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Received February 04, 2022; Revised April 27, 2022; Editorial Decision May 09, 2022; Accepted May 16, 2022

ABSTRACT

Advancing technologies that quantify gene expres-
sion in space are transforming contemporary biology
research. A class of spatial transcriptomics meth-
ods uses barcoded bead arrays that are optically
decoded via microscopy and are later matched to
sequenced data from the respective libraries. To ob-
tain a detailed representation of the tissue in space,
robust and efficient computational pipelines are re-
quired to process microscopy images and accurately
basecall the bead barcodes. Optocoder is a compu-
tational framework that processes microscopy im-
ages to decode bead barcodes in space. It effi-
ciently aligns images, detects beads, and corrects
for confounding factors of the fluorescence sig-
nal, such as crosstalk and phasing. Furthermore,
Optocoder employs supervised machine learning
to strongly increase the number of matches be-
tween optically decoded and sequenced barcodes.
We benchmark Optocoder using data from an in-
house spatial transcriptomics platform, as well as
from Slide-Seq(V2), and we show that it efficiently
processes all datasets without modification. Op-
tocoder is publicly available, open-source and pro-
vided as a stand-alone Python package on GitHub:
https://github.com/rajewsky-lab/optocoder.

INTRODUCTION

Single-cell RNA sequencing methods (scRNA-seq) are by
now well-established and of high-throughput, detecting
thousands of genes at single-cell resolution (1,2). Employ-
ing scRNA-seq, researchers can readily investigate cellular
heterogeneity, cell types and states, and developmental pro-
cesses for a variety of tissues (3–5). One shortcoming of all
scRNA-seq methods, however, is tissue dissociation that re-

sults in loss of spatial context. Spatial information is cru-
cial to study cellular interactions in the native tissue space,
to identify spatial expression patterns, and dissect tissue or-
ganisation in 3D (6–9). Such information is essential for the
investigation of disease states and progression and it is an-
ticipated that gene expression patterns in space and time will
be key for the early detection and interception of complex
diseases (10). In recent years, several efforts have been made
to either retrieve the spatial information computationally
(11–15), or to directly sequence gene expression in tissue
space experimentally (16).

One way of acquiring spatially resolved transcriptomics
experimentally is to use hybridisation-based methods, such
as MERFISH, which achieve single-cell resolution but
only for a pre-selected panel of genes (17) (although
this panel can be at genome-scale). In addition to these,
sequencing-based techniques that provide unbiased whole-
transcriptome spatial data have become available. Methods
such as the Spatial Transcriptomics (18) and the commer-
cially available 10× Visium (18,19) use printed spatially bar-
coded RNA capture probes. In these techniques, however,
every spot in space currently aggregates multiple cells. Seq-
scope is another method in which Illumina flowcells are
used to amplify barcoded oligonucleotides, resulting in a
higher resolution system (20). As a pioneering single-cell
resolution platform, Slide-Seq (and Slide-SeqV2), was de-
veloped to spatially capture tissue gene expression (21,22).

In array-based methods, such as Slide-Seq, a tightly
packed group of beads carrying DNA oligos are placed on
a glass or a plate, termed puck. All oligos on the same bead
share a random barcode sequence long enough to make this
barcode unique for the bead. These barcodes and their po-
sitions on the puck are first optically decoded using subse-
quent rounds of hybridization to fluorescently labelled nu-
cleotides in a microscopy setup (21,22). After this spatial
registration of the beads, a tissue slice is placed on the puck.
RNA is captured by the oligos on the beads, amplified, and
sequenced- including, for each captured RNA molecule, the
bead barcode. Thus, by matching these sequenced barcodes
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to the optically decoded barcodes, RNA molecules can be
mapped to the spatial position of the bead which captured
the respective molecules. Similar to Slide-Seq, we are cur-
rently also developing a spatial transcriptomics platform
using a spatially barcoded assay. Efficient processing and
analysis of the acquired datasets takes place in two fronts:
in the processing of the sequencing data, for which we have
developed Spacemake (23); and in the processing of the mi-
croscopy images.

