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Abstract: Spatiotemporal signal shaping in G protein-coupled receptor (GPCR) signaling is now
a well-established and accepted notion to explain how signaling specificity can be achieved by a
superfamily sharing only a handful of downstream second messengers. Dozens of Gs-coupled GPCR
signals ultimately converge on the production of cAMP, a ubiquitous second messenger. This idea is
almost always framed in terms of local concentrations, the differences in which are maintained by
means of spatial separation. However, given the dynamic nature of the reaction-diffusion processes
at hand, the dynamics, in particular the local diffusional properties of the receptors and their cognate
G proteins, are also important. By combining some first principle considerations, simulated data,
and experimental data of the receptors diffusing on the membranes of living cells, we offer a short
perspective on the modulatory role of local membrane diffusion in regulating GPCR-mediated cell
signaling. Our analysis points to a diffusion-limited regime where the effective production rate of
activated G protein scales linearly with the receptor–G protein complex’s relative diffusion rate and
to an interesting role played by the membrane geometry in modulating the efficiency of coupling.

Keywords: GPCR signaling; spatiotemporal signal shaping; diffusion-limited reaction

1. Introduction

G protein-coupled receptors (GPCRs) constitute an important [1] and large class
of proteins mediating the cellular response to specific external stimuli. Functionally, it
is vital for the cell to modulate the relative efficacy of signals originating from distinct
GPCRs [2,3]. Any means of modulation of the local signaling machinery can, in principle,
lead to downstream spatiotemporal shaping of the signal when combined with other
localization mechanisms, such as buffered diffusion of second messenger molecules [4],
commonly referred to as compartmentalization. In general, the malleability of the reaction-
diffusion processes involved in signaling is a way to overcome the relatively low variety
in downstream pathways [5,6] and accurately reflect the complex abundance of potential
stimuli. Several mechanisms of signal shaping have been observed, many of which concern
the downstream signaling cascade that is triggered by the receptor interacting with a ligand
and a heterotrimeric G protein [7].

GPCR signaling is, at its heart, a ternary binding process. The receptor molecule
(membrane-bound) binds to a ligand (coming from the cell’s exterior), leading to an in-
creased affinity to bind to a G protein (membrane-bound, coming from within the cell
membrane) [8]. A guanine nucleotide exchange (GDP-to-GTP exchange) then activates the
G protein. G proteins are divided into subclasses according to the downstream signaling

Cells 2022, 11, 1660. https://doi.org/10.3390/cells11101660 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11101660
https://doi.org/10.3390/cells11101660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-0013-5186
https://orcid.org/0000-0003-0240-7763
https://orcid.org/0000-0001-9822-5694
https://orcid.org/0000-0002-0114-7819
https://orcid.org/0000-0003-3208-5347
https://doi.org/10.3390/cells11101660
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11101660?type=check_update&version=3


Cells 2022, 11, 1660 2 of 18

activity that they elicit. While the general mechanism holds for multiple signaling path-
ways, our presentation focuses on the Gs case, as this is the prototypical example [9,10].
Heterotrimeric G proteins have three subunits, labeled α, β and γ, which for the purpose of
GPCR signaling effectively constitute a dimer, with the signal being transduced by either α
or βγ. Specifically, Gαs stimulates adenylate cyclase and cAMP production upon activation.
A simplified reaction network scheme is given in Figure 1.
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Figure 1. Simplified kinetic model illustrating how the second messenger molecule cAMP is produced
downstream. The initial ternary reaction between the ligand (S), receptor (R) and G protein (G) on
the cell membrane (gray line) leads to activated G protein (G∗). This then is used together with
membrane-bound AC and ATP from the cell cytosol (green) for cAMP production. We only depict
the steps along the line of the conversion of the extra-cellular signal to production of the second
messenger protein cAMP, which we explicitly model in this short perspective.

We note that only the very first segments in this sequence of events are influenced by
the receptor’s single-particle diffusive properties. Receptor binding to the G protein consists
of two steps that we can conceptually depict as (1) a search phase, in which the binding
proteins get sufficiently close to each other, and (2) the actual interaction. The search process
is a relevant contribution because energy is consumed in the signaling cascade, manifesting
itself by replacing a GDP in the Gα with a GTP. Eventually, if the reverse reaction were
not carried over (by hydrolizing GTP to GDP), the pool of available G proteins would
deplete. The local depletion of available and (for the signaling) usable G protein induces an
inhomogeneity in the system that would invalidate the assumption of being at equilibrium
(or well-stirred), underlying the usual mass action law kinetics. The travel times contribute
to every reaction and, as discussed in the following, may dominate the inter-reaction times.
In terms of physical modeling, energy consumption during the GDP-to-GTP exchange
introduces a manifest irreversibility at this stage that has to be accounted for. Thus, the
binding of the receptor–ligand complex to the G protein is conceptually different from the
one of the receptor and ligand. The latter can and will rebind frequently, and the overall
effect of a change in receptor dynamics is comparatively small due to large differences
in molecular weight, with typical ligands being roughly one (large peptidic ligands) to
three (adrenergic ligands) orders of magnitude smaller than their respective receptors.
Additionally, the ligands’ motion outside the cell occurs in three dimensions, and any
search process is substantially faster. Therefore, we focus our survey on the binding of a
receptor–ligand complex to the G protein and the formation of an active ternary complex.

