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Background
Cancer is a disease that stems from the disruption of cellular state. Through genetic per-
turbations, tumor cells attain cellular states that give them proliferative advantage over 
the surrounding normal tissue [1]. The inherent variability of this process has hampered 
efforts to find highly effective common therapies, thereby ushering the need for preci-
sion medicine [2]. The scale of single-cell experiments is poised to revolutionize per-
sonalized medicine by effective characterization of the complete heterogeneity within a 
tumor for each individual patient [3, 4].

Recent expansion of single-cell sequencing technologies has exponentially increased 
the scale of knowledge attainable through a single biological experiment [5]. The infor-
mation contained within a single high-throughput single-cell experiment enables not 
only characterization of variable stable states (i.e., cell types, and cell states) but also 
functional annotation of individual cells, such as prediction of the differentiation poten-
tial, susceptibility to perturbations, and inference of cell–cell interactions [6].

As with all new technologies, high-throughput single-cell sequencing also created new 
computational challenges [7]. A problem in single-cell data analysis is cell annotation—
assignment of a particular cell type or a cell state to each sequenced cell. The size of 
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the generated datasets made manual annotation approaches utterly unfeasible, while the 
peculiarities of data generation prompted the development of novel innovative classi-
fication methods [8–13]. This is especially apparent in datasets stemming from cancer 
tissues, where the variability in the transcriptomic states does not conform to classi-
cally defined cell types. An outstanding question is whether there exist transcriptomic 
commonalities between cancer cells originating from different cancers, and whether it 
is possible to create a model which would discriminate between cancer cells and the sur-
rounding tissue across different cancer types, and datasets.

High-throughput single-cell technologies provide unprecedented precision of char-
acterization of biological systems, with all the technical and biological influences being 
evident in the data. In cancer biology, this heterogeneity of data composition presents 
a particular problem, because it is very hard to enumerate, and correct for, all of the 
technical and biological variables which are giving rise to the measured variability [14]. 
For example, cell dissociation produces artifacts which mimic MAP kinase pathway acti-
vation [15], while it is impossible to know the exact environment influencing each cell. 
Cells might be in gradients of oxygen availability, under different physical constraints, or 
influenced by multiple varying signaling molecules. This variability presents a challenge 
for developing machine learning models, because the data coming from different condi-
tions will have different underlying distributions, meaning that methods trained on one 
dataset will not generalize to other datasets [16].

Currently, there are three types of methods for mitigating distributional differences 
between single-cell RNA sequencing datasets: (1) manifold matching methods that try 
to find commonalities between low dimensional representations of multiple datasets and 
align them into one space [17]; (2) domain adaptation deep learning tools that try to 
model (explicitly or implicitly) the batch effects through the latent space embeddings 
[18–24]; and gene set based classifiers that use learned marker genes and robust statis-
tics to transfer knowledge between datasets [8].

An issue recurrently arising in machine learning in biology is how to determine the 
generalization boundaries of trained models (i.e., on which datasets the model will 
fail). It is not evident whether the learned model will perform equally well on the data 
profiled using different sequencing technologies (i.e., Drop-Seq, 10X, CEL-seq or Flu-
idigm C1), produced by different laboratories, or originating from a different biologi-
cal source (i.e., same cell types, coming from different human individuals). Because the 
sources of the heterogeneity are frequently unknown, the models need to be explicitly 
tested for robustness on datasets corresponding to different biological conditions and 
profiled using different technologies [25]. Therefore, special care needs to be taken that 
the learned associations really are between variables of interest and are not confounded 
by the properties of the data. Both manifold matching and domain adaptation methods 
follow a tradeoff between the removal of unwanted variance, while preserving biological 
heterogeneity [25]. Gene signature based methods lie on the opposite part of the trade-
off spectrum, whereby the gene lists represent a strong inductive bias about a biologi-
cal property (cell type). If the gene lists are carefully tested, then the methods achieve a 
markedly low false positive rate.

We set out to answer a simple question: “Is it possible to make a classifier that would 
correctly differentiate tumor cells from normal cells in multiple cancer types?”. We have 
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built ikarus, a stepwise machine learning pipeline for tumor cell classification. ikarus 
consists of two steps: (1) discovery of a comprehensive tumor cell signature in the form 
of a gene set by consolidation of multiple expertly annotated single-cell datasets and (2) 
training of a robust logistic regression classifier for stringent discrimination of tumor 
and normal cells followed by a network-based propagation of cell labels using a custom 
built cell–cell network [26]. With the goal of developing a robust, sensitive, and repro-
ducible in silico tumor cell sorter, we have tested ikarus on multiple single-cell datasets 
of various cancer types, obtained using different sequencing technologies, to ascer-
tain that it achieves high sensitivity and specificity in multiple experimental contexts. 
We have strictly adhered to machine learning best practices to avoid contamination of 
results by information leakage from training into testing process.

Results
Identification of a robust marker gene set

Cell type annotations in any particular experiment are inherently noisy. This is partly 
due to the properties of single-cell data, such as the different number of detected genes 
in each cell, the influence of sample processing, and our limited knowledge of biomark-
ers that are necessary for comprehensive annotation of cell types and cell states. We 
hypothesized that we can find robust markers of cellular states by comparing multiple 
independent annotated datasets from diverse origins.

We have employed a two-step procedure to find tumor-specific gene markers. First, 
using differential expression analysis, we selected genes that are either enriched or 
depleted in cancer cells per dataset (see 9). To obtain the final gene list, we took an inter-
section of the gene sets from each of the datasets (Fig.  1A). We have applied a stand-
ard cross validation approach for gene set selection, where datasets were either used as 
training, validation, and test sets. For cross validation, we have used the two lung cancer 
datasets from Laughney [27] and Lambrechts [28], a colorectal cancer from [29], neuro-
blastoma dataset from Kildisiute [30], and a head and neck cancer datasets from [31]. For 
each pair of datasets, we have selected the gene signature and trained the logistic classi-
fier. The resulting classifier accuracy was validated on the datasets that were not used for 
training (Additional File 3: Cross validation results). As the performance metric, we have 
chosen a minimal balanced accuracy on the validation set (measuring the worst perfor-
mance of the classifier on the validation set). The cross validation procedure showed that 
the gene signature selection using multiple datasets increases the generalization perfor-
mance of the classifier (Fig. 1C). The best performing classifier combined the colorectal 
cancer dataset from Lee et al. [29] with the lung cancer from Laughney et al. [27], and 
achieved a minimal balanced accuracy of 0.97 on the validation data. The performance of 
the best performing gene set was tested on the hepatocellular carcinoma [32] (balanced 
accuracy of 0.93), and the lung carcinoid dataset [33] (balanced accuracy of 0.99).