Computational processing of the microscopy images to
retrieve bead barcodes and their locations is challenging
and requires three main steps. First, raw images are pro-
cessed to correct problems such as misalignments across
cycles and illumination errors, as well as to detect the
beads. Next, the detected beads are processed for basecall-
ing. Several technical issues may distort the signal, such as
crosstalk caused by the overlapping laser excitation spec-
trum and phasing caused by inefficient reactions resulting
in lagged signals. Finally, base calling quality is evaluated.
Several base calling methods have been developed for se-
quencing data by primarily modelling the above confound-
ing factors (24,25). While these methods provide solutions
for their respective objectives, there is either no public and
easy-to-use implementation, or they are not actively main-
tained. Hence, there is a lack of a complete pipeline that
can process microscopy images from beginning-to-end in
an easy-to-use, extensible and robust manner, specifically
tailored for array-based spatial transcriptomics assays. In
addition, array-based methods require the matching of the
optically decoded barcodes to the true set obtained by high-
throughput sequencing and the above methods do not make
use of such information in a generalizable way.

Here, we developed Optocoder, a computational frame-
work to efficiently process microscopy data during the op-
tical sequencing of the barcodes and locations of the arrays
in our experimental pipeline. The framework is an open-
source Python software package that inputs microscopy im-
ages, processes them, corrects confounding factors, such as
crosstalk and phasing, and performs basecalling. Impor-
tantly, we developed a machine learning based basecaller
that increases the number of decoded barcodes that match
to sequenced ones. Furthermore, Optocoder employs sev-
eral measures to control the quality of the decoded bar-
codes at every processing step. We demonstrate Optocoder’s
performance on several datasets, including in-house and
publicly available ones, showing the generalizability of the
pipeline to different data modalities. Optocoder is scalable,
versatile, extendable and can be seamlessly integrated into
existing computational pipelines.

MATERIALS AND METHODS

Optocoder consists of three distinct modules (Figure 1).
The imaging module is used to align the input microscopy
images and detect the beads and their respective locations
(Figure 1A). Second, the barcode bases are called by cor-
recting confounding factors, such as spectral crosstalk and
phasing (Figure 1B). Finally, given that a sequencing bar-
code set is provided, a machine learning classifier is trained
to increase the number of barcode matches between the se-
quencing and the optical set (Figure 1C). The output of ev-

ery step is quality controlled with several metrics to create
a final report of the puck, image and base calling quality
(Supplementary Figures S1 and S2).

Image processing

The image processing module is used to align the mi-
croscopy images and detect the beads on the array. The
input to Optocoder are the puck images acquired via mi-
croscopy for every barcode base.

Bead detection. Beads are adjoining circular-shaped ob-
jects of a given radius, and we utilise Hough Circle Trans-
form (OpenCV, 2015, Open Source Computer Vision Li-
brary) to detect them from the overlay image of the last
cycle (Supplementary Figure S3A, Supplementary Meth-
ods). For a given bead batch, bead sizes remain constant
across experiments, so that Hough Transform requires min-
imal optimisation. In case a different bead batch contains
larger or smaller beads, the image processing module can be
readily modified through adjusting the expected bead radius
parameter. Bead detection outputs the (x, y) coordinates of
the beads which are subsequently used to calculate corre-
sponding channel intensities for each cycle.

Image alignment. The experimental apparatus can phys-
ically move between cycles of optical sequencing, thus re-
sulting in potential positional differences between cycles.
To retain the bead identities during the whole sequencing
process, the images need to be aligned to be able to assign
correct intensities to the detected beads. To begin with, the
intensities can vary across cycles and can be very low for
the last ones. We therefore first create overlay images and
then apply histogram matching for every cycle by using the
last cycle as the reference frame. Then, we use an image reg-
istration method, Enhanced Cross Correlation Maximiza-
tion (26), with a Euclidean motion model to align images
from all cycles to a reference and detect warping parameters
(Supplementary Figure S3B, Supplementary Methods). Fi-
nally, we evaluate the registration quality for each cycle by
using the Structural Similarity Index (27) (Supplementary
Methods).