As the temporal order of binding events to form the ternary complex matters, there
are multiple possible scenarios in this regard [11]. For simplicity and without affecting the
generality of our conclusions, we focus here on the case of a preformed receptor–ligand
complex binding with a G protein. This is because the activated receptor state has an
increased lifetime [12,13] as well as lower energy barriers [14]. We therefore disregard the
case of the receptor binding directly to the G protein without a ligand.

In this perspective, we emphasize the relevance of receptor (or receptor–ligand com-
plex) dynamics as a mechanism that cells may employ to modulate the signaling machinery,
and thus specificity, in the downstream pathway. The underlying core insight is that the
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binding reaction of the receptors or receptor–ligand complexes to the G protein is diffusion-
limited [15–18], meaning that inter-reaction times are dominated by the time needed for
the binding partners to meet. As a consequence, single-particle dynamics are relevant in
a way that is easily overlooked in standard mass action law approaches. We review the
relevant ideas in the literature with the goal of an accessible biophysical presentation that
focuses on this particular aspect of the signaling machinery to address the leading question:
how do receptor and G protein dynamics at the plasma membrane affect GPCR signaling?
We will also discuss the outline of how this could be addressed experimentally together
with the presentation of some relevant data to support the discussion.

2. Diffusion Limitation in GPCR-G Protein Binding

In the following, we analyze the scaling of the effective production rate of activated
G protein, depending on the diffusion regime, separating between fast and slow diffusion
on the plasma membrane. We start in Section 2.1 by introducing a reduced model for the
diffusion and binding dynamics of a single receptor–ligand complex and a G protein. In
Section 2.2, we analyze the basic scenario of diffusion in a planar membrane, while in
Section 2.3, more complicated geometries as well as clustering and oligomerization effects
are considered.

2.1. Reduced Diffusional Model

A receptor can form several complexes with external ligands as well as those with
the cognate G protein, all of which can determine conformational changes in the receptor.
This has led to the description of the reaction kinetics by means of the cubic ternary complex
model or extensions thereof [12]. Similarly, other models have been used to capture other
aspects of the GPCR signaling [19,20]. Here, we want to present a very concise model
that is focused on the effect of receptor diffusion dynamics and allows for direct analytical
(in terms of dimensional scaling arguments) and numerical investigation. Of particular
interest are the deviations from a simple mass action reaction law that follow from the
local depletion of G protein. Following a reaction and its activation at a given receptor,
the G protein is not directly available again at the receptor but is, on the population level,
replenished elsewhere. This provides intuitive insight into the role that diffusion limitation
plays in the GPCR signaling cascade. Furthermore, due to its simplicity, we are directly
able to extent the model to other geometries than the planar membrane. The interested
reader may find further references, either characterized by more analytical [21–25] or more
biological [15,26,27] approaches, that lead to similar conclusions.

We take a black box approach to those steps in the GPCR signaling process that do
not directly depend on the receptor diffusion constant and only model the receptor–ligand
complex (RS) and G protein (G) binding. This is a choice, and one may consider the case
of “pre-coupled” receptors (receptors binding to G protein before binding to a ligand) as
well. We take a single-molecule level approach along the lines of the Doi model [28], a
standard tool in particle-based reaction-diffusion modeling, accounting for inter-molecular
interactions of diffusing molecules in terms of an interaction range ` > 0 and a reaction
rate k > 0.

The result of our considerations on this model is an effective rate keff, describing the
rate of production of activated G protein. At the cell level, the concentration of activated
G protein controls the resulting signaling strength. As mentioned before, there are con-
ceptually two contributions to this effective rate: (1) searching an available G protein (i.e.,
getting within a distance smaller than `) and (2) the actual binding (which happens with
a constant rate k while within interaction range). The length scale L associated with the
typical distance to the available G protein should be large compared with the interaction
range (i.e., L� `). As a consequence of this separation of scales, and to reduce model com-
plexity, we take an effective single-particle approach: we consider the binding of a single
receptor–ligand complex to a single G protein in the frame of reference of the G protein
such that there is a static interaction zone and an effective diffusion constant D = DR + DG.
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This starts at a distance L to the interaction zone and is a renewal process that is restarted
upon binding. The actual geometry and distribution of the distances are neglected, as we
primarily focus on the scaling, particularly with the diffusion coefficient D. From the first
reaction time τ (i.e., the time it takes the process to reset), we can extract the effective rate
of activated G protein production via

keff = 1/〈τ〉,

where 〈τ〉 refers to the mean of τ.
In summary, our model is sketched in Figure 2. A particle diffuses in a circular domain

of radius L with a diffusion constant D. Inside, there is a smaller concentric circular region
of radius `, to which the particle can bind with a constant k > 0 while inside. Where
necessary, we assume reflecting boundary conditions.

ℓ

L

Adsorption rate k

Diffusivity D

Figure 2. Sketch of the toy model. The particle (red dot) diffuses with a diffusion constant D > 0 in a
circular domain of radius L > 0, searching for the active zone of radius ` (0 < ` < L). One example
trajectory is depicted by the blue line. Within the active zone, the particle can get absorbed at rate
k > 0. For the target problem of this work, the particle can be thought of as the ligand-bound receptor
RS finding the G protein, but it is moving with the combined diffusion constant.

2.2. Scaling Analysis

We can gather some initial insight from dimensional analysis of the model parameters,
particularly from considering the timescales present in this model. Trivially, binding with a
rate of k implies the typical timescale of binding:

τk ∼
1
k

.

