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Abstract

Significant alterations in signaling pathways and transcriptional regulatory programs

together represent major hallmarks of many cancers. These, among all, include the reacti-

vation of stemness, which is registered by the expression of pathways that are active in the

embryonic stem cells (ESCs). Here, we assembled gene sets that reflect the stemness and

proliferation signatures and used them to analyze a large panel of RNA-seq data from The

Cancer Genome Atlas (TCGA) Consortium in order to specifically assess the expression of

stemness-related and proliferation-related genes across a collection of different tumor

types. We introduced a metric that captures the collective similarity of the expression profile

of a tumor to that of ESCs, which showed that stemness and proliferation signatures vary

greatly between different tumor types. We also observed a high degree of intertumoral het-

erogeneity in the expression of stemness- and proliferation-related genes, which was asso-

ciated with increased hazard ratios in a fraction of tumors and mirrored by high intratumoral

heterogeneity and a remarkable stemness capacity in metastatic lesions across cancer

cells in single cell RNA-seq datasets. Taken together, these results indicate that the expres-

sion of stemness signatures is highly heterogeneous and cannot be used as a universal

determinant of cancer. This calls into question the universal validity of diagnostic tests that

are based on stem cell markers.

Introduction

Cancer is one of the major causes of death worldwide [1]. A significant progress in cancer

treatment has been achieved with the development of a large therapeutic arsenal including

chemotherapy, surgery, radiation therapy, and immunotherapy [2–4]. An important direction

in clinical research focuses on the so-called Cancer Stem Cells (CSC), a subpopulation of

tumorous cells with high tumor-initiating potential [5]. CSCs are increasingly regarded as
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prominent targets for anti-cancer therapy, although the degree of expression of the stem cell-

like phenotype, referred to as stemness, may vary between different tumors [6].

Several hypotheses relate stemness with the origin of cancer. It is acknowledged that cancers

arise either from a malignant transformation of a progenitor cell, or from a non-stem cell,

which reacquired the stemness potential [7–9]. This paradigm is sustained by significant con-

vergence of stem cells (SC) and CSCs in the activated signaling cascades, moreover in their

overlapping expression of a set of biomarkers encompassing the classical self-renewal-associ-

ated pathways Wnt/β-catenin, Bmi-1, sonic hedgehog, Notch, and PTEN [10]. Additionally,

both SCs and CSCs express tissue-specific stem cell markers [11–14]. Such concordant molec-

ular profile stipulates key aspects of SC and CSC phenotype including longevity, dormancy,

niche dependence, and the potential for asymmetric cell division [15–18].

Tumors display frequent inter- and intratumor heterogeneity in alterations of the global

gene expression programs and, in particular, in the expression of stemness markers [19–22].

Commonly used CSC-associated markers have a variable expression in glioblastoma [23]. The

expression of breast cancer stem cell markers, ALDH1A1 and CD133, shows spatial heteroge-

neity across patients [19]. Stemness phenotype is also heterogeneous among many normal

adult SC populations in the human body, where the SCs uphold tissue regenerative capacity

[24, 25]. Moreover, the degree of activation of stemness programs is associated with increased

expression of multiple immunosuppressive pathways and decreased anticancer immunity

[26]. This suggests that the stemness state may itself be highly heterogeneous within and

between tumor types, which may play an important role in cancer pathogenesis.

A number of metrics have been developed to quantify stemness [20, 26, 27]. These metrics

correlate with intratumoral heterogeneity, antitumor immune response, and clinical prognosis

[20, 26, 27]. However, the heterogeneity of the stemness signature has not been assessed in

detail [19]. Here, we reanalyzed the transcriptomes of 19 tumor types from The Cancer

Genome Atlas (TCGA) Consortium and juxtaposed them with the transcriptomes of human

embryonic stem cells [28], adult stem cells [29, 30], and induced pluripotent stem cells (iPSC)

within 4 days of differentiation [31]. The comparison of these transcriptomes from the per-

spective of reactivation of the stemness program revealed a pronounced heterogeneity both

within and between tumor types, which in many cases was associated with tumor-specific

patient survival. To interrogate intratumoral heterogeneity, we additionally demonstrated an

increased variability of stemness signature in cancer cells compared to non-cancer cells and in

metastatic outgrowth compared to primary tumors, and convergence of cancer cells to stem

cells using single cell transcriptomes.