Background correction. Microscopy images are affected
by uneven illumination and background noise that might
influence the subsequent image processing and base calling
steps. To subtract this uneven background signal, we first
detect the background image for every channel separately
by using a morphological opening operation and then sub-
tract it from the image (Supplementary Methods). At the
end of the image processing module, Optocoder outputs a
matrix containing the 2D coordinates for each bead on the
puck and the average fluorescence intensity for each chan-
nel.

Basecalling

In the absence of technical noise, calling bases could be
performed by calling the highest intensity channel’s cor-
responding nucleotide. As shown in the literature for Illu-
mina sequencing basecallers (24,25,28–30), however, there
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Figure 1. Schematic overview of Optocoder’s modules. (A) Image processing is used to align microscopy images acquired across the sequencing cycles and
to detect the beads and their coordinates on the array. (B) Crosstalk and phasing effects are corrected for high-quality basecalling. (C) Machine learning
is employed to further correct base calling and increase matches between the optically decoded and sequenced barcodes.

exist confounding factors of the microscopy readout that
need to be taken into consideration for high accuracy base-
calls. Similar issues occur in the case of optical sequenc-
ing and we identified spectral crosstalk and phasing ef-
fects as the main factors that convolute the signal in our
experiments.

Spectral crosstalk correction. Crosstalk refers to the cor-
relation between the A-C and G-T channels due to overlap-
ping emission spectra of fluorophores excited in two laser
microscopy setups (Figure 2A). Optocoder utilises an esti-
mation method (31) to detect the overlap between channels
(Supplementary Methods). More specifically, the crosstalk
matrix is determined by calculating the intensity overlap be-
tween every channel. First, an informative group of bead in-
tensities is selected for every channel which is subsequently
fitted with a regression model against the values in every
other channel. The slope of these models represent the drift
of the intensities towards the other channel (Figure 2B) and
the ratio is subsequently used to correct for crosstalk, re-
sulting in the deconvolution of the A–C and G–T channels
(Figure 2C, Supplementary Methods).

Phasing and prephasing correction. Phasing and prephas-
ing might be caused by inefficient reactions during the nu-
cleotide incorporation process (32). A bead typically con-
tains millions of oligos that can capture cellular molecules
and missing incorporation cycles can take place for several

of them. Phasing occurs when a nucleotide is incorporated
in the next cycle instead of the current one during opti-
cal sequencing, so that the signal for that bead lags behind
(Figure 3A, B). Similarly, prephasing occurs when multi-
ple incorporations occur within the same cycle and the mi-
croscopy readout includes multiple nucleotides at the same
time (Figure 3C). Phasing and prephasing result in convo-
luted signals that strongly affect basecalling quality lead-
ing to erroneous barcodes sequences. We model such effects
through probabilities that correspond to the fraction of
bead oligos that have phasing and prephasing for a given cy-
cle (Supplementary Methods). Subsequently, we construct
a matrix that represents the carry over signal among cycles
with respect to these probabilities and use it to correct for
those effects as described below.

Combined correction step. To combine the spectral
crosstalk and phasing correction, we use a simplified model
of the acquired signal similar to (30) as

Bi = C Si P,

where Bi is a matrix containing the observed intensities of
bead i , C is the crosstalk matrix, Si are the true intensi-
ties of bead i , and P is the phasing matrix (Supplemen-
tary Methods). The crosstalk matrix is estimated from the
first cycle and assumed to be consistent across cycles since
it is a physical phenomenon of the microscopy setup and
not cycle dependent. For phasing, Optocoder uses expected
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Figure 2. Optocoder efficiently ameliorates spectral crosstalk effects. (A) The spectra of G–T and A–C channels partially overlap in a two-laser microscopy
setup. (B) Pairwise scatterplots of bead intensities for the puck P4 before (top) and after (bottom) crosstalk correction. Each dot represents a bead and
colouring corresponds to the highest intensity of the channel pair plotted for each bead.