The resulting tumor gene signature contained 162 genes that were significantly 
enriched in cancer cells across multiple datasets (Additional File 2: Gene Signatures). 
The resulting set of genes showed high specificity for cancer cells, from the head and 
neck cancer samples [31] (Additional File 1: Fig. S1A). This result indicates that the gene 
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set contains information relevant for discriminating tumor cells from non-tumor cells in 
multiple different tumor types.

The same procedure was applied to the healthy cell types. We extracted genes enriched 
in each cell type, when compared to the tumor cells. The resulting gene set was then 
merged between multiple datasets. This “normal” cell gene signature contains both cell 
type specific markers and genes which are specifically depleted in the tumor cells (Addi-
tional File 1: Fig. S1B).

To validate the specificity of the novel tumor specific gene set, we have analyzed a gas-
tric cancer dataset [34], where multiple areas of cancer and cancer-associated normal 

Fig. 1 Integration of multiple datasets enables robust extraction of informative gene sets. A, B ikarus 
workflow. ikarus is a two-step procedure for classifying cells. In the first step, integration of multiple expert 
labeled datasets enables the extraction of robust gene markers. The gene markers are then used in a 
composite classifier consisting of logistic regression and network propagation. C Comparison of cross 
validation accuracy for signature derivation and model selection. Minimal balanced accuracy on the 
validation set was chosen as the metric of choice (i.e., worse performance on the test set). Models trained 
on just one dataset achieved lower balanced accuracy than models trained on two datasets (p value given 
by the two sided Wilcoxon test is 0.063). The combination of colorectal cancer from Lee et al. [29] and lung 
cancer from Laughney et al. [27] achieved the highest minimal balanced accuracy of 0.97. D Comparison 
of gene signature scores in laser microdissected gastric cancer data [34]. The normal gene list shows 
lower signature scores in cancer samples (p value 0.052, N = 8, Mood’s median test), when compared to 
the cancer-associated normal tissue. The tumor gene signature is significantly higher for cancer samples 
than the normal tissue (p value 0.003, N = 8, Mood’s median test). E Primary cells and cancer cell lines have 
significantly different gene signature distributions. The normal-cell gene signature shows a gradual reduction 
in gene signature score distribution when compared in primary cells, cell lines, and tumor cell lines. The 
gene signature shows the complete opposite effect. Cancer cell lines have the higher gene signature score 
distribution, followed by cell lines, and primary cells. Distributions were compared using pairwise Wilcoxon 
tests with BH-FDR correction. All adjusted p values were lower than 0.01. F Patient-derived xenografts (PDX) 
show significantly higher tumor gene signature score, than the normal gene signature score. The same 
pattern is observed in multiple cancer types. Normal and tumor signature distributions were compared using 
Wilcoxon tests, for each cancer type, followed by BH-FDR correction. All adjusted p values were lower than 
0.01
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cells were separated using laser-capture microdissection (LCM) and profiled using RNA 
sequencing. Using normal and tumor gene signatures that were identified by ikarus, we 
have scored the tumor and the associated normal cells. As expected, dissected sections 
coming from the cancerous lesions had significantly higher median tumor score than 
the surrounding normal tissue (Fig. 1D, right panel). In line with the latter, normal tis-
sue scored higher than cancerous lesions when the normal gene signature was scored 
(Fig. 1D, left panel).

As another line of evidence, we have downloaded the expression data for primary, nor-
mal, and cancer cell lines from the ENCODE database [35, 36] (see 9). Tumor signature 
scores were on average highest in cancer cell lines, diminished in normal stable cell lines, 
reaching its lowest average in primary cells (Fig. 1E, left panel). When scoring using the 
normal (non-cancer) cell signature, an opposite trend was observed, i.e., score was high-
est in primary cells, intermediate in normal stable cells and the lowest in cancer cell lines 
(Fig. 1E, right panel).

Further, we tested the discriminatory power of the normal and tumor gene lists in 
multiple cancer types. To this end, we have used the patient-derived xenograft (PDX) 
samples from five cancer types provided by [37] and all of the cancer cell lines provided 
by the cancer cell line encyclopedia (CCLE) [38]. The tumor signature score was signifi-
cantly higher than the normal signature score in all PDX cancer types (Fig. 1F) and all 
cancer cell lines screened in CCLE (Additional File 1: Fig. S1C). Surprisingly, the tumor 
signature list produced significantly reduced scores for cell lines stemming from blood-
related cancers (LAML, CLL, LCML, MM, DLBC).

Accurate delineation of cancer cells

In the first step of classification, ikarus derives the tumor and normal gene set scores. 
The tumor and normal gene set scores are then used in a logistic regression classifier, 
to delineate cells with high probability of being tumorous or normal. The classification 
step is followed by the propagation of the cancer/normal label through a custom based 
cell–cell network (Fig. 1B). The cell–cell network is derived from the same gene sets that 
are used for robust scoring. By using only tumor or cell type specific genes, the resulting 
network separates communities that represent either tumor or normal cell states.

Figure 2A shows the performance of ikarus classification on all of the validation and 
test datasets. ikarus achieves an average balanced accuracy of 0.98 which is substan-
tially higher than other classical machine learning methods. In addition to the standard 
machine learning methods (SVM, random forest, and logistic regression), we have com-
pared ikarus to the top ranking tailored cell type classifiers, as evaluated in the recent 
comparison of methods for cell classification [8]: SingleCellNet [9], ACTINN [39], ItClust 
[10], scCaps [40], scHPL [12], CellAssign [41] from scvi-tools [42], and scMRMA [43]. 
We would like to emphasize that for the published methods, we have used the default 
hyperparameter settings from the corresponding descriptions or provided tutorials.

We have chosen balanced accuracy as a measure of performance because of the large 
imbalance of classes. The datasets contained, on average, 7 times more normal cells than 
annotated cancer cells (Additional File 2: Datasets). To give an unbiased view on the per-
formance, Fig. 2B shows the area under the receiver operating characteristic (AUROC) 
distribution for the different datasets. ikarus also achieves a higher average AUROC 
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than other methods. Having a high AUROC value and low balanced accuracy is an indi-
cation of class imbalance. The classification error of the classical machine learning meth-
ods, having high AUROC and low balanced accuracy, is not uniformly distributed—they 
struggle with a high false positive rate.

We have additionally compared all methods with datasets subsampled to include an 
equal number of normal and tumor cells. ikarus showed a higher median balanced accu-
racy in discriminating tumor cells from normal cells (Additional File 1: Fig. S2A). Dur-
ing the comparison of subsampled datasets, we have noticed an increase in variance of 
ikarus results. This is because the subsampling reduces the connectivity of the cell–cell 
network which is used for network propagation.

