatial transcriptomics were performed following the protocol of the original spatial
transcriptomics publication. Briefly, cryosections of MS and control brain tissues were cut to
a thickness of 10 um and adhered to Library Preparation (LP) glass slides purchased from
Spatial Transcriptomics, Stockholm, Sweden. Each slide (‘chip’) contained 6 sampling regions
measuring 6.5 mm x 6.9 mm. One sampling region consisted of 1,007 spatially barcoded
mRNA-capturing spots. The spots had a diameter of 100 um and were arranged at a center-
to-center distance of 200 um. Tissue adherence to chips was followed by HE staining and
image acquisition, tissue permeabilization (1% Triton X followed by 0.1% pepsin, Sigma-
Aldrich) and overnight in situ cDNA synthesis. Tissues were then removed using Proteinase

K solution (Qiagen), followed by cDNA cleavage using a mix of Second Strand Buffer (1.1X)
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(Thermo Fisher Scientific), INTPs (8.75 uM each) (Thermo Fisher Scientific), BSA (0.20 ug/pl)
(NEB) and USER enzyme (0.1 U/ul) (NEB). The cleaved cDNA was collected and immediately
stored at -20°C until further processing. Visualization of spots for alignment with HE images
was achieved by hybridization with Cy3-labelled surface probes (IDT) (Supplementary Table
7), followed by fluorescence image acquisition. Brightfield and fluorescent images were
manually aligned using the ST Spot Detector tool described previously ¢ on the basis of
structural features detectable in both. Library preparation was carried out using a 2-phase
robotic pipetting system (Magnatrix 8000+ Workstation, Magnetic Biosolutions AB) as
described previously 2. The robot was loaded with the following reagent mixtures. In phase 1
for second strand synthesis: First Strand Buffer (2.7X) (Thermo Fisher Scientific), DNA
polymerase | (3.7 U/ul) (Thermo Fisher Scientific), RNase H (0.18 U/ul) (Thermo Fisher
Scientific); for end blunting reaction: T4 DNA polymerase (3 U/ul) (NEB), EDTA (80 mM)
(Thermo Fisher Scientific); for in vitro transcription: T7 NTP mix (7.5 mM each), T7 reaction
buffer (1X), T7 enzyme mix (1X) (all part of Ambion MEGAscript T7 kit, Thermo Fisher
Scientific), SUPERaseln (1 U/ul) (Thermo Fisher Scientific). In phase 2 for adapter ligation:
aRNA ligation adapter (0.71 uM) (IDT) (Supplementary Table 7), T4 RNA Ligase Reaction
Buffer (1X) (NEB), T4 RNA Ligase 2, truncated (20 U/ul) (NEB), RNase Inhibitor, murine (4
U/ul) (NEB), for second cDNA synthesis: reverse transcription primer (1.7 uM) (IDT)
(Supplementary Table 7), First Strand Buffer (2.5X) (Thermo Fisher Scientific), dNTP mix
(0.83 mM each) (Thermo Fisher Scientific), DTT (12.5 mM) (Thermo Fisher Scientific),
RNaseOut Recombinant Ribonuclease Inhibitor (5 U/ul) (Thermo Fisher Scientific),
Superscript Il (25 U/ul) (Thermo Fisher Scientific). Between all steps, libraries were purified
using Agencourt RNAClean XP Beads (Beckman Coulter) as described previously ©2. Library
indices were added with a PCR reaction. The number of cycles needed for indexing the
libraries was determined by qPCR reaction in a total volume of 10 pl containing Kapa HiFi
HotStart Ready Mix (1X) (Roche), EvaGreen (1X) (Biotium), PCR Primer InPE1.0 (0.5 yM)
(IDT) (Supplementary Table 7), PCR Primer InPE2.0 (0.01 uM) (IDT) (Supplementary Table
7), 0.5 uM PCR Index (IDT) (Supplementary Table 7) and 2 pl of purified cDNA. The following
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gPCR protocol was used: 98°C for 3 mins, followed by 25 cycles of 98°C for 20 sec, 60°C for
30 sec, 72°C for 30 sec. Once the number of cycles needed for indexing each library was
determined, libraries were indexed in a total reaction volume of 25 ul (5 pyl cDNA + 20 pl
reaction mix as above). The 6 libraries obtained from each ST slide were indexed with PCR
indices 1-6 or 7-12 (Supplementary Table 7). After indexing PCR, libraries were purified using
Agencourt AMPure XP beads (Beckman Coulter) according to the manufacturer’s protocol.
The ratio of bead to sample volume used was 1.25:1. 80% ethanol was used for the wash
steps. The libraries were eluted in 20 yl RNase/DNase-free water. The average fragment
length of the libraries was determined using a DNA High-Sensitivity kit (Agilent) and
Bioanalyzer 2100 according to the manufacturer’s protocol. The cDNA concentration was
measured by Qubit dsDNA HS assay (Thermo Fisher Scientific) according to the
manufacturer’s protocol. For sequencing, the 6 libraries from a slide were diluted to 4nM or
2nM (depending on the starting concentration of the least concentrated sample), pooled and
prepared for paired-end sequencing (R1 30bp, R2 55bp) on the lllumina NextSeq 550 platform

(llumina) according to the manufacturer’s protocol.