A B C

Figure 3. Optocoder efficiently corrects for phasing and prephasing effects. (A) In the absence of (pre)phasing effects, nucleotide incorporation takes place
always in the correct cycle. (B) Non-incorporation of a nucleotide in the correct cycle results in phasing. (C) Multiple nucleotide incorporations within the
same cycle result in prephasing.

phasing and prephasing probabilities chosen by the user. We
have observed that for a given bead batch and experimental
protocol the amount of phasing and prephasing are consis-
tent across samples (Supplementary Figures S4 and S5). To
facilitate selection of phasing parameters, we have imple-
mented a search function in Optocoder that determines the
parameter values which maximise the number of barcode
matches between the optically decoded and the sequenced
barcodes. As the intensity ranges of different channels vary,
we apply feature scaling for every channel before basecall-
ing (Supplementary Methods). Optocoder scales channel

intensities by removing the median and scaling to the in-
terquartile range (Robust Scaler) and also a normalised ex-
ponential function (SoftMax) is applied to each cycle’s in-
tensities for every bead before basecalling (Supplementary
Methods).

Basecalling and chastity. Having corrected for spectral
crosstalk, phasing and prephasing effects, we call barcode
bases by selecting the nucleotide of the highest intensity for
each cycle. We measure our base calling confidence by com-
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puting a chastity score (33)

C pq = I pq
(n)

I pq
(n) + I pq

(n−1)

where I pq
(n) and I pq

(n−1) are the intensities of the channels
with the highest and the second highest values for bead p in
cycle q.

Machine learning

The spectral crosstalk and phasing corrections greatly
improve the basecalling quality and can be readily em-
ployed via Optocoder. In array-based spatial transcrip-
tomics methods, however, the true set of barcodes is known
via high-throughput sequencing. This provides an oppor-
tunity to improve our basecalling by adding a supervised
machine learning step. More specifically, we use the opti-
cally decoded barcode sequences that exactly match those
stemming from the sequencing side as a training set, and
we train a machine learning classifier for each sample to
learn the model parameters that can use bead intensities to
predict corresponding nucleotides (Figure 4). The classifier
takes the background corrected intensities of all cycles af-
ter robust scaling for each bead as input features. Then, the
model is trained to predict the nucleotide for every cycle.

To efficiently tackle this problem we implemented several
classifiers and benchmarked their performance on a number
of datasets (Supplementary Figures S6 and S7, Supplemen-
tary Methods, Supplementary Table S1). We achieved the
highest performance by training Gradient Boosting classi-
fiers for each cycle (Supplementary Figure S6), while at the
same time retaining the number of false positives low (Sup-
plementary Figure S7). Gradient Boosting is an additive
model that combines weak tree models to improve model
accuracy. As we input all cycle intensities to each model,
models capture the effects of other cycles’ intensities as well.

We begin with splitting the matching barcodes set into a
randomised training (80%) and validation (20%) set. The
training set is used as an input into the multi-output Gradi-
ent Boosting classifier and the validation set is used to eval-
uate the model’s performance for hyperparameter optimiza-
tion. The model with highest accuracy is then retained and
used to predict nucleotide bases in the set of non-matching
barcodes, which is practically the test set. We evaluate the
performance in the test set by computing the number of ad-
ditional matches to the sequenced barcodes.