We have also tested the performance of different classification methods by scaling 
down the input genes, from all profiled genes, to the tumor and normal gene signatures. 
The reduction of input to only normal and tumor gene signatures surprisingly increased 
the performance of all classifiers, indicating that the signatures contain information for 
proper discrimination between tumor and normal cells (Additional File 1: Fig. S2B).

Figure  2C shows the classification accuracy for the Lambrechts lung cancer dataset 
[28]. The Lambrechts dataset was not used for training nor gene signature definition. 
Figure 2D and E show the classification accuracy overlaid on UMAP [44] embeddings 

Fig. 2 ikarus accurately classifies tumor and normal cells. A Balanced accuracy for classification of tumor 
and normal cells, for each of the test datasets. Red arrow highlights performance of ikarus classifier. ikarus 
achieved a significantly higher performance than competing methods (AUC distributions were compared 
using ANOVA with post hoc pairwise comparison. p values were adjusted using BH-FDR. All adjusted p values 
were lower than 0.01). B Area under receiver operating characteristic (AUROC) performance for each classifier. 
AUROC could only be calculated for methods outputting class probabilities. C Confusion matrix showing 
the performance of ikarus classifier on the Lambrechts lung cancer dataset. D Cell type annotation of the 
Lambrechts et al. dataset. E Lambrechts dataset labeled by ikarus classifier
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of the Lambrechts lung cancer dataset [28]. ikarus correctly classifies normal cells, irre-
spective of the underlying cell types. The erroneous classifications are equally distrib-
uted between false positives and false negatives. (UMAPs for other validation and test 
datasets are reported in Additional File 1: Fig. S3 A-E).

In order to test the robustness of ikarus across different single-cell sequencing tech-
nologies, we applied ikarus on a dataset of neuroblastoma tumors sequenced by either 
10X genomics or CEL-Seq2 protocols by Kildisiute et  al. [30]. ikarus achieved a high 
classification accuracy (balanced accuracy of 0.98) on all datasets, irrespective of the 
profiling technology (Figures S3B and S3C). The false positive rate we observed in the 
test datasets (1–3%) can be partly attributable to occasional erroneous labeling of cells 
by the authors of the corresponding studies. The lack of a perfectly labeled single-cell 
tumor sequencing dataset makes it difficult to quantify the actual rate of false positive 
predictions by our method. One possible strategy to remedy this issue is to test our 
method on a dataset that is presumably free of tumor cells, in other words, a healthy 
tissue sample. To ascertain the actual false positive rate for tumor cell classification, we 
have tested ikarus on the single-cell data from peripheral blood of a healthy individual 
[45], where all cells are expected to be non-tumorous. ikarus labeled all cells as non-
tumorous (Additional File 1: Fig. S3F).

Because the datasets used for training and testing consist predominantly of carcino-
mas, we decided to test ikarus performance on a synovial sarcoma sample [46]. On sar-
coma samples, ikarus achieved a reduced balanced accuracy of 0.51, which was primarily 
driven by a high false negative rate—ikarus missed sarcoma tumor cells (Additional File 
1: Fig. S3G).

Further, we were interested in how the accuracy of the classification changes in regards 
to the size and structure of the gene set. First, we have conducted an ablation study, 
where we removed from 20 to 80% of randomly selected genes from the list (Fig. 3A). 
The removal of up to 40% of the genes from the list leads to a ~ 12% (from 99 to 87%) 
drop in median accuracy. If 80% of the gene list is removed, the classification becomes 
random (median accuracy tends to ~ 50%).

Next, we explored how much the accuracy of the classification depends on individ-
ual genes. To test this, we sequentially removed each individual gene from the set and 
repeated the classification. For 160 out of the 162 genes, there was no observable change 
in the classification accuracy on the test datasets (Fig. 3B). The accuracy on the Lambre-
chts lung cancer [28] dataset was, however, particularly sensitive to the omittance of two 
genes: serum amyloid A (SAA1) and fibrinogen beta chain (FGB) (Fig. 3C). Each gene 
is a marker for a tumor specific cell cluster in the Lambrechts dataset (Fig. 3C, D), and 
their removal influences the classification probability of cells constituting that particu-
lar cluster. Such dependence was not observed for other test datasets (Additional File 2: 
Effects of SAA1 and FGB).

Properties of the tumor gene signature

Having observed the high accuracy performance of ikarus based on the detected tumor 
gene signature, we ventured forth to obtain a deeper characterization of the functional 
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content of these genes. Specifically, their involvement in the development of cancer and 
their roles in the prognosis for the patients.

Firstly, we were interested whether the genes within the tumor gene signature conform 
into expression modules, or whether their expression distribution is independent. We 
calculated the pairwise Pearson correlation between the genes from the signature for all 
datasets. To our surprise, the correlation between the genes was largely zero (Fig. 4A). 
We found only a single module (containing 34 genes) that was robustly present in all 
datasets (Additional File 1: Fig. S4A). Genes in this module are annotated as belong-
ing to the cell cycle. We further inspected whether the classification accuracy depends 
on these cell cycle-related genes. The removal of the 34 cell cycle-related genes did not 
affect the classification accuracy (results not shown).

The tumor gene signature had, to our surprise, little overlap with established can-
cer-related gene sets. When compared with the gene sets annotated in the CancerSEA 
database of cancer functional states [47], our tumor gene list had zero or very few 
overlaps with most CancerSEA gene sets, except for the cell cycle genes, which shared 
only 9 genes with our tumor gene list (Fig. 4B). Co-expression analysis, using SEEK 
[48], again showed that the tumor gene signature is partially related to cell cycle and 

Fig. 3 ikarus performance under perturbation. A Performance of ikarus classifier, on the Lambrechts’ 
validation set, when 20 to 80% of the input list is removed. ikarus performance is significantly reduced when 
the 60% of the gene list is removed (p value < 0.01, as determined by a one sample t-test, with BH-FDR 
correction). B Performance of ikarus classifier, on the Lambrechts’ validation set, upon single gene removal 
from the gene list. One hundred sixty out of the 162 genes were inconsequential for the classification. FGB 
(fibrinogen) and SAA1 (serum amyloid alpha) ablation significantly reduced the classification accuracy, but 
only on the Lambrechts et al. lung cancer dataset. C, D FGB and SAA1 are respectively strong markers for one 
of the cell state clusters in the lung cancer dataset
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DNA replication (Fig. 4C). In addition, we saw no overlap with the cancer hallmarks 
from MSIGDB [49] (Additional File 1: Fig. S4B). When compared to the complete 
MSIGDB database, the tumor gene signature preferentially overlapped with the cell 
cycle hallmark (Fig. 4D). Gene ontology (GO) analysis using gprofiler2 [50] showed 
an enrichment of terms exclusively related to cell cycle and mitosis (Additional File 1: 
Fig. S4C). We have tested the GO and SEEK enrichment after the removal of the cell 
cycle module. The analysis did not result in any statistically enriched terms.