Spatial transcriptomics data processing

All software versions, references and availability are indicated in Supplementary Table 8. Raw
data processing was performed with the Spatial Transcriptomics pipeline and using the
GRCh38 reference genome. Further data processing and quality control was performed in the
programming language R. Spot transcriptome count matrices were cleaned and filtered as
follows. Non-protein coding genes and ribosomal protein coding genes were removed, as well
as spot transcriptomes consisting of less than 300 expressed genes. Sampling areas retaining
less than 20 spot transcriptomes meeting the quality criteria were excluded from further
analysis. Count matrices were normalized and scaled using the Seurat functions
NormalizeData and ScaleData with standard parameters®54. Separate HE images from each

sampling region were stitched together in Adobe Photoshop and spot coordinates were
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transferred into a joint coordinate system for each chip. Structural annotation of microscopy
images was performed based on neuropathologic assessment by adding vector masks for
each feature of interest including gray matter, white matter, perimeningeal and empty areas
to yield pixel-precise spatial metadata for all images. Each spot transcriptome was then
annotated automatically according to its position on the annotated image. For a focused
analysis of gray matter neurodegeneration, white matter, perimeningeal and empty areas were
excluded from the downstream analysis and blocked out in microscopy images for visual
clarity. The final data set consisted of 174 gray matter sampling regions with overall detection
of 12,674 genes out of which an average 1,800 genes were quantifiable per spot

transcriptome.

Integration with single cell data

To facilitate cell type deconvolution of spot transcriptomes, spatial transcriptomics data was
integrated with snRNA-seq data of human cortical brain tissue from five different sources
including reference data from the Allen brain atlas'-"" and scRNA-seq data of blood immune
cells™. Data integration was performed using enrichment score-based deconvolution™
implemented with DEseq2% and AUCell®®. DEseq2 was employed to identify cell type-specific
marker signatures in the single cell data and AUCell to test for the enrichment of each
signature in all spot transcriptomes. A detailed description of this methodology is provided in
the section ‘Tracking of neurodegeneration’ for the example of neurons and was performed in

analogous fashion for all other cell types.

To validate the robustness of the applied enrichment score-based deconvolution, alternative
integration methods, designed for the purpose of integration of single cell and spatial
transcriptomics data, were also performed (see Extended Data Fig. 5). Specifically, Robust
Cell Type Decomposition (RCTD)*®, spatial Dampened Weighted Least Squares

(spatialDWLS)% and SPOTIight®” were performed.
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RCTD was applied as implemented in the spacexr package and was run according to the
official documentation. In brief, a ‘single cell reference object’ was created from cortical brain
snRNA-seq data (further described in the methods section ‘Tracking of neurodegeneration’)
with the Reference function. For each sampling region spatial transcriptomics data was loaded
separately into a ‘SpatialRNA object’ using the SpatialRNA function. Next, an ‘RCTD object’
was created with default parameters for each sampling region using the single cell reference
object and ‘SpatialRNA object’ as inputs. RCTD was performed by running the run.RCTD
function with doublet_mode set to ‘full’. Resulting RCTD scores for each spot transcriptome

were extracted from the RCTD object and saved in a joined dataframe for all sampling regions.

SpatialDWLS was applied as implemented in the Giotto package and was run according to
the official documentation. In brief, cell type markers were extracted from single cell data using
DEseq2 as described in the methods section ‘Tracking of neurodegeneration’. Mean
expression of all marker genes was calculated for each cell type in the single cell data using
the rowMeans function. For each sampling region spatial transcriptomics data was loaded
separately into a ‘Giotto object’ using the createGiottoObject function. The data was then
processed by consecutively running the Giotto functions normalizeGiotto (with default
parameters), calculateHVG (with default parameters), runPCA (with genes limited to highly
variable genes determined with calculateHVG), signPCA (with genes limited to highly variable
genes determined with calculateHVG), createNearestNetwork (with dimensions_to_use set to
10 and k set to 10) and doLeidenCluster (with resolution set to 0.4 and n_interations set to
1000). Finally, DWLS was performed by applying the runDWLSDeconv function to the Giotto
object using a matrix of the mean expression of all celltype marker genes in the single cell
data as input for the sign_matrix parameter and with cutoff set to 0. Resulting spatialDWLS
scores for each spot transcriptome were extracted from the Giotto object and saved in a joined

dataframe for all sampling regions.
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SPOTlight was applied as implemented in the SPOTIlight package and was run according to
the official documentation. In brief, an existing ‘Seurat object’ of the single cell data (see the
methods section ‘Tracking of neurodegeneration’) was downsampled to 100 cells for each cell
type without replacement. Highly variable genes were identified by applying the Seurat
function FindVariableFeatures with default parameters. From another ‘Seurat object’,
containing the spatial transcriptomics data, spot transcriptomes from each sampling region
were sequentially extracted and SPOTlight was applied to them. For this purpose, the
SPOTIight function was run for the single cell data and each sampling region of the spatial
transcriptomics data, both supplied to the function as ‘Seurat objects’ and with the groups
argument set to the cell type identities, mgs set to the raw DEseq2 results of the differential
gene expression analysis between cell types in the single cell data (see the methods section
‘Tracking of neurodegeneration’), hvg set to the highly variable genes identified with
FindVariableFeatures and weight_id set to the log2FoldChange column of the DEseq?2 results.
SPOTlight scores for each spot transcriptome were extracted from the resulting object and

saved in a joined dataframe for all sampling regions.