As binding is only relevant while the particle is inside the inner region, we have to
compare τk to the timescale corresponding to the typical time spent inside this region,
which is given by

τ` ∼
`2

D
,

and to the time spent to initially reach this region:

τL ∼
(L− `)2

D
.

We are mainly interested in a regime where τL > τ` as L� `, due to typical G protein
plasma membrane densities of [G] ≈ 105−6/cell. Assuming a surface area of the cell to
the order of 1000 (µm)2, this leads to [G] ≈ 102−3/(µm)2 or L−1 ≈ 101−2 (µm)−1, which is
larger than the interaction ranges of ` / nm [26]. Dimensionally, we expect a crossover
between different behaviors around a critical diffusion constant Dc, for which the two
timescales τL and τk are of the same order of magnitude:

τk/τL ∼ 1 ⇒ Dc ∼ (L− `)2k ≈ L2k.
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It is instructive to use this scale in order to consider the extreme cases of very small
and very large diffusivity or, conversely, large and small binding rates.

In the case where D � Dc, the time typically spent in the binding area is small
compared with the binding time (i.e., there will be many passages through this area
before the particle actually binds and a negligible contribution from the initial search).
From this, we find that the effective rate should scale like the equilibrium probability
to be in the reaction area in the nonbinding case. Without any binding interaction, the
equilibrium distribution is uniform, with every point within the radius of size L being
equally likely. Considering a virtual ensemble of such systems, a fraction corresponding
to the ratio of areas Pinside ∝ (`/L)2 would be inside the interaction range. The interaction
rate will be directly proportional to this while also being proportional to the original
binding rate:

keff,D�Dc ∼ (`/L)2k.

Essentially, this fast diffusion regime corresponds to the typical assumption of a well-
stirred state underlying the mass action law. Thus, if the diffusion is high compared with
the threshold value Dc = L2k, we do not expect a relevant effect from the receptor diffusion
dynamics to the signaling.

In the case where D � Dc, the actual binding is fast compared with the travel
times. Spatial heterogeneity matters, and the travel times become the determining factor
for the effective binding rate, leading to

keff,D�Dc ∼
D

(L− `)2 ≈
D
L2 . (1)

In other words, the effective production rate of activated G protein scales linearly with
the diffusion coefficient.

In order to determine in which regime actual cells are operating, we need to review
here some of the ranges currently encountered in the literature for such values. Concern-
ing diffusion constants on the plasma membrane, a consensus value is typically found
in the range of of D ∼ 0.1 µm2/s [29–32]. There is some level of experimental control
that can be enacted over the diffusion constant. One approach is to change the mem-
brane composition [33,34], which affects the viscosity µ of the membrane for the receptor
molecules and, by way of the Einstein–Smoluchowski (or fluctuation–dissipation) relation,
the diffusion constant as D ∼ µ−1. Similarly, GPCR interacting proteins (GIPs), trans-
membrane or cytosolic proteins that can bind to both the heterotrimeric G protein and
the receptor, can affect the receptor dynamics and have been implicated in fine-tuning
signaling [35]. Another approach to control the receptor dynamics is by means of modulat-
ing the actin expression [36]. Actin interacts with the receptors by providing a background
of specific as well as unspecific interactions that will effectively slow down the diffusion [37],
as clearly observed, for example, for the transferrin receptor (a non-GPCR transmembrane
protein) [38]. Thus, an increase in polymerized actin should lead to a decrease in the ob-
served diffusion constant, whereas a reduction in the actin fiber density should lead to an
increase. This intuitive notion has been confirmed experimentally by us and others for
the case of overexpression [36] (see also Figure 3). Additionally, the relative importance of
free and polymerized actin can be changed by introducing mutations (such as the S14C)
which facilitate polymerization [39]. Drugs that induce depolymerization of actin, such as
Latrunculin B (LatB), lead to a loss of actin fibers to the point of a collapse of the cortex [40].
The effect of overexpression is found to be independent of the local actin network topology,
hinting to it not being a mere scaffolding effect [36].
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Figure 3. Experimental evidence for how receptor dynamics can be modulated by the subplasmalem-
mal environment, in particular for the cortical actin mesh, showing the diffusion coefficient of the
β2-adrenergic receptor (β2-AR) in rat myoblast H9c2 cells for different regions of the cell and condi-
tions. The β2-AR is significantly slower in cells overexpressing actin. When actin is hyperpolimerized,
using the mutant S14C, the diffusion is additionally reduced. The receptors are slowest around
large actin bundles (fibers). We added a dashed line corresponding to the wild-type findings to
highlight the effect of actin overexpression. Actin depolymerization by Latrunculin B (2 µM) leads to
a statistically significant recovery in the diffusion rate of the receptor. Error bars indicate the standard
error of the mean. This figure reproduces data from [36].