Quality control (QC)

We have implemented several quality controls in Optocoder,
which are collectively shown in an automatically generated
QC sheet associated with each sample (Supplementary Fig-
ure S1 and S2). In particular, the QC sheet starts with a plot
of the raw channel intensities per cycle (Supplementary Fig-
ure S1A), which facilitates experimental troubleshooting in
case significant cycle deviations occur. Next, the registra-
tion accuracy score is plotted (Supplementary Figure S1B)
to inspect the quality of the acquired microscopy images per
cycle.

After basecalling, the overall nucleotide distribution av-
eraged over all barcodes is plotted to measure the base

content (Supplementary Figure S1C). To ensure that the
barcode sequences obtained after basecalling are meaning-
ful, Optocoder calculates two measures: string compression
and Shannon entropy (Supplementary Methods). The dis-
tributions of these measures are then plotted in the QC
sheet against the theoretical distributions expected for ran-
domly uniformed sequences (Supplementary Figure S1D,
E). Large deviations from either theoretical distribution
would flag low confidence barcode sequences. Additionally,
Optocoder plots these measures across puck space, so that
areas with low confidence bead barcodes may be identified
to evaluate if there are any location-specific barcode quality
issues (Supplementary Figure S2C, D).

Furthermore, the distributions of chastity scores that
reflect Optocoder’s confidence on basecalling are plotted
(Supplementary Figure S1F). Optocoder visualises the dis-
tributions of a few metrics in the array space as the spa-
tial distribution might facilitate a better understanding of
the current experiment and also better troubleshooting.
Mainly, called bases and their spatial distribution (Supple-
mentary Figure S2A), and the respective chastity scores
(Supplementary Figure S2B) for each cycle are plotted and
saved.

RESULTS

Performance on our data

Our array-based experimental protocol shares certain simi-
larities with SlideSeqV2 (22) and generates microscopy im-
ages containing 4 channels for every imaging cycle. These
channels display specific fluorescence profiles used to call
nucleotides––four channels for the four bases G, T, A and
C. After library preparation and high-throughput sequenc-
ing, the true set of bead barcodes becomes available, so that
we can assess Optocoder’s performance.

We benchmarked Optocoder on four different pucks that
were prepared according to our protocol. Each puck con-
tained around 70 000 beads labelled by 12 bases long bar-
codes and was optically sequenced under the same exper-
imental conditions. After optical sequencing the following
material was placed on the pucks: ERCC spike-ins (P1) or
sections of E12 mouse brain (P2, P3 and P4). The prepared
libraries were sequenced on an Illumina NextSeq 500 ma-
chine and analysed with spacemake (23) (Supplementary
Methods). The 100 000 beads with the most sequencing
reads were considered for matching.

Naive basecalling, i.e. without correcting for crosstalk
or phasing, resulted in a low number of matches for all
four pucks (Figure 5A, orange bars). Correcting for spec-
tral crosstalk increased the number of matches by 10–20%
(Figure 5A, purple bars). As expected, this increase was re-
flected by the corresponding chastity scores (Figure 5B). Af-
ter crosstalk correction, Optocoder corrected for phasing
and prephasing. This step resulted in additional matches for
all four pucks. (Figure 5A, green bars) and a corresponding
increase in the chastity scores (Figure 5B). We observed lit-
tle to no pre-phasing in our datasets, but a strong phasing
effect (Supplementary Figure S4). The combined correction
step enhanced the total number of matches by 2-fold com-
pared to naive basecalling.
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B

Figure 4. Supervised machine learning increases the number of matches between the optically decoded and the sequenced barcode sets. (A) a gradient
boosting model per imaging cycle is trained to learn and predict nucleotide bases from channel intensities. (B) Schematic overview of the strategy employed
to increase barcode matches.

A B

Figure 5. Optocoder exhibits high performance on own-generated data. (A) Optocoder efficiently corrects for crosstalk and phasing effects, and employs
machine learning, resulting in a stark increase of the number of matched barcode sequences compared to naive basecalling in four different pucks. (B)
Chastity scores consistently increase after correcting for crosstalk and phasing effects across all four pucks.