To determine overall concordance between the different integration methods tested, the
results of scoring each cell type by each method on all spot transcriptomes were compared
with each other in a correlation matrix using Pearson correlation. To test the robustness of
enrichment score-based deconvolution more specifically, cell type scores for all spot
transcriptomes were plotted as scatter plots for enrichment score-based deconvolution in
direct comparison with each alternative method; r and p values were derived using Pearson
correlation and p values were FDR-adjusted. The overall strong correlation between all
methods tested was visualized by a representative projection of spot deconvolution results for

all four integration methods onto tissue.
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Spatial proteomics

For spatial proteomics, fresh frozen brain samples were cryo-sectioned into 10 um sections.
Tissue sections were mounted on polyethylene naphthalate (PEN) membrane slides
(ThermoFisher) in preparation for laser capture microdissection (LCM) and transferred back
to -80°C storage before further processing. Immediately prior to micro-dissection, each
individual LCM slide was retrieved from storage and stained with HE. LCM was performed on
a laser pressure catapulting micro-dissection microscope (PALM Microbeam, Zeiss). Gray
matter areas were chosen for sampling manually by referring to HE-stained tissue
morphology. Laser-dissected areas were circular (0.05 mm?), with each completed sample
consisting of approximately 120 adjacent circular cuts and a total volume of < 0.06 mm?3.
Samples were collected into adhesive caps and transported on dry ice for subsequent
proteomics analysis. Collected tissue was transferred in 100 pl lysis buffer (300 mM Tris/HCI
pH8, 50% 2,2,2-trifluoroethanol) into 0.2 ml PCR tubes for further processing. After controlled
heating (to avoid cap opening from overpressure) for 90 min at 90°C, samples were sonicated
in a Bioruptor (15 cycles, duty cycle 50%). Samples were then vacuum-dried for approximately
1 h at 60°C until 20 pl remained. DTT was added to a final concentration of 5 mM and
incubated for 20 min at room temperature. 20 mM CAA were added for alkylation and
incubated for another 20 min at room temperature. LC-grade water was added to adjust the
sample volume to 100 ul and tryptic digestion started by the addition of LysC and Trypsin at
an enzyme to protein ratio of 1:100. Samples were digested overnight at 37°C at 1400 rpm.
The next day, TFA was added to 1% final concentration (v/v) to stop digestion. Peptide clean-
up was carried out by stage tipping. Details of the entire workflow can be found in our recent
publication®. Nanoflow LC—-MS analysis of tryptic peptides was conducted on a quadrupole
orbitrap mass spectrometer (Q Exactive HF-X, Thermo Fisher Scientific, Bremen, Germany)
coupled to an EASY nLC 1200 ultra-high-pressure system (Thermo Fisher Scientific) via a
nano-electrospray ion source. About 300 ng of peptides were loaded on a 50 cm HPLC-

column (75 pm inner diameter, New Objective, Woburn, MA, USA; in-house packed using

34



ReproSil-Pur C18-AQ 1.9-um silica beads; Dr Maisch GmbH, Ammerbuch, Germany) and
measured over a total gradient length of 100 min with increasing buffer B (80% acetonitrile
[ACN] and 0.1% formic acid; Merck, Darmstadt, Germany) concentration. The mass
spectrometer was operated in data independent acquisition (DIA) mode. The DIA method
consisted of one MS1 scan (350 or 300 to 1,650 m/z, resolution 60,000 or 120,000, maximum
injection time 60 ms, AGC target 3E6) and 32 segments at varying isolation windows from
14,4 m/z to 562,8 m/z (resolution 30,000, maximum injection time 54 ms, AGC target 3E6).
Stepped normalized collision energy was 25, 27.5 and 30. The default charge state for MS2

was set to 2.

Spatial proteomics data processing

DIA raw files were analyzed with the Spectronaut Pulsar X software under default settings for
direct DIA analysis. The human UniProtKB database (2019) was used as the target database.
Proteins identified based on a single peptide were filtered out, as well as decoy hits and
proteins not passing the default quantification criteria (Q-value cut-off 0.01). In order to enable
a direct comparison between our spatial transcriptomics and proteomics data, peptide
mapping was carried out in an isotype-agnostic fashion. Thus, each detected protein could be
mapped unambiguously to one gene if also present in the spatial transcriptomics data set.
Proteins were filtered for those that could be quantified in at least 70% of all samples and
samples were excluded, where more than 300 of these proteins were not quantifiable. The
final data set consisted of 4,541 proteins measured in 65 cortical gray matter samples; the
transcripts for 4,093 of these proteins were also detected on the RNA level in our spatial

transcriptomics data set.

Tracking of neurodegeneration

In order to systematically measure the distribution of neurodegeneration in spatial

