Evidence of neural crest cell origin of a DICER1 mutant CNS sarcoma in a child with DICER1 syndrome and NRAS-mutant neurocutaneous melanosis

Leonille Schweizer¹,², Wolfgang Hartmann³, Arend Koch¹,², Maximilian Nunninger⁴, Ulrich-Wilhelm Thomale⁵, Valentina Pennacchietti⁵, Anna Tietze⁴, Denise Horn⁶, Kristian W. Pajtler⁷,⁸,⁹, Steffen Hirsch⁸,⁸,¹⁰, Ilse Wieland¹¹, Hedwig Deubzer¹²,¹³, Rainer Rossi¹⁴, Pablo Hernáiz Driever¹², Katja von Hoff¹², Barbara von Zezschwitz¹²

¹Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
²German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
³Division of Translational Pathology, Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
⁴Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
⁵Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Division Pediatric Neurosurgery, Berlin, Germany
⁶Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
⁷Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
⁸Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
⁹Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
¹⁰Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
¹¹Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, Germany
¹²Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
¹³Institute of Paediatrics, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany

Correspondence
Leonille Schweizer, Charité – Universitätsmedizin Berlin, Department of Neuropathology, Charitéplatz 1, 10117 Berlin, Germany.
Email: leonille.schweizer@charite.de

KEYWORDS: DICER1 mutant CNS sarcoma, DNA methylation profiling, neural crest cell, neurocutaneous melanosis, NRAS, pseudo-meissnerian corpuscle

DICER1 mutant CNS sarcoma is a newly defined entity that may present with various morphologies and is characterised by a distinct DNA methylation profile [1–3]. Tumours occur sporadically or in the context of DICER1 syndrome as well as rarely in neurofibromatosis type 1 [1, 4]. Most tumours present with additional mutations in TP53 and RAS-pathway genes [1, 4–6]. Although the mutational landscape of DICER1 mutant CNS sarcomas has been investigated, not much is known about the cellular origin of this entity. We present a male...
neonate with severe muscular hypotonia and multiple melanocytic naevi. The prenatal period was uneventful except for a large arachnoid cyst with cerebellar hypoplasia. At the age of 6 weeks, he developed paraplegia of the lower limbs. A magnetic resonance imaging showed brain melanosis (Figure 1A) and a thoracic intraspinal and paraspinal tumour (Figure S1, online resource). The tumour extended through the intravertebral foramen and was focally abutting the pleura (see Figure S1c), but did not extend into the pleural cavity. Intrapulmonary or distant lesions were not identified.

The tumour was incompletely resected and demonstrated variable degree of maturation. Low-grade mesenchymal areas with scattered lipomatous cell nests and numerous pseudo-meissnerian corpuscles (PMCs) predominated over undifferentiated and sarcomatous, MPNST-like areas (approximately 70% vs 30% of tumour tissue; Figures 1A and S2, online resource). The immunohistochemical expression pattern was heterogeneous: PMCs strongly expressed WT1, S100, SOX10 and CD56. The sarcomatous component demonstrated focal reactivity for SOX10 as well as several dispersed WT1 and p75 positive and single S100 and MITF positive tumour cells. CD56 was strongly expressed by the sarcomatous component, but negative in undifferentiated tumour areas. Nuclear p53 accumulation was mainly seen in the sarcomatous and primitive areas, but was absent in low-grade areas. The tumour cells did not express desmin, SMA, MyoD1, TLE-1, MAP2, synaptophysin or chromogranin A. The proliferation activity was very high in undifferentiated areas (Ki67 90%), markedly increased in sarcomatous areas (15–25%) and low in mesenchymal areas with PMCs (2%) (Figure S2, online resource).

Primitive and sarcomatous areas of the tumour were both classified as primary intracranial sarcoma, DICER1-mutant based on DNA methylation profiling (brain tumour classifier v12.5: classifier score 0.99; www.molecularneuropathology.org, [7]). The sarcomatous tumour component showed a flat copy number profile, whereas the primitive tumour component demonstrated partial gain of chromosome 9 and partial loss of chromosome 11 (Figure S3, online resource). Next-generation sequencing (NGS) demonstrated a constitutional pathogenic variant in DICER1 c.3007C > T p.(Arg1003*) (RefSeq Transcript NM_030621.4) inherited from the father, and a second pathogenic DICER1 c.5439G > T p.(Glu1813Asp) hotspot mutation being confined to the malignant tumour areas (Table 1). A clonal NRAS c.181C > A p.-Gln61Lys variant (RefSeq Transcript NM_002524.5) was detected in low- and high-grade tumour areas as well as in two biopsies of skin affected by melanocytic nevi resulting in the diagnosis of neurocutaneous melanosis caused by postzygotic mosaicism of DICER1 syndrome and neurocutaneous melanosis caused by postzygotic mosaicism of DICER1 syndrome. The hypothesis is further supported by preliminary evidence of a common epigenetic profile of DICER1 mutant CNS sarcomas and two DICER1 mutant embryonal rhabdomyosarcomas of the uterus shown by Kölsche et al. [1].