Materials and methods

RNA-seq data and related clinical data

Gene expression values for tumors and normal tissues from the TCGA dataset and all relevant

metadata were downloaded in the form of read counts using R package TCGAbiolinks [32]

(S1 File). The fastq files for stem cell (SC) datasets comprising iPSC (fibroblasts purified from

skin-punch biopsies from six males and six females that were reprogrammed using transfec-

tion with an episomal plasmids containing OCT3/4, SOX2, KLF4, L-MYC, LIN28, and an

shRNA against p53 [33]), ESC, other types of pluripotent stem cells (PSC), and adult stem cells

(ASC) were either downloaded from Sequence Read Archive (SRA) or obtained by direct

download from arrayexpress ftp server (S1 Table). All fastq files were processed by a uniform

pipeline, in which the reads were first checked for quality, trimmed using TrimGalore, and

mapped with STAR version 2.7.1a [34] to the December 2013 assembly of the human genome

(hg38, GRCh38). Gene expression levels were quantified using the Subread tool [35]
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implemented in Rsubread package version 1.34.7 [36]. The read count matrices from TCGA

and stem cell datasets were merged, filtered by gene expression, and normalized using edgeR

[37]. The resulting combined matrix was corrected for tumor purity as explained below.

The raw UMI counts for the scRNA-seq dataset (63,689 cells from 23 primary colorectal

cancer and 10 matched normal mucosa samples) were downloaded from GEO under the

accession GSE132465 [38]. The raw UMI counts for mESC and iPSC scRNA-seq datasets were

downloaded from GEO and ArrayExpress under the accession numbers GSE135509 and

E-MTAB-6687, respectively [39]. All counts were normalized for sequencing depth per cell

and transformed to log2-scale using a pseudocount of one. The subsequent analysis and visual-

ization of single cell RNA-seq data, including integration using a reciprocal PCA workflow,

were done using R package Seurat version 4.0.2. Only sample 4 of iPSC dataset was used as

it possessed the highest average stemness signature score. The lung adenocarcinoma scRNA-

seq dataset with metastatic samples was accessed and processed following the guidelines pro-

vided by the authors of the original publication [40].

Correction for tumor purity

To mitigate the influence of normal cells on gene expression in tumor samples, we regressed

out the effect of tumor purity defined by consensus tumor purity estimate (CPE). First, we

downloaded a table of precomputed CPE values which is available as a Supplementary Data 1

in [41]. Next, we filtered out tumor samples where CPE was not available and built a collection

of linear models of the form Yi,s� βi,0 + βi,1
�Ps + εi,s individually for each gene i, where Yi,s is

the TMM-normalized log2(CPM) of the gene i in the sample s, and Ps is the value of the CPE

of the sample s, and εi,s is the error term. The purity-corrected TMM-normalized log2(CPM)

of gene i in the sample s were obtained from Yi,s by subtracting the linear part, i.e.,

Ycor
i;s ¼ Yi;s � bi;1 � Ps. Since the CPE metric provides an estimate for the proportion of tumor

cells, which are presumably absent in normal tissues, we assigned a random value close to zero

from normal distribution with the mean 0.08 (0.05 percentile of CPE distribution) and stan-

dard deviation 0.03 (� 1

3
of the 0.05 percentile of CPE distribution) to CPE of all normal tissues

and iPSCs. The resulting values of Ycor
i;s showed no statistically significant dependence on CPE

(mean R2’ 0).

Differential gene expression analysis

The edgeR package was used for differential expression analysis. Raw read counts were nor-

malized by edgeR using the TMM (Trimmed Mean of M-values) method [37]. The model

was fitted to the data using glmQLFit function. Differential gene expression was estimated

with glmTreat function. For GO enrichment analysis, differentially expressed genes were

defined by |log2(FC)|� 1 and adjusted p-value cutoff of 0.05.

Gene ontology analysis

Gene Ontology analysis of differentially expressed genes was done using R package clus-
terProfiler [42] with the default parameters.

Signature gene sets

The set of stemness gene signatures (n = 271) was originally designed by DPa by a combination

of literature search and analysis of transcriptomic datasets. However, his efforts were inter-

rupted by force majeure circumstances, and the rest of the team had to reassemble a similar set

using another procedure outlined below.
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We considered datasets spanning various experimental protocols, e.g. tissue-gene expres-

sion atlases, ESC differentiation time series, and knockdowns of pluripotency-associated tran-

scription factors (ppTF-KDs) [43–46]. The datasets were analyzed one at a time, with

individually selected cutoffs (S2 Table). The microarray gene expression data were down-

loaded using the R package GEOquery [47], normalized using the rma function available in

the R package affy [48], log2-transformed and processed following the guidelines from the

affy package vignette.