transcriptomics and proteomics data of MS gray matter a consensus signature was prepared
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that marked intact neurons in brain tissue. In brief, differential gene expression analyses
between cell populations in snRNA-seq data of cortical brain tissue were performed to identify
genes, which are exclusively expressed by healthy neurons. Measuring enrichment of this
marker gene set in gray matter spot transcriptomes from both controls and MS patients served
to identify areas where the healthy neuronal signal was reduced relative to the control samples
and to quantify the degree of change. In detail, snRNA-seq data of non-MS / non-neurological
post mortem brain tissue was first integrated from five different sources including reference
data from the Allen brain atlas'-"". All data sets were filtered for transcriptomes consisting of
a minimum of 300 detected genes, normalized using SCtransform® and integrated based on
cross data set anchors® by consecutive execution of the Seurat functions
SelectintegrationFeatures, PrepSCTlIntegration, FindIntegrationAnchors and IntegrateData.
Unsupervised transcriptomic clusters were identified with a shared nearest neighbor (SNN)
modularity optimization-based algorithm implemented in Seurat and cell types annotated
based on reference annotations from the two Allen brain atlas data sets. Based on this
integrated data set and scRNA-seq data of blood immune cells'®, neuronal transcriptomes and
non-neuronal transcriptomes were compared to identify a signature exclusively marking
neuronal populations. Specifically, for each donor 1,000 transcriptomes were sampled with
replacement from each cell type and aggregated to pseudo-bulks. Next, DEseq2% was run
with betaPrior set to TRUE and using “~celltype” as design formula. Neurons were contrasted
with other cells by applying the DEseq2 results functions to the resulting object and giving
each non-neuronal cell type equal negative weights using the ‘“listValues” parameter. An
analogous process was performed also for each non-neuronal cell type in contrast to the
remaining cell types and neurons to determine their marker signatures. The resulting list of
differentially expressed genes was then further consolidated by filtering on genes detected in
at least 0.1% of transcriptomes of the spatial transcriptomics data set and genes, where the
foldchange between non-neuronal cells and neurons was higher than the foldchange in any
other cell type comparison. The final intact neuronal signature was comprised of the top 100
differentially expressed genes (FDR-adjusted p value < 0.05) discriminating between neurons
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and non-neuronal cell populations as ranked by the difference in foldchange for this
comparison and the second highest foldchange of any other cell type. The specificity and the
discriminatory properties of the derived signature were validated through gene set enrichment
analysis on the pseudo-bulked cortical snRNA-seq data as well as scRNA-seq data of
peripheral immune cells using the AUCell_calcAUC function from the AUCell package®® with
the “aucMaxRank” parameter set to 10% of the number of detected genes in the data set
(Extended Data Fig. 1). Enrichment of the derived intact neuronal signature was then
calculated in the same fashion for each spot transcriptome in the spatial transcriptomics data
set as well as for each proteome of the spatial proteomics data set. In both cases signature
enrichment extended to low values in MS samples not observed in non-MS controls validating
the ability of this approach to systematically track and quantify a reduction of intact neurons
termed neurodegeneration in the analyzed tissue. For visualization purposes enrichment of
the intact neuronal signature was represented on a color scale and plotted for each spot
transcriptome at the mapped coordinates on HE-stained microscopy images. To confirm that
a reduction of the intact neuronal signature was indicative of tissue lesions, neuropathologic
assessment was performed on cryosections adjacent to sections used for spatial
transcriptomics. For this purpose, 10 um cryosections were stained with anti-MOG
supernatant (1:50 dilution, kindly gifted by Prof R. Reynolds, Imperial College London) and Oil

Red O powder (Raymond A Lamb Ltd).

Gene co-expression analysis

Modules of spatially co-expressed genes were determined by performing a weighted
correlation network analysis (WGCNA)®":%8 on the aggregated expression data of all sampling
regions (n = 174). For this purpose, the blockwiseModules function from the WGCNA R
package was employed with “power” set to 12, “minModuleSize” set to 20 and “deepSplit” to
4. The resulting co-expression network was transformed into an igraph object®® using the

wgcnazigraph function from the limmaDE2 package. For visualization purposes modules with
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more than 100 genes were randomly downsampled (without replacement). A community-
based layout was applied to the network before plotting using the ggraph package. For module
annotation, GO term enrichment analysis was performed on the genes of each module using
the enrichGO function from the clusterProfiler package’ with the parameter “ont” (ontology)
set to “BP” (biological processes), “minGSSize” (minimum size of GO terms to consider) set
to 10 and the “universe” parameter set to all input genes of the WGCNA analysis. Uniquely
enriched GO terms with an FDR-adjusted p value < 0.1 were selected for each module. Highly
redundant terms were consolidated based on semantic similarities using the simplify function
from clusterProfiler. The remaining significant GO terms for each module were represented
as GO term enrichment maps using clusterProfilers emapplot function and exported to
Cytoscape’" for plotting (Extended Data Fig. 3). Summary annotation labels for each module
that broadly represented the enriched terms were derived from supervised inspection of the
enrichment maps. To model cell specific gene expression based on integration with single cell
data (see section ‘Integration with single cell data’), a linear model for each gene was then
calculated with an expression formula analogous to “gene expression ~ signature enrichment
cell type 1 + signature enrichment cell type 2 + ... + signature enrichment cell type n”. The
resulting coefficients were standardized and scaled for each gene and visualized by mapping
them onto the gene co-expression network. In order to track gene modules over the course of
neurodegeneration the moduleEigengenes function of WGCNA was used to derive
summarized expression values for each module in all of n = 174 aggregated sampling regions.
The resulting module expression data was then put into relation to the enrichment of the intact
neuronal signature for each sampling region. Locally estimated scatterplot smoothing
(LOESS) curve fitting was applied to generate regression curves for each module and similar
patterns of regulation were grouped for visualization. Additionally, for cross-modality
comparison with the spatial proteomics data set, a module membership value was determined
for each gene that had a matching protein in the proteomics data set. Module membership
was defined according to the WGCNA package as the concordance between expression of
each gene and the expression of each module defined on a continuous scale instead of
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discrete assignment of genes to individual modules. Furthermore, the Pearson correlation
between each gene and the enrichment of the intact neuronal signature was determined. The
relationship between module membership and correlation with neuronal signature enrichment
was thus informative as to whether genes correlated with neurodegeneration were also

correlated (or anti-correlated) to specific modules and could be compared across modalities.

Ligand—receptor interactome

Spatial co-expression analysis of matching ligand and receptor pairs was based on
information from cellphoneDB"°. First, the expression of each ligand and each receptor listed
in cellphoneDB was determined for each spot transcriptome in the data set. For ligands or
receptors assembled from multiple subunits, expression was defined as the expression of the
subunit that was least expressed in a spot. If one of the required subunits was not detected,
the expression of the entire complex was set to 0 for this location. Next, the expression of
matching ligands and receptors was assessed for each spot transcriptome and its directly
neighboring spots. Thus, for each ligand-receptor interaction it was determined if for a given
spot that expresses partner A, partner B is expressed in the same location or in one of the
(maximum 8) surrounding spots. Matching pairs co-expressed in the same location or in two
directly neighboring spots (i.e within 200 um of one another) were considered to have a high
probability of interaction and a joined ‘interaction expression’ value was derived defined as the
average between the mean expression of partner A and the mean expression of partner B for
the given spot transcriptome and its direct neighbors. In order to relate the occurrence of these
interactions to neurodegeneration, sampling regions were assigned to one of three groups
(‘control gray matter’, ‘intact MS gray matter’, ‘degenerating MS gray matter’). The distinction
between ‘intact MS gray matter’ and ‘degenerating MS gray matter was based on intact
neuronal signature enrichment aggregated for each sampling region, where ‘intact’ areas had
enrichment values = 0.105 defining the lower boundary of the enrichment in controls and