The expanding histological spectrum of DICER1 mutant sarcomas argues for a precursor cell capable of multilineage differentiation regardless of the site. Neural crest cells migrate during early embryogenesis throughout the body and have a broad differentiation capacity ranging from neural tissue (melanocytes, neurons, Schwann cells) to mesenchymal tissue (chondrocytes, fibroblasts, and adipocytes; Figure 1A) [10]. In the case presented here, the patient developed a
FIGURE 1 Characteristics of a spinal tumour in a child with DICER1 syndrome and neurocutaneous melanosis. (A) Cerebellar hypoplasia and large arachnoid cyst and T1 hyperintense melanin deposits in pons and medulla oblongata (→). Formation of a tumour demonstrating various lineage differentiation (e.g., dysplastic neurons and neuropil, pseudo-meissnerian corpuscles – specialised schwannian cells, fibrovascular to immature chondroid matrix, adipocyte cell nests) with a malignant tumour component arising from the mesenchymal areas (primitive and sarcomatous differentiation; see Figure S2, online resource). (B) Synopsis: A multistep process of accumulating genetic events during embryogenesis in neural crest cell precursor cells leads to tumour formation and transformation in a DICER1 mutant sarcoma. Genetic intratumoural heterogeneity influences the degree of maturation and malignancy. Abbreviations: CNV, copy number alterations; NC, neural crest.
highly heterogeneously differentiated neural-mesenchymal tumour with both constitutional DICER1 and mosaic NRAS mutation. In patients with neurocutaneous melanosis, the postzygotic NRAS mutation only affects a subpopulation of neural crest cells, but cannot be detected in the germline of the patient. We therefore deduce that the DICER1 mutant sarcoma with NRAS mutation in our patient arose from a neural crest cell by acquisition of a second mutation in DICER1 and chromosomal alterations (Figure 1B). As the tumour was epigenetically classified as primary intracranial sarcoma, DICER1-mutant and the methylation profile of a cancer cell strongly reflects the cell of origin [7], it is tempting to speculate that DICER1 mutant sarcomas in general are derived of neural crest cells which needs to be demonstrated in further studies. A synergistic effect in tumour formation of the germline DICER1 mutation and the somatic NRAS mutation may be assumed as NRAS mutations are found in approximately 10% of DICER1 mutant CNS sarcomas [1, 2].

It has been hypothesized that NRAS mutations in neurocutaneous melanosis occur before the differentiation of neural crest cells into the melanocytic lineage [11, 12]. A variety of non-melanotic tumours have been reported to arise in neurocutaneous melanosis patients, among them rhabdomyosarcomas and malignant peripheral nerve sheath tumours [12–14]. The level of differentiation and the environment of migrating neural crest cells at the time-point of acquisition of NRAS and/or DICER1 mutations during embryogenesis potentially influence the resulting phenotype and the variability in histological appearances of these tumours.

Here, we showed that DICER1 mutant CNS sarcoma may arise in spinal location and in the context of two co-occurring cancer predisposing conditions. Our temporal and spatially distinct analysis argues not only for a high morphological, but also genetic heterogeneity within DICER1 mutant CNS sarcomas, possibly relevant for future treatment strategies. Our study also provides a rationale to investigate DICER1 deficiency in neural crest cells in cell culture and mice.

ACKNOWLEDGEMENTS
We gratefully thank Carola Geiler and Petra Matylewski for excellent technical support and Ulrich Schüller for helpful discussions. Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare that they have no competing interests.

ETHICS STATEMENT
Written permission for publication was obtained from the parents of the child.

AUTHOR CONTRIBUTIONS
LS, WH and AK interpreted histopathological, immunohistochemical and molecular findings. DH, SH, KWP, IW and LS performed next-generation sequencing and assisted with sequencing interpretation. MN and AT interpreted radiological images. UT and VP provided neuro-oncology clinical care. RR, PH, KH and BZ provided neuro-oncology clinical care and assisted in data collection. LS prepared the figures and wrote the manuscript. All authors edited the manuscript and approved the final version.

DATA AVAILABILITY STATEMENT
Data are available upon reasonable request.

ORCID
Leonille Schweizer https://orcid.org/0000-0002-4649-2587

REFERENCES

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.