On the other hand, the actual values for the length scale L and reaction rate k are subject
to more variability in the available literature, ranging from low values of k ∼ 1/s [12,13]
to high values of k ∼ 103/s [41,42]. This wide range in reported values is interesting in
itself, with the temporal trend being toward lower reported values of k in the last few years.
A more definitive consensus for appropriate effective rates for modeling purposes would
be a very welcome addition to the literature. We note that our parameter k conceptually
only captures the binding, and the actual activation times can and will be larger than the
binding times. The length scale L is modulated by the expression levels of the signaling
partners, which may be cell type-dependent. As stated earlier, a rough figure is given by
L−1 ≈ 101−2 (µm)−1. If we use the available experimental data from [26], we can estimate
that the times between interactions are about an order of magnitude greater than the time
needed for the activation of G protein once in contact with a receptor, which has been found
to be several milliseconds [42]. In our terminology, this means τk � τL or D � Dc, and we
are in the slow diffusion or diffusion-limited regime, expecting an effective rate of keff ∝ D
that is strongly dependent on the diffusion constant and therefore allows for immediate
modulation by any change in receptor dynamics. Covering a wide range of parameter
values is appropriate, especially in case of the reaction rate k, as there are reported values of
k that imply reaction times comparable to or larger than the diffusion times [43]. In this case,
keff ∼ D no longer holds, and the dependence of the signaling strength upon the diffusion
constant is reduced, albeit still present. To account for this, we keep our discussion below
about the implications on the reaction network in terms of the effective rate keff.

The scaling result can be immediately appreciated in our graphical display of Figure 4.
Here, we present the results of a straightforward simulation of our model (the details of
which are given in Appendix A) and show the empirically found effective rates as functions
of the diffusion constant. The simulation uses dimensionless units, but for the sake of
convenience, we also display the results in physical units (top axis), assuming values of
k = 102 s−1 and `2 = 10−15 m. The relatively large interaction range is motivated by the
fact that simulation times become very long for L/`� 1, and we can get to larger travel
distances L− ` with the same computational resources this way. We can thus corroborate
our scaling analysis with a crossover from a strongly diffusion-dependent regime for small
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values of the diffusion coefficient D to a regime where diffusion becomes irrelevant, and
the bare binding rate reappears.
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Figure 4. Effective production rate keff given by the inverse of the mean first reaction time in the Doi
model presented in the main text, with some additional details given in Appendix A. We present
the results in dimensionless units (upper ordinate axis) and using exemplary physical values (lower
axis). Left: Direct results for keff as a function of the particle diffusion coefficient for varying ratios
of domain size L and interaction range ` as coded by line color. Right: The same data, but directly
employing the diffusion-limited scaling keff ∼ τ−1

L . Here, we show only data for larger values of
L/` > 3, where the scaling is expected to hold.

2.3. More Complicated Scenarios: Clustering and Geometries Other than Planar

While the presentation in terms of the Doi model may appear simplistic, the diffusion-
limited result k ∼ D does also hold in more involved descriptions. One conceptually
interesting refinement would be the effect of clustering, an important manifestation of
this being oligomerization of the receptor molecules [44–49]. Clustering can be somewhat
captured in our models by effective parameters. A cluster of targets will increase not only
the adsorption rate k and the size ` of the target, but the spatial heterogeneity as captured
by the typical distance L will also increase. Moreover, the diffusion dependence will not
only prevail [50], but when assuming D to be constant, this change in parameters would
imply an increase in Dc = kL2 and therefore move the system deeper into the diffusion-
limited regime (corresponding to moving down and left in Figure 4 (left)). Another effect
of clustering, however, is that it changes the relevance of lifetime effects. We do not account
for the unbinding and rebinding of receptor–ligand complexes, which are greatly altered in
the presence of receptor clusters. To an extent, these effectively modulate the abundances
of the relevant complexes.

Importantly, the diffusion-limited regime allows also for other ways of modulating
the effective rate than directly changing the diffusion constant. This can be motivated by in-
spection of the free diffusion law δ2 = 2dDt, with δ2 being the mean squared displacement,
D the diffusion constant, t the time and d the spatial dimensionality. While the membrane,
as a lipid bilayer, is always effectively two-dimensional, introducing curvature allows for a
manipulation of the relative importance of the two dimensions. It was observed experimen-
tally that there is a modulation of the receptor concentration in curved geometries [32,51],
but there is no clear evidence available for the dynamics and signaling. The simplest model
one can devise to address this problem is that of a long cylinder, as the axial direction is
extended while the circumferential direction is finite. This means that as particles diffuse
along the cylinder, the shape of the diffusive front changes from a circle that wraps around
the cylinder and ultimately merges with itself to two straight lines propagating forward.
In other words, there is a crossover from two-dimensional to effectively one-dimensional
diffusion on a timescale τρ ∼ ρ2/L, determined by the cylinder radius ρ. This boils down
to the effective rate keff being dependent on the cylinder radius ρ as well. Additionally,
the manifest anisotropy of a cylinder (at larger scales) becomes important for the typical
distances between a receptor and a G protein at identical densities when compared with a
flat membrane. This is because the typical free area is also anisotropic in this case, leading
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to search times that are dominated by the longest dimension. Numerical data to verify this
are given in Figure 5, where we show the first passage time from the edge of a patch with
an area πL2 to a central circular area of a size π`2. To account for the area doubly covered
due to the periodicity, the size of this patch is L′ ≥ L. As a cylinder can be unrolled to a
flat sheet (using the axial component and the rotational angle as coordinates), a cylinder
of a sufficiently large radius is, for our purposes, indistinguishable from a flat membrane.
(The curvature would, in principle, lead to an effective value of the interaction range `
if the interaction range is defined by the Euclidean distance. However, the results in the
diffusion-limited regime are fairly insensitive to `). For very thin cylinders, on the other
hand, the geometry becomes important with drastically increasing first passage times in
the rescaled system. Conversely, this would correspond to a decrease in the effective rate.
This could be one contributing factor to the observed differences regarding signaling in
these geometries, with one example being the T-tubular network of cardiomyocytes [32,52].