‘degenerating’ areas values below this cutoff (Fig. 1B and C). To determine interactions
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significantly altered between control areas and intact MS gray matter, unpaired two-sided t-
tests were performed between the respective groups (n = 18 control gray matter and n = 111
intact MS gray matter). P values were FDR-adjusted for the number of comparisons and
interactions with adjusted p values < 0.1 considered to be significant. Additionally, for
significant interactions Pearson correlations with the enrichment of the intact neuronal
signature were determined and FDR-adjusted unpaired two-sided t-tests were calculated for
the comparison between intact and degenerating MS gray matter. Literature research was
carried out for all significant interactions to verify the evidence supporting a given ligand—
receptor pairing and to annotate them functionally (Supplementary Table 4). In the process
interactions were filtered out that were only supported by large-scale protein interaction
screens and lacked replication in independent experiments. Formal orphan G-protein coupled
receptors were retained when several publications supported a ligand pairing. The mean
expression of interactions annotated as growth factors, anti-inflammatory or pro-inflammatory
stimuli was plotted for control regions, intact and degenerating MS gray matter to uncover
overall regulation patterns for these processes. To demonstrate the underlying data for this
summary analysis, expression values for representative interactions were plotted for all
sampling regions and their regulation was visualized on the tissue. To integrate the derived
ligand—receptor interactome with cell type information, the expression of each ligand and
receptor was modeled based on the enrichment of cell type marker signatures derived from
snRNA-seq datasets. A detailed description of how the applied cell type marker signatures
were extracted and the cell type modeling was performed is provided in previous sections
(‘Integration with single cell data’, “Tracking of neurodegeneration’ and ‘Gene co-expression
analysis’). Cell type prediction scores for all interactions were visualized as bubble charts

created in ggplot and chord diagrams created with the circlize package™.

Multimodal reproducibility of the regulation of ligand—receptor interactions between MS intact
GM and control areas was assessed by referring to the high sensitivity proteomics data set.
In identical fashion to the RNA data, a cut-off for the intact neuronal signature enrichment was
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defined for the protein data, which separated samples with a neuronal signal comparable to
control tissue (MS GM intact) from samples with abnormally low enrichment (MS GM
degenerating) (compare dotted line in Fig. 3c). Thus, for all ligand/receptor genes also
detected on the protein level, the expression in MS GM intact could be compared to control
areas. Log2-fold changes were calculated for both RNA and protein expression and their

concordance assessed using a Pearson correlation.

Evaluation of age and sex bias for ligand—-receptor analysis

To test, whether the sex- and age-disbalance between the MS and control cohorts
(Supplementary Table 1) biased the results of the ligand—receptor co-expression analysis,
post mortem cortical brain tissue samples of n = 336 donors from the GTEXx consortium*® were
analyzed, for which gender and age group were known. A linear model was determined for all
detected genes of the human genome, which predicted gene expression in the human cortex
dependent on age and sex as interacting variables. The following model formula was used in
R:
Cortical gene expression ~ age * sex

Which is equivalent to the notation

Cortical gene expression ~ age + sex + age: sex

As a result, the variance explained by age and sex in the human cortex (adjusted R? of the
model) as well as its significance (adjusted p value of the model < 0.1) was determined for
each gene. The relative fraction of significantly age-/sex-biased genes was compared
between differentially co-expressed ligand—receptor genes and the genome as a reference.
For ligand/receptor genes with significant bias, the directionality (e.g. increased in males,
increased with age) was extracted based on the sign of the respective model coefficients. On
this basis, suspected bias patterns were analyzed, such as a potential enrichment of genes

with bias towards younger females in the set of genes increased in MS patients.
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Mechanistic in vivo validation

To assess whether perturbation of candidate ligand—receptor genes impact the survival of
CNS cells, in particular neurons, data from an in vivo genome-wide shRNA knockdown screen
in the striata of wild type C57BL/6 mice*® was employed. Briefly, in this study, essential CNS
genes were identified by measuring the depletion of CNS cells carrying a specific knockdown
at two different time points (four weeks and seven months after lentiviral introduction of shRNA
libraries). Statistical assessment was performed using the DrugZ algorithm”3. See the original
publication for further details*®. Based on this data set, for each set of our candidate genes
(pro-inflammatory, anti-inflammatory, trophic) the fraction of genes determined as CNS-
essential was calculated, as well as the mean normalized Z-scores for each candidate gene
set, which measured the average phenotype strength. Candidate gene sets were then plotted
in a coordinate system between the two measures. Statistical significance was tested by
comparing candidate gene sets to the distribution of random ligand—receptor gene sets. For
this purpose, 10,000 sets of ligand—receptor genes were drawn randomly (with replacement)
from the input list of ligand—receptors, with the number of genes per set fixed to the mean
number of genes in our candidate sets. For each random set, again the fraction of CNS-
essential genes and their average phenotype strength was determined. Confidence ellipses
were created for the random data using the stat_ellipse() function from the ggplot2 package.
Ligand—receptor gene sets outside the 95%-confidence ellipse were determined as
significantly different from randomly chosen gene sets and to support the hypothesis that the
prioritized genes play a causal role in CNS-health. Note, that the second assumption only
holds true for graph areas to the upper right of the 95%-confidence ellipse, which was where

all tested candidate gene sets were mapped to.