The enrichment of cell cycle and DNA replication-related functional terms in our 
tumor gene set (Additional File 2: Enrichment analysis of tumor gene signature) led 
us to hypothesize that the novel gene set differentiates promptly cycling cells. To test 
this hypothesis, we inspected the correlation of the tumor gene set scores with the 
growth rates detected in Patient Derived Xenograft (PDX) samples from [37] and the 
doubling times of the cancer cell lines from CCLE [38]. Unexpectedly, there was no 
correlation between the tumor signature score and the PDX growth rates in any of the 
reported cancer types (Additional File 1: Fig. S4C). Repetition of the analysis on the 
cell line doubling times from CCLE again revealed the same lack of correlation (Addi-
tional File 1: Fig. S4C).

We were interested in whether the tumor cell signature is predictive of survival 
outcomes in cancer. From the protein atlas database (http:// www. prote inatl as. org) 
[51], we extracted genes predictive of survival in one or more cancers. The overlap 
of tumor gene signature with the extracted gene set showed that more than 75% of 

Fig. 4 Properties of the tumor gene signature. A Tumor gene signature co-expression analysis in tumor cells. 
Co-expression is measured as Pearson correlation between all pairs of genes from the gene list. B Tumor 
gene signature shows little overlap with known cancer-associated gene sets. The tumor gene signature was 
compared to the CancerSEA database. Out of the 162 genes, 134 showed no overlap with any of the gene 
lists. 9 genes overlapped with the cell cycle gene list. Only intersections of size 3 and more are shown. C 
Results of the gene co-expression analysis using SEEK. Top 150 co-expressed genes identified by SEEK were 
used as an input for GO enrichment analysis. D Tumor gene signature shows limited overlap with most of the 
gene sets from MsigDB. The most enriched gene set corresponds to the cell cycle

http://www.proteinatlas.org
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tumor signature genes are predictive of unfavorable prognosis in at least one cancer 
type (Fig.  5A). Interestingly, when stratified by cancer type, tumor signature genes 
reported to be unfavorable are overrepresented among 5 cancer types: liver, renal, 
pancreatic, lung, and endometrial cancers (Fig. 5B). An analogous analysis was done 
with data taken from [52], where the authors systematically calculated the risk predic-
tive status for all genes in TCGA cancer types. The analysis showed that the cancer 
specific genes have a significantly higher Stoufer’s Z value (a measure of how signifi-
cantly the gene expression predicts the risk status in any cancer) than the rest of the 
annotated gene set (Fig. 5C). Furthermore, the same trend was observed in 21 out of 
33 profiled cancer types (Welch two sample t-test, Bonferroni adjusted p value < 0.05) 
(Fig. 5D).

Next, we wanted to explore how often the genes from the tumor gene list partici-
pate in genomic rearrangements, particularly gene fusions, which are frequent drivers 
of oncogenic events in multiple cancer types. We downloaded the known cancer gene 
fusions from the ChiTaRS [53] database and inspected the overlap with the novel cancer 
defining gene list. To establish enrichment, we compared the overlap with a background 

Fig. 5 Tumor gene signature is predictive of survival and associated with copy number variations. A Tumor 
gene signature genes are more likely to be significantly prognostic for patient survival in at least one cancer 
type (enrichment p value was lower than 0.01, as determined by a chi-square test). Data was extracted from 
the protein atlas. B The association of tumor gene signature genes with poor survival outcomes is evident 
in multiple cancer types. p values for within cancer comparisons are reported in Additional File 3: Statistics. 
C Data from [52] show that the tumor gene signature genes have much higher Stoufer’s z (association 
with poor survival outcomes) than rest of protein coding genes (p value was lower than 0.01, based on the 
Wilcoxon rank-sum test). D Increased association of the tumor signature genes with negative survival is 
apparent in 23 out of 33 cancer types (the BH-FDR adjusted p value was lower than 0.01 as determined by 
Wilcoxon rank-sum test). E Genes from the tumor gene signature are more likely to participate in 3′ or 5′ 
fusions. When compared to sets of randomly drawn genes, the tumor signature genes had a significantly 
higher probability of participating in genomic fusions. The red vertical line depicts the overlap of the tumor 
signature list with the corresponding gene fusion list (the BH-FDR adjusted p value was lower than 0.01, 
as determined by the resampling test). F Genes from the tumor gene signature are frequently found in 
amplified or deleted genomic regions. We have measured the percentage of the gene list which overlaps 
with the known CNV regions for each cell line in the CCLE dataset. The tumor gene signature was found to be 
enriched in 22/27 cancer types (BH-FDR adjusted empirical p value was lower than 0.01 based on resampling 
tests). Background distributions were derived from expression matched randomly sampled gene lists
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consisting of random gene sets. Genes from the tumor gene signature have a signifi-
cantly higher probability of participating in both 3′ and 5′ fusions, than a random set of 
genes (Fig. 5E).

Gain and loss of DNA content is a ubiquitous property of tumor cells. Copy number 
variation (CNV) profiles that arise from genomic rearrangements create unique genomic 
signatures that can be used for characterization and discrimination of different tumor 
types [54]. We wondered how prevalent genes from the tumor gene signature are in the 
known CNV regions. To this end, we have compared the intersection of the tumor signa-
ture list with the CNV data from CCLE. We compared the tumor gene list intersection 
to a background distribution constructed by randomly sampling expression matched 
gene sets. The tumor gene list had a significantly higher overlap with the known CNV 
regions in the majority of profiled cancer types (Fig. 5F) irrespective of CNV frequency.

Multi‑omics analysis reduces the false positive rate of classification

Characterization of biological systems from multiple viewpoints often produces syner-
gistic insights into the underlying biology. We wondered whether the classification accu-
racy of ikarus algorithm can be improved by using multi-omics measurements. To this 
end, we have used inferCNV [55] to extract copy number variations (CNVs) from the 
single-cell RNA sequencing data. InferCNV is a Bayesian method, which agglomerates 
the expression signal of genomically adjointed genes to ascertain whether there is a gain 
or loss of a certain larger genomic segment. We have used inferCNV to call copy num-
ber variations in all samples used in the manuscript.