Our collection included two gene expression atlases, GSE1133 and GSE10246, both con-

taining gene expression data from various mouse tissues and cell lines. We identified a group

of samples, in which the stemness program could be active (S2 Table), and selected only one

group in each atlas that was closest to ESCs (Blastocysts in GSE1133 and mouse ESCs in

GSE10246). In each atlas, we computed log2 FC between the selected group and the rest of tis-

sues or cell lines and computed E, the log-sum of gene expression values across samples. Then,

we selected genes that satisfied the following conditions in at least ncomp. of the comparisons in

each atlas: log2 FC> 0.05, E> 3, ncomp. = 34 for GSE1133, and log2 FC> 0.1, E> 4.5, ncomp. =

49 for GSE10246. This resulted in two lists of putative stemness genes with 5764 and 2670 ele-

ments for GSE1133 and GSE10246, respectively.

Next, we analyzed a collection of ESC-line differentiation datasets, which included time

series analysis of 14 days of differentiation in three mouse ESC-lines: J1, R1 and v6.5. As

before, we computed E and log2 FC between the first (0 hours) and last (14 days) time points,

separately for each cell line. The cutoffs log2 FC> 0.05 and E> 3 resulted in three lists of

3286, 3567, and 2609 putative stemness genes corresponding to J1, R1 and v6.5 lines, respec-

tively. A similar analysis of shRNA knockdowns of five core pluripotency transcription factors,

POU5F1, NANOG, SOX2, ESRRB and SALL4, in mouse ESCs resulted in 8588 genes with log2

FC> 0.05 and E> 3 in at least one of the experiments.

The intersection of these lists consisted of n = 454 genes, to which we added a set of manu-

ally collected and curated putative stemness genes, which were not picked by our analysis

(n = 19) (S2 File). Then, we removed tissue-specific genes [49] (n = 7), proliferation signature

genes (n = 49, see below), and genes that were functionally associated with the cell cycle or pro-

liferation according to either KEGG or MsigDB databases (n = 28). This resulted in a list of

389 unique murine genes, which were mapped to their human orthologs using R package

BiomaRt. The details of this procedure including cutoffs and group comparisons are also

summarized in S2 Table.

To define the proliferation signatures, we used the list of genes that are functionally associ-

ated with proliferation as provided by Ben-Porath et al (n = 326) [50]. To infer activity of epi-

thelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET),

we selected TFs associated with either of the two processes, SNAI1 and SNAI2 for EMT, and

GRHL1–3 for MET. Then, we combined the selected TFs with their protein interactors and co-

expressed genes according to STRING-DB (v.11.0) [51] resulting in a list of n = 51 genes. The

resulting gene lists are summarized in S3 File.

Calculation of signature intensity metric

To compare the degree of reactivation of the stemness program between different tumors, we

introduced a metric called signature intensity, which represents the percentage of samples that

belong to the Stem cluster among all samples of the given tumor. Recall that a sample was

assigned to the Stem cluster (respectively, Normal cluster) if it was located closer to (respec-

tively, further from) ESC/iPSCs according to PC1 than the global median of the PC1 axis. That

is, the signature intensity Ij of the tumor j was computed as Ij ¼ NStem
j =ðNStem

j þ NNormal
j Þ, where
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NStem
j is the number of samples of the tumor type j in the Stem cluster and NNormal

j is the number

of samples of the tumor type j in the Normal cluster.

Survival analysis

To test whether the reactivation of the stemness program correlates with poorer prognosis, we

stratified tumor samples into two clusters relative to the median PC1 value of a given tumor

type. For a given tumor we subdivided samples into Stem and Normal clusters based on the

proximity to iPSCs on PC1. However, instead of using the global median PC1 over all tumors

as a threshold, we used the median PC1 of each tumor type. This approach resulted in tumor-

specific clusters of balanced size, which were used for survival analysis. We fitted Cox-regres-

sion using Stem and Normal clusters as predictors for each tumor when clinical data were

available. Hazard ratios (HR) between two clusters were then computed for all tumors using R

package survminer.

Statistical analysis

All statistical analyses were done using R software version 3.6.0. Confidence intervals for pro-

portions were computed using a 2-sample z-test without continuity correction. All tests were

carried out at the 5% significance level with Benjamini-Hochberg correction for multiple

testing.

Results

Stemness genes

Several lists of stemness marker genes currently exist, however there is no universal such list

[52]. For instance, a recent meta-analysis of stemness genes from several independent studies

revealed that only one gene was common among lists derived from three SC populations [53].