To systematically assess the mechanistic effect of candidate ligand-receptor genes on a
broad range of in vivo CNS disease models, a systematic literature research was performed,

where specific perturbations of candidate genes were identified and classified. Europe PMC
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(https://feuropepmc.org/), containing all pubmed entries, was queried with the epmc_search()
function of the europepmc R package. Queries were automatically generated by combining
HGNC gene symbols for candidate genes or gene long names determined using the biomaRt
package and keywords encoding disease models. The search was limited to titles and
abstracts of primary research articles. All building blocks for search queries, as well as the
generated queries, are listed in Supplementary Table 5. A total of 2,945 publications were
identified and their abstracts extracted using the epmc_details() function (Supplementary
Table 5). Abstracts were exported to a new line separated json format (jsonl) together with the
publication title, the queried candidate gene and the disease model encoded in tags. Abstracts
were then read into Doccano as jsonl to perform manual annotation, which was further
supported by keyword highlighting with the plugin ‘highlight this’. For each publication the
following steps were performed and saved in annotation tags: First, evaluation of whether a
specific perturbation of the queried candidate gene was performed in the given publication in
vivo. This included gene knockout or knockdown, gene overexpression, inhibiting treatment
(such as blocking antibodies or receptor antagonists) and activating treatment (such as
receptor agonists). In cases where the abstract was not sufficiently informative the full-length
publication was considered. Secondly, the class of in vivo CNS model used in this perturbation
experiment was independently validated. Finally, if the first two conditions were met, the effect
of the perturbation on the model outcome was evaluated as either ‘amelioration’,
‘exacerbation’ or ‘no effect’. As a result, 308 specific in vivo perturbations of candidate ligand—
receptor genes in CNS disease models were identified and stored in an R dataframe
(Supplementary Table 5). Next, the suggested mechanistic effect on CNS-health for each
perturbation was determined as follows: Genes were classified as ‘detrimental to CNS health’
if a reduction of the gene activity (knockout, knockdown, inhibiting treatment) led to an
amelioration of the model outcome or an increased activity (overexpression, activating
treatment) led to an exacerbation of the model. Vice versa, genes were classified as ‘CNS
protective’ if a reduction of the gene activity (knockout, knockdown, inhibiting treatment) led
to an exacerbation of the model outcome or an increased activity (overexpression, activating
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treatment) led to an amelioration of the model. Genes, for which perturbation didn’t influence
the model outcome were classified as ‘no effect on CNS health’. This resulted in a tally of
published experiments for each candidate gene in favor or against a CNS-protective function
(Supplementary Table 5), which was plotted using ggplot2 with indication of contributing

classes of in vivo CNS models and net effects per gene.

Therapeutic target prioritization

To link the derived ligand—receptor interactome to the annotated gene co-expression modules
describing the components of neurodegeneration, Pearson correlations were calculated
between the expression of each significant interaction and the summarized expression
(eigengene value) of each module. Positive correlation between a module and a given
interaction signified high activity of the module in areas, where the ligand and matching
receptor were observed frequently in close spatial proximity of one another, whereas anti-
correlation indicated the opposite. Based on this relation between ligand—receptor interactions
and gene co-expression modules, interactions were prioritized as promising therapeutic
targets based on showing greater aggregate connectivity to modules related to
neurodegeneration. Specifically, for each interaction the mean absolute correlation with all
modules was determined and interactions were ranked by it. To substantiate the robustness
of this approach, 95%-bootstrap confidence intervals were calculated by repeating the
analysis on 100,000 bootstrap samples. For visualization purposes the relative contributions
of each module to the mean absolute module correlation were calculated and stacked to a bar
graph color-coded by functional categories. Anti-correlations were indicated by negative
values and the overall bar length was scaled to represent the mean absolute module
correlation. To further stratify the derived therapeutic targets by their CNS-specificity, the
Genotype-Tissue Expression (GTEX) project V8 data set was used comprising post mortem
bulk RNA-seq data for many human tissues®. After removal of two non-native tissues

(cultured fibroblasts and EBV-transformed lymphocytes) n = 16,704 samples from 52 tissues
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of 948 donors remained. CNS regions sampled in the data set were amygdala, anterior
cingulate cortex (ba24), caudate (basal ganglia), cerebellar hemisphere, cerebellum, cortex,
frontal cortex (ba9), hippocampus, hypothalamus, nucleus accumbens (basal ganglia),
putamen (basal ganglia), spinal cord (cervical c-1) and substantia nigra. Available non-CNS
tissues included adipose - subcutaneous, adipose - visceral (omentum), adrenal gland, aorta,
coronary artery, tibial artery, bladder, mammary tissue, ectocervix, endocervix, colon -
sigmoid, colon - transverse, gastroesophageal junction, esophageal mucosa, esophageal
muscularis, fallopian tube, heart - atrial appendage, heart - left ventricle, kidney - cortex,
kidney - medulla, liver, lung, minor salivary gland, skeletal muscle, tibial nerve, ovary,
pancreas, pituitary, prostate, skin - not sun exposed (suprapubic), skin - sun exposed (lower
leg), small intestine, spleen, stomach, testis, thyroid, uterus, vagina and whole blood. The
expression of prioritized receptors was assessed in all available native tissues and averaged
for cortical CNS regions and non-CNS tissues. Based on this, a CNS-specificity score was
calculated as the ratio between mean cortical expression and mean non-CNS expression
supporting the positioning of target receptors in a coordinate system between potential
breadth of impact on neurodegeneration (mean absolute module correlation) and exclusivity
to the CNS (CNS specificity score). Immunohistochemistry stainings from the human protein
atlas*® (Supplementary Table 6) were evaluated for all available candidate receptors to
validate their CNS-enrichment on the protein level. For this purpose, only stainings based on
antibodies whose reliability was classified as ‘supported’ or ‘enhanced’ at the time of writing
were considered. Brain, kidney, liver and colon were selected as representative organs that

had stainings available for all queried proteins.