Firstly, we wondered whether the copy number variations could be used as universal 
markers for discriminating between normal and cancer cells. We trained random forest 
classifiers to discriminate between the expert labeled normal and tumor cells. One clas-
sifier was trained on each sample. Each of the classifiers was tested on all samples. As 
expected, when evaluated on the sample which was used for the training, each random 
forest classifier correctly discriminated between the cancer and tumor cells (Fig.  6A). 
The classifiers, however, did not generalize to other cancer types—they all suffered from 
a high false positive rate. We tried to improve the generalization of the classification by 
training on multiple datasets. We trained a random forest classifier on joint Lee et al. 
and Laughney et  al. data and tested on all other datasets. Using multiple datasets for 
training did not improve the results of the classification on out of sample cells (Fig. 6B).

We then wondered whether the CNV calls could be used in conjunction with the gene 
expression data to improve ikarus classification of tumor and normal cells. We looked at 
the average CNV value and the variance of CNV values in cells, which were misclassified 
by ikarus in data from Lee et al. and Laughney et al. Both the average CNV value and the 
variance of CNVs were significantly higher in cancer cells, which were misclassified as 
normal cells (Fig. 6C). This indicated that by integrating the CNV scores with the gene 
expression classifier, we might increase the classification accuracy.

We have added an additional proofreading step into the classification procedure. We 
trained a logistic classifier on inferred CNVs, with ikarus predicted cell type labels as 
the dependent variable. Cells which obtained highly probable discordant class labels 
from the CNV classifier had their labels flipped. Using the proofreading step, the aver-
age balanced accuracy stayed the same for all of the samples. We have however noticed a 
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sudden drop in the false positive rate, with a marginal increase in the false negative rate 
(Fig. 6D, Additional File 2: Results).

Discussion
We have implemented a two-step approach for solving a problem that is perceived as 
simple: discriminating tumor cells from normal cells. In the first step, ikarus pipeline 
integrates multiple expert labeled datasets to extract gene sets which discriminate tumor 
cells from normal cells. In the second step, ikarus uses a robust gene set scoring along 
with adaptive network propagation for cell classification. By using robust gene set scor-
ing and network propagation, we have mitigated two common problems in single-cell 
analysis: the influence of batch effects on sample comparison and parameter optimiza-
tion during clustering.

The effect of technical differences between single-cell datasets is usually resolved using 
integration methods. Single-cell integration methods require extensive tuning of sets of 
parameters, most of which have non-intuitive effects on the results. Moreover, the accu-
racy of the resulting integrations cannot be trivially evaluated without extensive usage of 
biological priors. Gene set scoring methods are robust, because they use “within sample” 
rank based scores instead of direct comparison of measured expression values between 
different samples. The only technical variable that influences gene set scoring is the per-
centage of genes from the gene list which are detected in each cell. We have however 
extensively tested the influence of the number of genes on the classification accuracy.

A common step in single-cell analysis is aggregation of cells into clusters, which are 
then used for cell type annotation. Clustering is, however, a procedure with an inherently 
high number of parametric options. It is extremely hard, if not impossible, to choose a 
set of parameters that would produce the same level of accuracy (same cell types) on dif-
ferent datasets, which often necessitates manual intervention to deduce the best cluster-
ing resolution. Because cell types and cell states form highly connected modules within 
the cell–cell similarity graph, we have therefore opted to replace clustering with network 
propagation. Network propagation is a procedure where the uncertainty of cell annota-
tion can be reduced by integrating the annotation score of each individual cell with the 
scores of its nearest neighbors. Network propagation represents a parameterless alterna-
tive to clustering, while retaining the same level of sensitivity for cell annotation.

By exploring a multi-omics approach, we have tried to increase the accuracy of the 
normal–tumor cell discrimination. Using inferred CNVs, we have shown that the infor-
mation from copy number variations does not generalize across different cancer types. 
The inclusion of the copy number variation as a proofreading step reduced the false 
positive rate of the classifiers. It is still an open question, though, by how much would 
single-cell multi-omic measurements improve the classification (for example, by concur-
rently measuring mutations, CNVs, chromatin accessibility, and expression in the same 
single cells). Currently, such methods are either in their infancy, and the required data is 
not available, or have a very limited profiling range (profile only a handful of loci).

ikarus is currently constrained by the reliance on well annotated single-cell datasets. 
For both the gene set definition and testing, we rely on expert provided cell annotation. 
This requirement has limited our training and testing capabilities to the handful of pro-
filed, and annotated cancer types. We have determined that ikarus produces accurate 
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classifications in epithelial tumors, and the neuroblastoma; however, it showed reduced 
accuracy in classifying cells from synovial sarcoma. This implies that multiple trained 
models will be required for comprehensive discrimination of all cancer types. The expo-
nentially increasing number of single-cell datasets will enable us to increase both the 
number of training datasets, as well as to test ikarus on currently unavailable tumor 
types, for instance, soft tissue sarcomas. Moreover, the increasing quality of single-cell 
datasets, most importantly, increasing gene coverage, will also increase the utility of 
ikarus as a gene set based classification method.

Conclusion
By integrating multiple datasets, we have derived a tumor signature gene list which is 
surprisingly refractory to annotation. The gene list contains a sub-module (n = 34) that 
encompasses genes involved in the cell cycle. All of the other genes, however, showed 
little modularity and a lack of enrichment in any single annotation category. Interest-
ingly, the genes were highly expressed in all of the available PDX and CCLE cancer mod-
els. The ablation studies showed that the classifier was robust to the removal of any one 
of the genes. The low co-expression, combined with the lack of sensitivity to the gene 
removal indicates that the tumor signature genes provide mutually synergistic informa-
tion towards the classification accuracy.

Fig. 6 Multi-omics decreases the false positive rate. A Balanced accuracy of random forest classifiers 
trained on each of the tumor types. The classifiers have excellent performance on the same samples they 
were trained on or on similar tumors (such as the Kildisiute et al. neuroblastoma sample), while they fail to 
generalize to other tumor types. B Training on multiple tumor types does not improve the generalization of 
the classifiers. C Cells misclassified by ikarus can be discriminated based on the average CNV and variance 
of CNV values. Tumor cells misclassified as normal cells have significantly higher values of both the average 
CNV and the variance of CNV, than the corresponding normal cells. D Integration of the CNV proofreading 
decreases the false positive rate from 4% to 1%, with the same average balanced accuracy
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ikarus classifier, however, is not limited to tumor cell detection. It can be used to detect 
any cellular state, such as cell types. The only requirements are that the cellular state is 
present in at least two independent experiments, which are expertly annotated.