Finally, we trained machine learning models to further
increase the number of matches. A model was trained for
each puck separately and was used to predict the nucleotides
of the non-matching barcode sequences. Optocoder’s ma-
chine learning step resulted in a further 15–32% increase of
matches to the combined correction matches (Figure 5A,
pink bars). Interestingly, machine learning performance
varied across the four pucks, with the highest increase in
number of matches taking place for P2, the puck with the
fewest overall matches.

We observed that all methods performed consistently,
regardless of the number of top beads used (Supplemen-

tary Figure S8A, Supplementary Methods). Furthermore,
we evaluated whether filtering for high quality barcodes
would affect the number of matches (Supplementary Meth-
ods). For naive, crosstalk- and phasing-corrected base-
callers, restricting to barcodes of very high chastity scores
lowers the number of matches, however, the relative per-
formance improvement among the methods is consistent
(Supplementary Figure S9A, Supplementary Methods). All
machine learning models–except for the random forests–
exhibit robust performance, independent of the prediction
score threshold (Supplementary Figure S10A, Supplemen-
tary Methods).
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Figure 6. Optocoder efficiently processes published Slide-Seq and Slide-
SeqV2 datasets. The number of matches between optically decoded and
Illumina sequenced barcodes is shown for three Slide-Seq and one Slide-
SeqV2 puck. In all cases Optocoder outperforms Puckcaller, the script
used by the authors in the original publications.

In summary, Optocoder successfully corrected for
crosstalk and phasing effects in our datasets and strongly
enhanced the number of matches between the decoded and
the sequenced barcodes.

Performance on external data

We primarily developed Optocoder for efficiently process-
ing spatial transcriptomics data stemming from our in-
house experimental method. Optocoder, however, is built
to be versatile and adaptable. To showcase its flexibility, we
used Optocoder to analyse similar microscopy datasets that
are publicly available.

The initial Slide-Seq protocol (21) uses SOLiD chemistry.
The optical sequencing images are generated via 20 ligations
where 6 of them are constant bases. We applied Optocoder
to process the microscopy images associated with three
pucks SSP1, SSP2, SSP3 (Supplementary Table S2). After
image processing, Optocoder detected and identified 52 754
/ 48 564 / 63 643 beads, respectively. We observed little-to-
no phasing and prephasing effects in the three pucks (Sup-
plementary Figure S6). We compared the decoded barcodes
against the true set of sequences that we extracted from the
associated BAM file (Supplementary Methods). Matching
the two barcode sets for SSP1 after crosstalk and phasing
correction resulted in 31 308 exact matches which is ∼37%
higher than the number of exact matches with Puckcaller,
the computational pipeline that was developed and accom-
panied the Slide-Seq protocol. For SSP2 and SSP3, Op-
tocoder performed similarly to Puckcaller barcodes, with
−7% and +5% difference, respectively. By training the cor-
responding machine learning model, Optocoder resulted in
7% to 58% more matches compared to the baseline Puck-
caller basecalling (Figure 6).

In addition to above, we employed Optocoder to anal-
yse Slide-SeqV2 microscopy datasets. This is a sequence-
by-synthesis generated microscopy data and the cellular
barcodes consist of 14 nucleotides. Optocoder readily pro-
cessed the microscopy images and decoded 63 643 barcodes
for the puck SSP4 (Supplementary Table S2). Little-to-no

phasing and prephasing effects were also observed for that
puck too (Supplementary Figure S6). Comparing the de-
coded barcodes against the true set of sequenced barcodes
that we obtained from the associated BAM file (Supple-
mentary Methods) resulted in 39 188 exact matches, simi-
lar to what the authors acquired for the same dataset. Fur-
thermore, training the machine learning model starkly en-
hanced the number of matches by ∼17%, resulting in a
total of 46 329 exact matches. Finally, similar to the in-
house pucks, all methods performed independently of the
top number of barcodes used (Supplementary Figure S8B,
Supplementary Methods), and we further evaluated the ef-
fect of barcode filtering through chastity scores (Supple-
mentary Figures S9B and 10B, Supplementary Methods).