Quantification and statistical analysis

All statistical analyses performed in this study are described in detail in the respective methods
sections including any statistical software used. Software versions, references and availability

are indicated in Supplementary Table 8. The exact number of n and what n represents is
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indicated directly in the figure legends for all comparisons in this study and mentioned again
in the methods section where applicable. Center, dispersion and precision measures are
explained in the figure legends. The statistical test or algorithm to determine statistical
significance is indicated both in the figure legends and the respective methods sections for all
reported p values. The sample size for this study could not be based on previous data as no
other spatial transcriptomics studies on human diseases were available at the time of data
acquisition. Thus, the number of samples was maximized within the constraints of available
tissue, cost and method throughput. Due to the exploratory nature of this study, the
computational scientist performing data analysis was not blinded to group allocations.
However, all key analyses were carried out in an unsupervised fashion, meaning that
assessment of group differences were computationally determined. Excluded data points and
the reason for their exclusion are highlighted in the respective methods sections and figure
legends. One non-MS / non-neurological control (Control 5) was excluded after clinical records

revealed the presence of brain metastasis.

Data availability

Spatial transcriptomics data have been deposited at Gene Expression Omnibus (GEO),
accession number GSE174647:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE174647

Please note, that a smaller subset of this data set, has been used in one of our previous
studies™®, where it was employed to test the circumscribed hypothesis that a specific T cell
type is present in the brains of progressive MS patients. As such, no further exploration of
the data set was performed then, and all analyses and conclusions of the present study are
completely independent.

Mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository, accession number PXD026529:

https://www.ebi.ac.uk/pride/archive/projects/PXD026529
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Published scRNA-seq data of PBMCs from MS patients and healthy individuals is available
from GEO: GSE144744. SnRNA-seq data of human post mortem cortical brain tissue is
available from GEO: GSE118257, the Sequence Read Archive (SRA): PRINA544731, The
database of Genotypes and Phenotypes (dbGaP): phs000424.v8.p1 and the Allen brain

atlas (https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x;

https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-

seq). Literature curated ligand-receptor pairings are available from
https://www.cellphonedb.org/ (v 2.0). Bulk RNA-seq data of human post mortem samples

from 54 tissues is available from https://www.gtexportal.org/home/ (GTEX V8).
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Extended Data Figures

and sex bias and
proteomic
validation of
ligand-receptor
analysis results

Figure # Figure title Filename | Figure Legend
Extended Cell type FigSl.jpg | Enrichment of intact neuronal signature and cell type
Data Fig. 1 | signatures marker signatures in scRNA-seq and snRNA-seq data
setsl01113.22.23 aaaregated per sample for n = 47 (intact
neurons), n = 20 (B cells), n = 29 (endothelial cells), n = 40
(microglia), n = 20 (monocytes), n = 47 (oligodendrocytes),
n =41 (0OPC) and n = 20 (T cells) biological replicates. Box
plots centered on median, bounds defined between the
25™ and 75 percentile with minimum and maximum
defined as median % 1.5 x interquartile range and whiskers
extending to the lowest / highest value within this range.
Extended Relation of FigS2.jpg | a, HE-staining of n = 1 cortical brain tissue section from
Data Fig. 2 | spatial patient MS1 used for spatial transcriptomics. b, Structural
transcriptomics annotations. ¢, Spatial transcriptomics-based mapping of
to intact neuronal signature enrichment values onto gray
neuropathologic matter. d, Spatial transcriptomics-based mapping of
al assessment microglial signature enrichment values onto gray matter. e,
Immunohistochemistry for myelin oligodendrocyte
glycoprotein (MOG) of n = 1 tissue section adjacent to a. f,
Oil Red O staining of n = 1 tissue section adjacent to a.
Extended GO term FigS3.jpg | GO term enrichment maps for gene co-expression
Data Fig. 3 | enrichment modules. Nodes represent GO terms; edges connect terms
maps that share genes. Groups of similar GO terms are jointly
labelled for clarity. Only significantly (FDR-adjusted p value
<0.1, methods) enriched GO terms for each module are
shown. GO term networks with less than three nodes are
not depicted unless no other terms were enriched in a
modaule. All individual GO terms ranked by adjusted p
values are listed in Supplementary Table 3.
Extended Exclusion of FigS4.jpg | A potential bias resulting from comparing MS patients,
Data Fig. 4 | potential age who were on average younger and female, with older male

controls (Supplementary Table 1) could impact the results
of the ligand-receptor co-expression analysis (Fig. 4,5). To
test for this, genome-wide RNA-expression data from post
mortem cortical brain tissue of n = 336 donors with known
gender and age from the GTEx consortium®3 was analyzed.
A linear model was fitted for each gene to assess the
degree to which age and sex predicted cortical gene
expression (methods). a, Genome-wide quantification of
age-/sex-bias of gene expression in cortical brain tissue.
The y-axis displays the variance explained by age and sex
(R2), with the cut-off for a significant influence of age