Complementary to this, here we assembled a list of pluripotency markers using the data from a

range of different experimental approaches including tissue atlases, ESC differentiation time-

series, and knockdowns of pluripotency-associated transcriptional factors [43–46]. To distin-

guish between stemness and other traits, we removed proliferation-related genes and tissue-

specific genes [49] (see Methods for details) and obtained a list of (n = 389) stemness genes

including master regulators of stemness POU5F1, SALL4, NANOG as well as many other genes

involved in the transcriptional regulation and cellular metabolism (S3 File) [54]. The compari-

son of this set with the ESC signatures provided in other studies [50, 55, 56] revealed a moder-

ate intersection (Fig 1), however not as large as the intersection of ESC signatures with each

other. For instance, the gene set of Bhattacharya et al overlapped by more than a half with the

ESC signature identified by Ben-Porath et al (n = 50), while the largest intersection of our set

was with the gene set of Wong et al (n = 45).

Since tumors are composed of heterogeneous populations of cell types, an admixture of

normal cells into tumor samples can influence global gene expression profiles and dilute stem-

ness signature with the signal from normal cells, in which the stemness program is silent. An

estimate for the cellular composition of a tumor sample is the so-called tumor purity, which

can be quantitatively measured as the percentage of true tumor cells among multiple other cell

types that constitute the tumor [41]. Several approaches have been developed to estimate this

metric [41, 57–60]. They were recently applied to the TCGA dataset to compute the consensus

tumor purity estimate (CPE), which represents the median of four different tumor purity esti-

mates [41]. The distribution of CPE varies greatly both between and within different tumor

types (S1 Fig). To account for the effect of cellular composition bias, we built a linear model
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(see Methods) of gene expression as a function of CPE and used the residuals of this model

instead of the raw gene expression values (S2 Fig).

Tumors span continuously from normal tissues to iPSC

To investigate how tumors, normal tissues, ESC, ASC, and iPSCs compare in terms of stem-

ness signature, we used principal component analysis (PCA) of the adjusted gene expression

profiles restricted to the set of stemness genes (Fig 2A). Tumor samples distributed over the

first principal component (PC1, 24% of the total variance) forming two distinct clusters

located between normal tissues and ESCs/iPSCs, while ASCs were located close to the normal

tissues on the PC1 axis. At that, the iPSCs differentiation time series also clustered along PC1

so that less differentiated cells were located further from the center. Remarkably, the second

principal component (PC2, 8% of the total variance) separated iPSCs and ESCs. The higher-

order principal components did not show any clear separation related to stemness genes (S3

Fig), indicating that stemness signature is encoded within PC1. A similar clustering by stem-

ness signatures from previously published gene sets did not provide a clear separation of

tumors, normal samples and SCs (S4 Fig).

The expression of particular stemness markers followed the pattern of clustering along PC1

(S5 Fig). SALL4, one of the major regulators of pluripotency, was among the genes with the

highest loadings in PC1, with a gradual increase in expression along the PC1 axis reaching its

maximum at iPSCs. On the other hand, SALL1, which is suppressed in breast cancer [61], was

Fig 1. The stemness signature gene set intersects with previously published ESC signature gene sets. The number of genes in the intersection

between sets on the X and Y axes is shown in the cells of the matrix. The color scale encodes the size of the intersection relative to the size of the dataset

on the Y axis (above the diagonal) and relative to the size of the dataset on the X axis (below the diagonal).

https://doi.org/10.1371/journal.pone.0268626.g001
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ubiquitously downregulated in tumors, while being steadily expressed in both stem cells and

normal tissues. The expression of POU5F1, a key regulator of stem cell pluripotency, substan-

tially increased, while the expression of CBX7, a gene that encodes a Polycomb protein which

globally regulates cellular lifespan [62] and is a tumor suppressor in both mice and humans

[63], decreased towards ESC/iPSCs (S5 Fig).

To check whether the observed clustering along PC1 axis was consistent with patterns

reported for particular tumor types, we analyzed the stemness signature in two related, yet dif-

ferent cancers, lung squamous cell carcinoma (LUSC) [64] and lung adenocarcinoma (LUAD)

[65]. LUSC has a higher mortality rate compared to LUAD and shows a pronounced upregula-

tion of sonic-hedgehog, a major regulator of the developmental pathway linked to stemness and

proliferation, which is often active in adult stem cells and is absent in LUAD [66, 67]. Consis-

tent with this, LUSC was located closer to SC along the PC1 axis, while LUAD was closer to

normal tissues (S6A Fig). In line with previous observations, we observed an increased expres-

sion of the pluripotency-associated transcription factor SOX2 and reduced expression of

CBX7 in LUSC (S6B and S6C Fig). Additionally, genes differentially expressed in LUSC were

enriched for development-associated GO terms (S7 Fig).