ρL=L' L' L'

A B

Figure 5. (A) Sketch of the change in the Doi model geometry on a cylinder for varying cylinder radii
(cylinder is also sketched as an inset of (B)). We compare models of the same interaction area πL2.
Due to the periodic boundary conditions, this leads to a larger extension in the axial direction.

In more general scenarios, the geometry and therefore the dynamics will be inhomo-
geneous, and general statements in this respect are rare. It is important to consider the
effective diffusion dynamics on a surface that is given in the so-called Monge parametriza-
tion (i.e., a point on the surface is given by a vector of the form (x, y, εH(x, y)), with x, y
being regular Cartesian coordinates and H(x, y) some smooth function). The amplitude of
the undulations can be controlled via the parameter ε > 0. When evaluating the appropriate
Laplace–Beltrami operator (which replaces the standard Laplacian in the diffusion equation
when going from a planar setting to a more general surface) in a leading non-trivial order
in ε, one finds that, when observed in the x–y plane, there is an inhomogeneous diffusion,
but more interestingly, there is also an effective potential V = ε2/2D(H2

x + H2
y). The effec-

tive forces associated with this are given by derivatives corroborating the intuitive notion
that the curvature of the membrane modulates the dynamics. This, in turn, will affect the
reaction kinetics. Some recent progress in this direction has been made by studying the
effect of a small radially symmetric deviation from the planar state [53]. In a biological
setting, this effect will compete with any potential energetic effect induced by a curved
membrane as well as more indirect effects that modulate the binding rates (with the change
in conformation of the proteins being one). We believe this is one potential avenue for
future modeling, should relevant data become available.

Finally, we note that due to the complex nature of the membrane environment, in
particular the crowding of other molecules [54] as well as micro-confinement, anomalous
diffusion [55,56] might be relevant for short time scales (i.e., mean square displacements
might follow a law δ2 ∼ Dαt2α with α 6= 1/2 with a more generalized diffusion constant
Dα). In this case, we would have to adapt our reasoning by using τL ∼ (Dα)

1/2α [57]. The
biologically relevant case is subdiffusive behavior α < 1/2, although superdiffusive behavior
α > 1/2 is also possible due to activity [58] such as directed motion along cytoskeletal
filaments that is driven by molecular motors [59]. To investigate the practical effect of
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such anomalous behavior qualitatively, let us assume that in an experiment, the empirical
diffusion constant would be measured based on the mean squared displacements δD
at some time tD using Demp = δ2

D/(4tD) (i.e., assuming α = 1
2 ), implying 4tDkeff ∼

(δD/L)2 (see Equation (1)). If the true dynamics are anomalous, this means we actually
should use Dα,emp = δ2

D/(4t2α
D ) and will get 4tdkα,eff ∼ (δD/L)1/α. Therefore, a “freely

diffusive expectation” based on large times such that δD > L would underestimate the
effective rate in an anomalously diffusive system with α < 1

2 , and one based on short
times, for which δD < L, would overestimate it. This is an important aspect to keep in
mind. For the systems of interest here, there is indeed evidence for diffusive behavior of
the receptors on the timescales relevant for receptor–G protein meetings (to the order of
100 ms [26], corresponding to distances of about 200 nm using a typical diffusion coefficient
of D ≈ 0.1 (µm)2/s) [32,38].

In conclusion, a diffusion-limited reaction on a more complex geometry is not only
dependent on the receptor dynamics themselves but also on their interplay with the
geometry, giving ample degrees of freedom for a modulation of the reaction by the local
biophysical environment of the cell.

3. Measuring the Second Messenger Concentration: The Reaction Network

Let us now assume that the cell, using one of the above-mentioned mechanisms, has
been able to modulate the relative diffusion coefficient of the GPCR–G protein pair. We
aim to determine if this translates into a modulation of the second messenger production,
either locally or globally, depending on the specific geometry. Second messengers are the
molecules produced in reactions that are downstream in the cascade of events triggered
by the activation of a G protein. In the following, we present an abridged analysis of this
downstream network that, while not suitable for a quantitative prediction, does allow for
an analytical expectation for the functional gestalt of dose–response curves in experiments
or its dependence on the dynamics.

3.1. The Signaling Network

To understand the observable effect of a change in the effective rate keff, we now
consider the downstream consequences in the reaction network of Gαs signaling. We
use shorthands for the molecules involved: receptor–ligand complex (RS), G protein (G),
adenylate cyclase (AC), adenosine triposphate (ATP) and cyclic adenosine monophosphate
cAMP. In this notation, the signaling network (also shown in Figure 1) can be represented
in a rather truncated fashion [19,20] by the upstream part

R + S↔ RS

RS + G↔ RSG (2)

RSG→ RS + G∗

and the downstream part:

G∗ + AC↔ ACG∗

ACG∗ + ATP→ cAMP + ACG∗

G∗ → G.

It is imperative to note that we account for the diffusion-limited reaction by means of
an effective first-order reaction law, given by

RS↔ RSG.