Automatic, parameterless discrimination between tumor cells and the surround-
ing tumor-associated tissue has multifactorial utility. Tumor cells can be streamlined 
into algorithms for neoepitope prediction, thereby enabling direct, clinically relevant 
insights. Furthermore, the increasing availability of multi-omics measurements would 
enable automatic genetic characterization of tumor subpopulations and the subpopu-
lation-based recommendation of best therapeutic course of action. Application of auto-
matic tumor classification on spatial sequencing datasets enables direct annotation of 
histological samples, thereby facilitating automated digital pathology.

The current scale of development in single-cell biology (on both the technological and 
computational levels) shows promise for quantitative characterization of the complete 
tumor heterogeneity, for each individual. However, before the personalized medicine 
approach can be readily adopted, every step in the data analysis needs to be completely 
automated, with robust performance guarantees. ikarus pipeline represents one step 
towards the implementation of personalized cancer therapy.

Methods
ikarus workflow

The presented ikarus pipeline consists of two major steps. In the first step, ikarus uses 
multiple expert labeled datasets to define gene signatures and builds a cell type specific 
classifier. In the second step, based on the constructed gene sets and classifier, unknown 
cells of interest are scored. The classifier’s scores are then propagated through a cus-
tom cell-cell network, which eventually leads to the cell annotations. While the first 
step is optional, as users can provide their own gene lists, the latter steps are manda-
tory to make a prediction. For making predictions ikarus’ API is modeled as the scikit-
learn workflow, which means 1. load data, 2. initialize a model, 3. fit the model, and 4. 
make the actual predictions on unknown data. In general, annotated data objects are 
used as data format (AnnData, https:// annda ta. readt hedocs. io). Each individual step is 
described in more detail in corresponding subsections below.

Defining gene signature lists

The count matrices of the input AnnData objects are expected to be normalized to the 
total number of reads per cell and log transformed with a base of 2 and a pseudocount of 
1. In addition to that, each AnnData object must contain for each cell the corresponding 
cell type in the observation section, possibly in multiple columns for multiple hierarchi-
cal cell type levels (e.g., tumor and normal cells, or tumor, epithelial and immune cells).

It is important to take care that the input data is not scaled and that it contains the 
complete set of profiled genes and not a preselected set (such as highly variable genes).

Then, for each gene in the input dataset, a t-test with overestimated variance is used 
to compute an approximation of log 2-fold change between two cell type classes, one 
upregulated and one downregulated class. Those classes are provided by the user and 
should be chosen in accordance with the considered columns of the AnnData obser-
vation section. Users can either perform only one comparison (e.g., tumor vs. normal 

https://anndata.readthedocs.io
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cells) but also multiple (e.g., tumor vs. epithelial cells and tumor vs. immune cells). This 
is done independently for each dataset.

For each gene and for each pair-wise comparison, the associated log 2 fold changes (if 
padj < 0.1, neglected otherwise) of the different input datasets are averaged. According 
to these average values the genes are then sorted, highest to lowest and a user-defined 
number of top genes is selected (for our analyses, we used the top 300 genes). The final 
list of upregulated genes is derived by taking either the intersection or the union of 
selected genes across all of the comparisons.

The whole procedure is performed once for the case that the class of interest (e.g., 
tumor) is upregulated (here we take the intersection of selected genes across all of the 
comparisons) and once for the case that this class is downregulated (here we take the 
union of selected genes across all of the comparisons). That way, we obtain two final 
gene sets. One set representing genes enriched in the class of interest (i.e., enriched in 
tumor cells), and a set depleted in the class of interest (depleted in tumor cells).

A combination of Lee, Laughney, Lambrechts, Tirosh, and Kildisiute datasets was used 
to conduct a cross validation analysis. For each pair of datasets, gene signature selec-
tion was performed, followed by training of the logistic classifier. The resulting classi-
fier accuracy was validated on the three datasets which were not used for training. The 
accuracy of the top performing classifiers was furthermore tested on the hepatocellular 
carcinoma (Ma) and carcinoid datasets (Bischoff). Cross validation results can be found 
in the Additional File 3: Cross Validation Results. As the performance metric, a minimal 
balanced accuracy on the validation set was chosen (i.e., what is the worst performance 
of the classifier on the validation set).

For comparison, classifiers were also trained on gene lists extracted from each of the 
datasets.

Cell scoring using gene sets

Both the tumor and normal gene sets were used to score each of the cells in each of 
the experiments using AUCell [56]. As input to AUCell, we provide the gene expression 
matrices that were normalized to the total number of sequenced reads per cell and sub-
sequently transformed using the log2(x + 1) function. AUCell requires that the dataset 
contains at least 80% of the genes from the input gene set.

We have noticed that the AUCell scores do not behave properly in some of the bulk 
sequencing datasets. Namely, samples which had similar transcriptomes sometimes had 
widely different AUCell scores. The user is encouraged to use different gene set scoring 
algorithms like ssGSEA.

Logistic classifier training

A logistic classifier was trained on the combined Lee et al. and Laughney et al. datasets. 
Scores of normal and tumor gene signatures were used as the input and the tumor/nor-
mal class assignment as the target variables.

Cell annotation using network propagation

ikarus implements the cell annotation as an iterative two-step process of cell type assign-
ment and label propagation. In each iteration, we assign labels to cells with a decreasing 
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stringency threshold, which are then propagated to their nearest neighbors. Firstly, the 
labels are assigned to the most probable cells, based on a robust stringency threshold. 
Cells below the stringency threshold have their LR probabilities masked to zero. The 
stringency threshold is defined based on the order statistic of the gene set score differ-
ence between the two classes of interest. In the first iteration, it is the 90% percentile of 
the (tumor–normal) gene set score difference. The label propagation is then obtained 
by computing the dot product of neighborhood connectivities and LR class probability 
estimates. Annotations are derived from the propagated class probabilities. Within each 
iteration step, the stringency threshold is reduced using exponential decay:

where
N0 is the starting stringency threshold;
t is an iteration step;
λ is an exponential decay constant.
The cell–cell graph, used for label propagation, is constructed using the normal and 

tumor gene signatures according to [57], as adopted in [58].
The label propagation procedure is repeated until less than 0.1% of cell annotations 

change.

CNV correction

Classification improvement using copy number variations

To improve the classification results, we used inferred CNV scores as an additional 
source of information. InferCNV [55] was used to compute CNV scores. A cutoff value 
of 0.1 was chosen for gene selection. CNV prediction was performed via HMM (Hidden 
Markov Models). For tumor sub-clustering the parameters were kept default (hclust = 
’ward.D2’, tumor_subcluster_pval = 0.05), though tumor_subcluster_partition_method 
was set to ’qnorm’ as this is claimed to be reasonable faster than ‘random_trees’ No prior 
information on distinct clusters was provided.