and/or sex on cortical expression denoted with a dotted
line (FDR-adj. p value < 0.1, linear model, two-sided). The
set of differentially co-expressed ligand/receptor genes
contained less age-/sex-biased genes (13.93%) than would
be expected based on the overall frequency of age-/sex-
biased genes in the whole genome (19.96%). b, Mean
cortical expression of exemplary genes. ZFY shows a strong
sex bias, GPR26 expression is significantly influenced by
age and GPR37L1 (the top candidate from our study,
compare Fig. 7b) appears to be neither influenced by age
nor sex. The linear model explained 63.5% of the variance
(R?) for ZFY (FDR adj. p value = 8.1x10%3), 32.8% for GPR26
(FDR adj. p value = 1.09x102!) and 0% for GPR37L1 (FDR
adj. p value = 0.56). c, Further exploration of the 13.93%
age-/sex-biased ligand—receptor genes to test whether
they follow a pattern that could be explained by age/sex
imbalance between our study cohorts. The only gene
found to match an expected pattern was PDGFRA. d,
Validation of ligand—-receptor analysis results at the protein
level. The log2 fold change between intact MS gray matter
and control areas is shown for ligand/receptor genes that
were detected both at the RNA and protein level. n =18
control regions (RNA), n = 111 intact MS gray matter
regions (RNA), n = 8 control regions (protein), n = 31 intact
MS gray matter regions (protein). Two-sided Pearson
correlation, mean centered 95% confidence band shown in
gray. The correlation between ligand/receptor gene
expression was positive (r = 0.41) and significant (p value <
0.044).

Extended
Data Fig. 5

Validation of
snRNA-seq
based cell type
deconvolution

FigS5.jpg

Spatial transcriptomics data were integrated with single
cell RNA-seq data in this study through enrichment score-
based deconvolution'* implemented with DEseq2%” and
AUCell®8, To validate the applied integration approach
three additional published methods for integration
between single cell RNA-seq data and spatial
transcriptomics, RCTD*, spatialDWLS*! and SPOTlight*?,
were performed and the results compared. a, Correlation
matrix for all four integration methods and all six CNS-
resident cell types. All four methods are strongly
correlated with each other. b, Representative projection of
spot deconvolution results for all four integration methods
at the same tissue location as in Fig. 5c. No major
differences in cell type distribution are observed. ¢, Direct
correlation of all alternative integration methods with
enrichment score-based deconvolution for all CNS-resident
cell types. n = 83,256 gray matter spot transcriptomes, r
and p values derived using two-sided Pearson correlation,




p values shown are FDR-adjusted. Highly significant
positive correlation is observed for enrichment score-
based deconvolution in comparison to each alternative
method.

Extended
Data Fig. 6

Correlation
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co-expression
and module
expression

FigS6.jpg

Two-sided Pearson correlations between each model and
each ligand—receptor interaction are shown.

Extended
Data Fig. 7

Organ
immunohistoch
emistry

FigS7.jpg

a,b, Immunohistochemistry of indicated proteins in
representative tissues. Image credit: Human Protein
Atlas®*. Only stainings based on antibodies whose reliability
was classified as ‘supported’ or ‘enhanced’ in the Human
Protein Atlas are shown. For image URLs see
Supplementary Table 6. Matching proteins for transcripts
found to be a, CNS-enriched or b, not enriched in the CNS
at the RNA level.

Tables

Number

Filename

Legend

Supplemen
tary Table

1

tablel_do
nors_sam
ples.xlsx

Study cohort information.

Metadata associated with each donor (sheet ‘donor
characteristics’) and with each sample (sheet ‘sample
characteristics’) are provided.

Supplemen
tary Table

table2_ge
ne_signat
ures.xlsx

Gene signatures.

Cell type marker gene signatures extracted from single cell
/ single nuclei RNA-sequencing data sets (methods) are
provided for intact cortical neurons (sheet ‘Intact neuronal
consensus sign.) and other cell types supporting the cell
type deconvolution analysis (sheet ‘cell type marker
signatures’).

Supplemen
tary Table

table3_go
_terms.xl|
SX

GO terms.

Unique gene ontology (GO) terms, significantly enriched
(FDR-adjusted p value < 0.1, enrichGO algorithm, methods)
in gene co-expression modules.

Supplemen
tary Table

table4 LR
_interacti
ons.xlsx

Annotations of ligand-receptor interactions differentially
co-expressed between intact MS gray matter and control
tissue.




The table provides additional information for each
significant (FDR-adjusted p value < 0.1, unpaired two-sided
t-tests) interaction, including a reference for experimental
validation of the ligand-receptor relationship
(ref_interaction_pubmed_id) and supporting literature for
the classification as trophic factor, anti-inflammatory
factor or pro-inflammatory factor
(annotation_ref_pubmed_id). In addition, the numeric
values for the mean absolute module membership
(mean_abs_module_membership) and CNS-specificity
score (mean_ratio_ CNS_nonCNS) are listed.

Supplemen table5_in | Published in vivo perturbations.
tary Table _vivo_per . . . .
turbation The table provides additional details for the analysis
< xlsx presented in Fig. 6. The sheets ‘Candidate genes queried’
and ‘Disease models queried’ summarize the search terms
that were combined as queries (see sheet ‘Queries’) for
Europe PMC searches. Raw search results are listed in the
sheet ‘Search results’. The extracted perturbations of
candidate ligand—receptor interactions (methods) are
listed in the sheet ‘Perturbations_identified’.
Supplemen table6_hu | Human protein atlas URLs.
tary Table man_prot .
cin atlas Web addresses for each image used from the human
UREs.xst_ protein atlas are provided.
Supplemen table7_oli | Oligonucleotide sequences.
tary Table gonucleot . . . .
ides STxl Sequences are provided for oligonucleotides referred to in
o - the methods section describing spatial transcriptomics.
Supplemen table8_so | Software versions.
tary Table ftware.xls . .
« The table lists all software used for data processing,

analysis and data visualization, including version, reference
and web address.
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