This replaces Equation (2) with the previously defined effective rate keff for the forward
reaction as we move from a single particle-based description to a cell-level concentration
language. The concentration of the available G protein is effectively assumed to be constant,
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as it is encoded in this rate (by way of the parameter L in our model of the previous
section). Additionally, we are working under the assumption of effectively freely diffusing
particles of all species so that interaction is not relevant. We note that nonlinear concentra-
tion effects in diffusion-limited reactions have been discussed in the literature [60].

The quantity of interest to us is the concentration [cAMP] of cAMP as a function
of external stimulus concentration [S] and the effective rate keff, which accounts for the
experimentally controllable diffusion constant. The cAMP is produced in the downstream
part. The connection between the up- and downstream parts of the reaction network is
the concentration of activated G protein [G∗]. We track the concentrations on the plasma
membrane only, so cytosolic and other contributions are not relevant. The activation of
G protein is the result of the stimulus–receptor–G protein complex and acts effectively as
an enzyme in the downstream part. We will address these two steps individually.

3.2. Concentration of Activated G Protein

To determine the dependency of [G∗] on the two control parameters, external stimulus
S and dynamics-dependent keff, we explicitly consider the dynamics of the two relevant
compounds involved in the production of activated G protein:

d
dt

[RS] = k+RS[R][S]− k−RS[RS]− keff[RS] + (kdown + k−RSG)[RSG]

d
dt

[RSG] = keff[RS]− (kdown + k−RSG)[RSG],

wherein the last term corresponding to the degradation of RSG is explicitly split up into
two contributions: a trivial unbinding with a rate k−RSG and the downstream conversion
(i.e., activation of the G protein and then unbinding) with a rate kdown.

We assume dynamics that run for sufficiently long times to be close to equilibrium,
corresponding to vanishing time derivatives on the left-hand side of these equations, giving

[RS] =
k+RS[R][S] + (kdown + k−RSG)[RSG]

k−RS + keff

[RSG] =
keff[RS]

kdown + k−RSG
.

Additionally, the total number of receptor molecules is constant; in other words, we
know that

R0 = [R] + [RS] + [RSG] = const.

Therefore, we find using the shorthand notations

C(keff) : =
k−RS

k+RS

kdown + k−RSG

kdown + k−RSG + keff
(3)

for the relevant concentration scale and qRSG(keff) : = keff
kdown+k−RSG+keff

R0 for an effective
rate constant:

[RS] =
kdown + k−RSG

kdown + k−RSG + keff

R0[S]
C(keff) + [S]

[RSG] = qRSG(keff)
[S]

C(keff) + [S]
. (4)

It is noteworthy that this is not directly the result one would be looking for, as the
variable that can be controlled experimentally is not the concentration [S] of unbound
ligands available at the membrane but rather the initial concentration of ligands outside
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the cell. However, the large reservoir of ligands outside the cell and the cell membrane
are in direct and continuous exchange throughout the experiment, so the general form
of (4) as well as the dependencies on keff hold. We will therefore also use the shape of this
result for the concentration of activated G protein that is directly linked to the RSG complex
concentration, as the activation flux is given by kdown[RSG] and is ultimately balanced (as
the G protein acts enzymatic in the other downstream reactions) by the deactivation flux
kG∗G[G

∗]. The equilibrium concentration is given by

[G∗] = Gmax
[S]

C + [S]
(5)

with the same concentration scale C = C(keff) as before and Gmax = Gmax(keff), with

Gmax(keff) : =
kdown
kG∗G

qRSG(keff) =
kdown
kG∗G

keff

kdown + k−RSG + keff
R0 (6)

being the concentration at stimulus saturation that is independent of [S] but, crucially, is
dependent on keff. Here, it is especially consequential that our description is limited to
plasma membrane-bound G protein. By introducing exchange with cytosolic molecules,
the relationship between the membrane-bound concentrations [RSG] and [G∗] becomes
more involved.

3.3. cAMP Production

Following this dynamical effect on the concentration of activated G protein, we are
faced with the issue that further downstream molecules are involved, and the description
could become very complex. For simplicity, we shall assume here that the most relevant
additional molecules, namely adenylate cyclase (AC) and adenosine triphosphate (ATP),
are present in sufficient abundance and their concentration will not change throughout the
signaling. With these assumptions in place, we can formulate the dynamical equations for
the ACG∗ and cAMP complexes as

d
dt

[ACG∗] = k+ACG∗ [AC][G∗]− k−ACG∗ [ACG∗]

d
dt

[cAMP] = kcAMP[ACG∗][ATP].

Again, we assume equilibrium and can make use of molecule conservation, this time
for the AC (A0 = [AC] + [ACG∗]) to find

[ACG∗] =
A0[G∗]

CcAMP + [G∗]
d
dt

[cAMP] = qcAMP,G∗
[G∗]

CcAMP + [G∗]

with a rate qcAMP,G∗ : = kcAMP A0[ATP] and concentration scale CcAMP : = k−ACG∗/k+ACG∗ ,
in which we regard the [ATP] concentration available as a given parameter. Using our
previous result from Equation (5), we can rephrase this into a form suitable for experimental
evaluation using qcAMP,S : =

qcAMP,G∗Gmax
Gmax+CcAMP

and H : = CcAMP
Gmax+CcAMP

C:

d
dt

[cAMP] = qcAMP,S
[S]

H + [S]
. (7)