Taken together, the above demonstrates that Optocoder
can reliably analyse different types of datasets, such as mi-
croscopy data of different chemistry, and achieve higher
performance than existing methods.

DISCUSSION

Spatial transcriptomics methods such as Slide-Seq use spa-
tially barcoded bead arrays that are optically sequenced.
We anticipate an increase in both the development of sim-
ilar methods and the utilisation of these methods in vari-
ous research labs for biological insights. In this study, we
present Optocoder, a computational pipeline that efficiently
processes microscopy images for optical sequencing of bead
barcodes. Optocoder is an easy-to-use, open-source Python
package and provides a complete pipeline that processes
raw microscopy images to assign bead barcodes in space.
Optocoder provides functions to align images, detect beads,
correct crosstalk and phasing issues and finally call the
bases. Furthermore, we implemented a machine learning
pipeline to increase the number of barcode matches between
the optically decoded and library sequencing barcodes. We
have implemented and compared four different models that
are trained separately for each sample and we show that the
machine learning approach substantially increases the num-
ber of matches.

We initially developed Optocoder for our in-house spa-
tial transcriptomics platform and we evaluated Optocoder
on four different samples. Additionally, we have tested Op-
tocoder performance on Slide-Seq and Slide-SeqV2 sam-
ples and demonstrated that Optocoder efficiently processes
different datasets and experimental setups with minimal
modifications. In particular, we showed that correcting for
crosstalk and phasing effects improved basecalling quality
for our datasets, whereas for Slide-Seq datasets Optocoder
performed similarly to what was originally reported. Em-
ploying Optocoder’s machine learning module, however, re-
sulted in a stark increase of barcode matches for both in-
house and Slide-Seq datasets.

One drawback of the current crosstalk and phasing cor-
rection pipeline is that it implements a linear model and also
the correction parameters are not tailored to beads. Beads
with unique phasing properties would therefore not be ef-
ficiently processed with this approach. As a future devel-
opment, implementing a more complex model that would
allow for bead specific correction parameters might be ben-
eficial.
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Improved performance with the machine learning models
indicates that nonlinear interactions are not fully captured
by the crosstalk and phasing correction model. For machine
learning basecalling, one model for each sample is trained to
provide a sample-specific basecalling tool without the need
for a general training set. However, this approach requires
samples that already have a high number of matches before
machine learning, so that a model can be trained accurately.
For example, relatively poor machine learning performance
for SSP2 might be explained by the small size of the initial
matching set. While our current model provides a general
pipeline that can be used for any new dataset and platform,
an additional general model that can be trained commonly
and used for different samples might be beneficial. Investi-
gating what is learned by the machine learning models can
prove useful to analyse and troubleshoot the experimental
reasons for basecalling errors.

Finally, machine learning tools have been previously used
for basecalling from raw signals in different platforms such
as Illumina and Nanopore to improve basecalling quality
(29,34,35). In principle, the machine learning approach de-
scribed here utilises matched sequences and can be poten-
tially extended to such platforms to further improve the
basecalling quality by using already called reads in specific
contexts, such as genome mappability.

DATA AVAILABILITY

We have deposited the microscopy images for P1-P4 on Zen-
odo under the DOI 10.5281/zenodo.5850813, and the cor-
responding Illumina sequencing data on GEO under the ac-
cession number GSE193472. The Slide-Seq microscopy im-
ages and sequencing data were downloaded from the Single
Cell Portal. The Slide-SeqV2 microscopy images were pro-
vided by Evan Murray and Evan Macosko and the sequenc-
ing data were downloaded from the Single Cell Portal.

Optocoder is publicly available, open-source and pro-
vided as a stand-alone software package on GitHub: https:
//github.com/rajewsky-lab/optocoder.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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