In a self-supervised fashion, we used the current ikarus cell annotations as pseudo-
labels to train an additional logistic regression model (LR). The LR takes as its input per 
cell inferred CNV values and predicts the cell annotations. The LR itself is trained on 
all cells from the validation dataset, e.g., Lambrechts et al., Kildisiute et al., Puram et al. 
This model was then used to make predictions on the same dataset assuming that logis-
tic regression should not overfit on this task. The outcome is then considered as the final 
corrected ikarus prediction.

Gene set characterization

Gene set activity in cell lines and PDX models

Tumor and normal gene signature scores were calculated for bulk RNA sequencing data 
from laser microdissected data from gastric cancer, ENCODE cell lines, CCLE cell lines, 
and PDX data. Because AUCell was developed for single-cell RNA sequencing data, the 
signature scores were calculated using ssGSEA as implemented in the escape Biocon-
ductor package [59]. The tumor gene signature scores were compared to the cell line 
doubling times and PDX growth rates that were provided as annotations to the datasets. 

N (t) = N0e
−�t
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ENCODE cell lines dataset was further stratified into three groups: primary cell line, cell 
line, and cancer cell line. The stratification was done manually based on the annotation 
provided by ENCODE.

Comparison with published gene sets

The tumor signature gene set assembled in this study was characterized by comparison 
with publicly available gene sets provided by multiple public resources. We considered 
gene sets of various provenances, e.g., all Homo sapiens gene sets published by MsigDB 
[49], cancer-specific gene sets that represent distinct functional tumor states (Cancer-
SEA) [47], novel gene lists covering previously unidentified members of cellular signal-
ing pathways [60].

Gene sets as provided by MsigDB (n = 31120) were assessed via the interface pro-
vided by the R package msigdbr version 7.2.1. Next, intersections and unions of the can-
cer gene set (this study) with every human gene set from that release (version 7.4) of 
MsigDB, as well as the members of the intersections and original sizes of query gene 
sets, were computed.

CancerSEA resource provides a collection of functional cancer gene sets derived from 
a multitude of single-cell studies, thereby supplying a single-cell level scope to the can-
cer functional hallmarks. For characterization of the cancer gene set assembled in this 
study, we downloaded 14 gene sets  nmin = 66,  nmax = 201 from the CancerSEA resource 
(http:// biocc. hrbmu. edu. cn/ Cance rSEA/ goDow nload) representative of distinct cancer 
functional states and intersected it with our gene set. The results of this analysis were 
presented with the UpSet plot framework [61] implemented in the ComplexHeatmap R 
package [62], mode intersect.

To account for recent advances in the annotation of cellular signaling pathways, we 
downloaded a novel collection of gene sets composed of genes previously unmapped 
to any signal transduction pathway. Namely, we acquired 11 gene sets of various sizes 
 nmin = 10,  nmax = 164) and intersected with the tumor signature gene set of this study. 
The visualization of this analysis was similar, i.e., the intersections were presented with 
an UpSet plot implemented in ComplexHeatmap R package, mode intersect.

Gene fusions

Data on human gene fusions were downloaded from the ChiTaRS resource as was pro-
vided on August 16, 2019 (http:// chita rs. md. biu. ac. il/ index. html) [53]. First, we con-
structed a background distribution from randomly selected sets of genes that were 
expression-matched to the tumor signature gene set (this study). Every random gene set 
was intersected with fused genes from the database and the resulting intersection sizes 
were used to fill a background distribution. Lastly, the tumor signature gene set from 
this study was intersected with the list of fused genes to compare with the background 
distribution. This analysis was done separately on 5′- and 3′-fused genes.

http://biocc.hrbmu.edu.cn/CancerSEA/goDownload
http://chitars.md.biu.ac.il/index.html
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Co‑expression analysis

To investigate genes that are co-expressed with the tumor signature gene list across 
many datasets, we took advantage of web-based platform SEEK (https:// seek. princ eton. 
edu/ seek/) [48]. We queried the tumor gene list to the SEEK search engine and down-
loaded a SEEK-generated ranked list of co-expressed genes. For further analyses we used 
top 150 genes from the ranked list.

Gene ontology (GO) analysis

The GO analyses throughout this study were done using the framework provided by 
gprofiler2 R package [50]. From the default run settings, p values threshold was changed 
to 10e−4 and correction_method option set to g_SCS.

Gene set sensitivity testing

To measure ikarus’ robustness on the extracted tumor gene list, we performed the fol-
lowing analyses:

Gene set size

Using the Lambrechts et  al. lung cancer dataset, we iteratively computed ikarus’ bal-
anced accuracies ablating a random section of the tumor gene list in a cumulative step-
wise manner before scoring and prediction steps. Namely, we randomly removed 20, 40, 
60, and 80% percent of the tumor gene list. Every ablation percentage was itself reiter-
ated 25 times. The predictions were not CNV-corrected.

Single gene ablation

Further, we investigated the prediction value of individual genes in the gene list. We 
employed a similar procedure as before, but in contrast to ablating the whole sections 
of the list, we removed an individual gene from the list per iteration before computing 
ikarus’ balanced accuracies.

Gene set prognostic power analysis

To infer the prognostic power of the generated gene set, we referred to prognostic data 
available in the TCGA. Namely, we downloaded a dataset of Cox-proportional hazard 
model z-scores that were generated for every gene expression feature across all available 
tumor types [43]. The distributions of the gene set z-scores were compared to the dis-
tribution of all gene expression z-scores (population) in every cancer type individually. 
Additionally, the cited research provided estimates of Stoufer’s z-scores per gene expres-
sion feature. This metric represents a normalized prognostic average over all cancer 
types available in the dataset. Here, the same procedure was used; we compared the dis-
tribution of Stoufer’s Zs in the gene set to the distribution of all gene expression features.

CNV analysis

To investigate the overrepresentation of copy number amplifications among the genes in 
the extracted tumor gene list, we referred to the COSMIC database. Namely, we down-
loaded a complete COSMIC collection of copy number alterations and stratified it by 
tumor tissue of origin (n = 27). Next, we iteratively intersected the tumor gene list from 

https://seek.princeton.edu/seek/
https://seek.princeton.edu/seek/
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this study with significantly amplified genes (denoted as “gain” in the COSMIC table) 
over tumor tissues of origin. As a random control, we prepared similarly sized random 
gene sets (n = 162) that were expression-matched to the original tumor gene list. Expres-
sion matching was done on Laughney et al., Lee et al., and Lambrechts et al. datasets 
independently. In total, 150 random gene sets were generated, 50 sets per expression 
dataset.