This result implies a prediction for experimentally observable dose–response curves.
For our purposes, we need the dependence of such curves on the dynamical parameter
keff which enters via Gmax and C defined in Equations (3) and (6), respectively. As our
reasoning is focused on the diffusion-limited case throughout this perspective, we consider
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only the leading order in keff/kdown (i.e., the relevant parameter dependence is Gmax ∼ keff,
whereas C ∼ const). With this, we can formulate a reduced version of Equation (7) that
highlights the (leading order) dependence on the dynamically controlled parameter keff.
We introduce a reference scale k0 at which the half-width of the Michaelis–Menten-type
fraction is E0 and find

d
dt

[cAMP] ∝
keff
k0

[S]
2E0

1+
keff
k0

+ [S]
. (8)

Thus, we find that there is a very strong signature of the dynamics in the instantaneous
cAMP production, since there is a first-order correction in the deviation keff/k0 − 1 to it.
However, the initial slopes of the dose–response curves are practically hard to assess, and it
is typically more convenient to infer steady state values for cAMP in response to an external
stimulus. Obviously, such a steady state is not predicted from the cAMP production rate in
Equation (8), because our considerations neglected the effects of cAMP degradation related,
for example, to phosphodiesterases (PDEs) [4]. However, we can progress by knowing that
the actual normalized dose–response curve N([S]) has a specific sigmoidal shape in the
stimulus concentration. Normalization in this case refers to a rescaling and shifting of the
curve such that N([S] → 0) = 0 and N([S] → ∞) = 1. The same shape is to be expected
as a function of the instantaneous cAMP production rate. We call this rate, given by the
right-hand side of Equation (8), f and therefore are lead to approximate the overall gestalt
of N[ f ] by a Hill–Langmuir-type function:

N[ f ] ≈ f n

un + f n

with an exponent n that is usually interpreted as encoding cooperativity (n > 1 being
positive and n < 1 being negative cooperativity) and a constant u. Using our earlier result
from Equation (8), and assuming the cAMP production itself to be far from saturation, this
leads to

N([S], keff) ≈
[S]n

(2F0)n
( keff

k0
(1 + keff

k0
)
)−n

+ [S]n
(9)

with a constant F0. Thus, we can make a prediction for the scaling of the effective EC50-
value of the dose–response curve. For visualization in Figure 6, we use n = 1, partially
inspired by the preliminary experimental results shown in Figure 7 and also due to the
fact that there is no immediate biophysical intuition justifying visible cooperativity. Actual
expressions for the remaining constant F0 are too model-dependent to be of any value. One
possible experimental realization of this scenario is found by implementing a disruptive
change in membrane receptor dynamics via actin depolymerization [38] using Latrunculin B
(LatB). Preliminary data (see Figure 7) show a sizable shift in the dose–response curve under
the addition of isoprenaline in a manner consistent with our reasoning. The qualitative
message that can be inferred here is that there is a shift in the dose–response curves when
the dynamic properties of the receptors are altered. There are two obvious lines of further
investigation here: (1) establish the correlation of the LatB concentration to the degree
of actin polymerization (as well as to the diffusional properties of the GPCRs), and (2)
understand the possible cell-type dependence of this process.
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Figure 6. (Left) Visualization of the results from Equation (9). We show artificial dose–response
curves for various values of the effective rate keff which, in the diffusion-limited regime, corresponds
to the relative diffusion constant. In the upper x-axis, we provide a possible instance of physical
values for a typical value of F0. (Right) The EC50 values (i.e., the stimulus concentrations for which
the response is half maximal as a function of the dynamically controlled effective rate (lower x-axis)
or the diffusion constant (using typical values; upper x-axis)).
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Figure 7. Pilot experiment displaying the dose–response curves for cells stably expressing a FRET
cAMP biosensor (Epac1-camps(H187)) and exposed to actin depolymerization. Depicted is the steady
state response to an external increasing isoprenaline concentration. The control curve corresponds to
two measurements with untreated cells, while the LatB curve is the response with additional LatB
(25 nM) and thus a lesser degree of polymerization in the actin. Lower connectivity in the mesh
should reduce the dynamical inhibition of the receptors and therefore increase their mobility. The
normalization and the fits are performed using a Hill–Langmuir function with n = 1. The numerical
values for the constant C (in M) are given in the plot and quantify the obvious left shift upon the
addition of LatB that is qualitatively in line with the reasoning for an increase in mobility.

4. Conclusions

In this short perspective, we revisited the concept of diffusion-limited reactions within
the context of GPCR-mediated cellular signaling. Signaling shaping (i.e., mechanisms that
allow for a greater complexity in signaling than the relatively small number of signaling
cascades) is very relevant and topical. Thus far, considerations about receptor statistics
in terms of relative abundances have been taking precedence over the respective dynam-
ics. Acknowledging that an essential part of the GPCR signaling machinery hinges on a
diffusion-limited reaction provides the foundation for manifestly relating single-particle
dynamics and signal shaping or localization. In turn, all the tools for modulating and
quantifying particle dynamics become directly relevant for the study and understanding of
spatiotemporal signal shaping.

We have offered a simple model description (Sections 2.1 and 2.2) in the standard
particle-based reaction-diffusion language of the Doi model. This model highlights the
relevance of diffusive travel times, in particular for the binding of the G protein to the
GPCR. This offers an accessible pathway to understanding the genesis of an effective rate
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for the production of activated G protein that is strongly dependent on (which in the limit
of low mobility becomes proportional to) the diffusive constant of the relative motion
between a ligand-bound receptor and unactivated G protein. This strong direct relation
between the dynamical properties and reaction times is the hallmark of diffusion-limited
reaction times. A graphical summary of the signaling modulation ideas discussed can be
found in Figure 8.

A B

C D E F

Figure 8. In this perspective, we consider GPCR signaling as a reaction-diffusion process (A). Due to
the unavailability of G protein following activation, the diffusive travel times are relevant and can be
limiting to the observed reaction rates. From this, local modulation of signaling can be phrased as a
local modulation of diffusive properties. We focus on a change in the subplasmalemmal environment
(B) through a change in actin expression. This aims to directly modulate the diffusion constant D
of the relative motion between GPCR and G protein. Less directly, the distribution of diffusive
travel time and, thus, the global reaction kinetics can be affected by a change in geometry (i.e., local
curvature (C)). The diffusion constant can also be modulated by other means, with possibilities
including membrane composition (D) or GIPs binding to the receptor (E). A less direct way for
changing diffusion times would be non-trivial spatial statistics (i.e., clustering or oligomerization (F)).
The effect of C and F can be partially captured in the simple model discussed here (see Section 2.3).
They also are related to the issue of anomalous diffusion (Section 2.3).

We have re-established the importance of single-molecule dynamics, the importance of
which might not have been fully appreciated in the context of GPCR signaling, and raised
some points for future investigation. The first point is, of course, the potential of a direct
modulation of the diffusive properties, such as by means of membrane composition or a
change in the underlying actin mesh (cp. Figure 3). The second is the role of geometry. As
an example, we studied the case of a cylinder where the curvature along the circumferential
direction effectively modulated the dimensionality in the diffusive law. Long-time diffusion
is essentially one-dimensional on a cylinder. At a constant surface density of the relevant
molecules, this means that in the diffusion-limited regime, there is not only a relation of
the form k ∼ D (a reaction rate scaling like the relative diffusion constant) but also k ∼ ργ

(the reaction rate being geometry-dependent, with ρ being the radius of the cylinder and
γ ≈ 2/3 being some exponent) (see Figure 5). Thus, reactions that are diffusion-limited or
for which diffusive travel times are important, with GPCR signaling being one of them, are
geometry-dependent due to diffusion dynamics alone. A highly curved membrane will
generate a coupling of dynamics and geometry that has a profound effect on the reaction
kinetics. Notably, this is independent of the changes in energy landscapes that occur, for
example, due to changing distances within the lipid bilayer. The quantitative comparison
of dynamical effects compared to energetic contributions is one highly interesting route
that we would like to point to in this perspective.

We discussed the relevance of the diffusion limitation in the binding to the G protein
to the abundance of the second messenger cAMP for a truncated reaction network in
Section 3. The key notion here is the possibility of a substantial shift in the typical dose–
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response curves (Figure 6), which we substantiated with some original preliminary results
on the effect of disrupting the actin mesh and thus enhancing receptor mobility, as shown
in Figure 7. We shall note here that our analysis is not only deliberately simplified but
further limited to the case of Gαs protein. While the general ideas are independent of the
specific signaling cascade, as they relay to the binding of G protein and the receptor–ligand
complex, different Gα subunits would obviously lead to second messengers other than
cAMP or to its reduction rather than an increase for the case of Gαi. Moreover, the network
triggered downstream from this will differ, and the effect from modulation of the receptor
dynamics will differ as well. Furthermore, we are concentrating in our investigation on
membrane-bound signaling actors, neglecting, for example, potential signaling interactions
occurring intracellularly [61] or the role of the cytosolic G protein pool [62], which we
believe do not affect the generality of our conclusions.

In summary, a quantitative analysis of the relation between receptor dynamics and
signaling efficacy in an experimental setting appears to be an important direction for future
work. To this end, it would also be beneficial to explore ways of incorporating cAMP
responses beyond steady state values.

With the advent of single-molecule imaging and spectroscopy techniques, receptor
dynamics are now directly accessible [29,32], making revisiting their importance in the
context of signal shaping a timely and important topic.
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GTP guanosine triphosphate
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[X] concentration of X (in cell or membrane, depending on context)
G unactivated G protein
G∗ activaced G protein
R receptor
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Appendix A. Simulation Details

The given model is ripe for direct implementation. In order to reduce the parameter
space, we note that we can work in dimensionless units by measuring the lengths in terms
of r and times in terms of k−1. This corresponds to the following change in parameter sets:

k→k̃ = 1

`→ ˜̀ = 1

D →D̃ = D/(k`2)

L→L̃ = L/`.

In these units, we expect to see asymptotic behaviors k̃eff ∼ L̃−2 for D̃ � 1 and
k̃eff ∼ D̃(L̃− 1)−2 for D̃ � 1.

As for the simulation algorithm, we use an explicit Euler scheme for the integration of
a Langevin equation for the diffusion process; in other words, we use

~x(t + ∆) =
√

2D∆~ξ(t)

with a random vector ~ξ whose components are spatially and temporally independent
Gaussian variables with zero mean and unit variance:

〈ξi〉 = 0

〈ξ2
i 〉 = 1

〈ξi(t)ξ j(t′)〉 = δijδ(t− t′)

and compute the binding times via a temporal Gillespie method [63,64]. Specifically, we
use ∆ = 10−2 and the average over N = 106 realizations of the binding process.
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