Comparison to reference methods

The methods used as reference for ikarus were installed and used to the best of our 
knowledge. We used default hyperparameter settings from the corresponding descrip-
tion or provided tutorials. We did not perform any kind of hyperparameter optimiza-
tion. We would like to point out that the published classification methods have many 
tunable parameters, and tuning the parameters might significantly increase their per-
formance. Both CellAssign and scMRMA assume a marker gene list for the target cell 
type prediction. We provided here the tumor and normal gene signatures generated with 
ikarus.

Dataset subsampling

To ascertain whether the classification methods accuracy can be improved by balancing 
the classes, we randomly subsampled 1000 tumor and 1000 normal cells 100 times for 
each of the following datasets used for validation, Lambrechts et al., Kildisiute et al., and 
Puram et al., and evaluated the classifier performance on the datasets.

Statistical testing

Statistical tests performed, groups in comparison, and sample sizes are summarized 
in Supplementary Additional File 3: Statistical Comparisons. In cases of multiple test-
ing, p  values were adjusted using Benjamini-Hochberg (FDR) method [63]. For situa-
tions where tests were not applicable, random background distributions were simulated 
against which the probabilities of observing an event under question were estimated. 
Testing approaches of such kind are reported as “empirical” in Supplementary Addi-
tional File 3: Statistical Comparisons. If the adjusted p value was lower than 0.01, it was 
reported as statistically significant.

For comparing the distribution of non-tumor cells from ikarus’ misclassifications for 
the Lambrechts et al. lung cancer dataset with the actual distribution of cell types, we 
performed pairwise for each of the misclassified groups 2 × 2 fisher exact test (Addi-
tional File 2: Lambrechts misclassification).
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Datasets
Single-cell RNA-seq data:
Gene expression values for single-cell RNA-seq experiments are available through the corresponding publications. If not 
explicitly declared otherwise, the 10X genomics protocol was used for scRNA-seq.
Laughney et al. provide a lung adenocarcinoma (primary tumors and metastases) dataset that include 40505 cells com-
ing from 17 patients. For our purpose, 1091 cells are considered tumorous, and 39,414 are normal.
63,689 cells from 23 colorectal cancer patients are coming from Lee et al. 16,248 cells are considered tumorous and 
47,441 are normal. After our cross validation analysis, these two datasets serve as input for model building.
A non-small-cell lung cancer dataset is coming from Lambrechts et al. It considers 52,698 cells, of which 7447 are tumor-
ous and 45,251 are normal. This dataset is used for model testing.
Puram et al. published 5578 single cells from 18 head and neck squamous cell carcinoma patients. They performed 
Fluorescence-activated cell sorting for scRNA-seq. 2215 cells are tumorous, 3363 cells are normal. We use this dataset for 
model testing.
Kildisiute et al. published a neuroblastoma cell atlas. We used 6442 cells (10X) from 5 patients (1766 tumorous, 4676 
normal) and 13281 cells (CEL-seq2) from 16 patients (1630 tumorous, 11651 normal) as two distinct datasets for model 
testing. Ma et al. made a hepatocellular carcinoma dataset available with 17,164 tumor and 39,557 non-tumor cells. It 
was used as another test set. We also used a lung carcinoid dataset by Bischoff et al. for testing. It includes 8097 tumor 
and 55,230 non-tumor cells. Jerby-Arnon et al. published a synovial sarcoma dataset that we used for testing. It includes 
8323 tumor and 851 non-tumor cells. A comprehensive description of the datasets can be found in the Additional File 2: 
Datasets.
For both input datasets, Laughney et al. lung adenocarcinoma and Lee et al. colorectal cancer, we considered a refined 
annotation for tumorous cells. Based on gene sets from MSigDB (v7.1) [49] hallmark collection HALLMARK_E2F_TARGETS, 
HALLMARK_G2M_CHECKPOINT, HALLMARK_MYC_TARGETS_V1, HALLMARK_MYC_TARGETS_V2, HALLMARK_P53_PATH-
WAY, HALLMARK_MITOTIC_SPINDLE, HALLMARK_HYPOXIA, HALLMARK_ANGIOGENESIS, and HALLMARK_GLYCOLYSIS, 
we scored each cell. If the average over all considered hallmark gene list scores (in the range 0–1) exceeds a reasonable 
threshold (0.45 for Laughney et al., 0.35 for Lee et al.), the cell is considered tumorous. Thresholds are chosen to minimize 
the amount of false positives with respect to the initial annotation of normal and tumor cell sources. The distribution of 
normal and tumor cell sources obtained from the initial annotation is provided in Additional File 2: Datasets.
ENCODE cell line dataset:
Gene expression values for primary cells, cell lines, and cancer cell lines were downloaded in batch from the ENCODE 
portal with the following query: Assay title: “polyA plus RNA-seq”; Status: “released”; Perturbation: “not perturbed”; 
Organism: “Homo sapiens”; Biosample classification: “cell line”, “primary cell”; Genome assembly: “GRCh38”. Identifiers cor-
responding to the acquired data totaling 860 files are provided in the supplementary materials (Additional File 2: Encode 
IDs). Downloaded expression tables were merged and standardized by a custom R script prepare.data_encode.R to a 
combined gene expression matrix that includes all input data, HGNC symbol gene annotation and cell annotations. For 
gene expression quantification log2(TPM) with a pseudocount of 1 was used. Based on those components, an AnnData 
object is created which is then provided as an input to the ikarus package. Cancer cell line annotation was done manu-
ally and is provided in Additional File 2: Enrichment analysis of tumor gene signature.
Microdissection dataset:
The gastric cancer microdissection dataset comprises laser capture microdissected (LCM) stromal and cancer regions 
collected from a patient cohort (n = 8) totaling 16 samples. Microdissected tissue for each sample was pooled together 
before library preparation to account for the absence of replicates. Gene expression quantification of stromal and cancer 
samples, as provided by the authors of the study [34] in the form of raw counts, was first standardized to ikarus format 
and then used as an input to ikarus pipeline.
Databases:

https://github.com/BIMSBbioinfo/ikarus
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- Human protein atlas (https:// www. prote inatl as. org/ human prote ome/ patho logy) [51]
- Prognostic genes [52]
- Gene fusion (ChiTaRs) [53]
- SEEK (co-expression database) (https:// seek. princ eton. edu/ seek/) [48]
- g:Profiler (https:// biit. cs. ut. ee/ gprofi ler/) [50]
- CancerSEA (http:// biocc. hrbmu. edu. cn/ Cance rSEA/ home. jsp) [47]
- MsigDB (GO, Hallmark gene sets) [49]
- Atlas of co-essential modules [60]
- DepMap Achilles scores (https:// depmap. org/ portal/ downl oad/) [65]
- COSMIC (cancer.sanger.ac.uk) [66]
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