Analysis of proliferation and EMT signatures

The expression of stemness genes revealed clustering of tumor samples in between normal tis-

sues and ESC/iPSCs, which may not be a unique property of stemness genes. However, no

Fig 2. Principal Component Analysis (PCA) of the expression of stemness signatures (A), proliferation signatures (B), and genes representing

EMT-MET (C) in differentiating iPSCs, ESCs, ASCs, tumors and normal tissues shown as individual samples (top) and density (bottom). Tumors

span continuously between normal tissues and iPSCs in the expression subspaces of stemness, proliferation, but not EMT-MET genes. Tumor samples

form two clusters: one closer to ESCs and iPSCs, another closer to the normal tissues and ASCs.

https://doi.org/10.1371/journal.pone.0268626.g002
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clustering was observed when we performed PCA on a random set of genes that were matched

by expression levels to stemness genes (S8 Fig). In contrast, when we repeated the same analy-

sis using proliferation markers, tumor samples again scattered across the PC1 axis (55% of var-

iance) forming two separate clusters (Fig 2B), and the differentiation states of iPSCs separated

concordantly along this axis. As before, PC2 separated ESCs from iPSCs, while no clear separa-

tion was observed in higher order principal components suggesting that PC1 represents the

proliferation signature (S3B Fig).

In contrast, the clustering of tumors, normal tissues, and iPSCs with respect to the epithelial

to mesenchymal transition (EMT) signature was drastically different (Fig 2C). Except for the

marginal standing of ASC, in which EMT must be active, we did not observe any clear separa-

tion of tumor samples from normal tissues, nor did we detect a directional trend of tumor

samples along any axes. There was no clear separation in higher-order principal components,

and most of the tumors showed epithelial phenotype similar to their tissues of origin, except

for hepatocellular carcinoma, melanoma and brain tumors (S3C Fig). Instead of the gradient

of EMT signature, we observed a switch-like state of master regulators of EMT (S9 Fig). Alto-

gether, this analysis failed to capture EMT signature in tumor tissue, possibly because cells

undergoing EMT are located at metastatic outgrowth or even dispersed as a transient circulat-

ing population thus preventing their detection in bulk sequencing [68].

Heterogeneity of stemness and proliferation signatures across

tumor types

The analysis of stemness and proliferation signatures revealed two clusters of tumor samples,

one of which was located closer to iPSCs along PC1, and the other was located closer to normal

tissues (Fig 2A and 2B). Since this separation occurred along the PC1 axis in both signatures,

we formally defined the clusters by their position relative to the median of the PC1 across all

tumor samples (Fig 3, black vertical line). Namely, samples located to the right of the median

of PC1 axis towards normal tissues were assigned to the Normal cluster, while samples located

to the left of the median towards iPSC were assigned to Stem cluster.

Next, we investigated whether any tumor type was specifically enriched in one of the two

clusters (Fig 3A–3C). Indeed, some tumors were fully localized to one of the clusters, e.g. Rec-

tal Adenocarcinoma and all subtypes of Renal Cell Carcinoma (KIRP, KIRC, KICH), while

others showed a significant heterogeneity in terms of both stemness and proliferation signa-

tures, e.g. Lung Adenocarcinoma and Liver Hepatocellular Carcinoma. To quantify the hetero-

geneity of stemness and proliferation signatures within each tumor type, we computed a

metric called intensity, which is defined as the proportion of samples of a given tumor type

that are located in the Stem cluster (see Methods for details). In other words, this metric cap-

tures the degree, to which each tumor type collectively expresses stemness or proliferation

signatures.

Despite stemness and proliferation intensities being strongly correlated, they differ signifi-

cantly for some tumor types (Fig 4A and 4B). For instance, the stemness intensity of glioblas-

toma (GBM) is 28%±7%, while its proliferation intensity is 50%±8%. Conversely, the stemness

intensity of hepatocellular carcinoma (LIHC) is 46%±5%, while its proliferation intensity is

31%±5%. Thus, these two metrics capture consistent, yet different aspects of tumor gene

expression. Most tumors with high purity have low stemness and proliferation intensities, con-

sistent with lower aggressiveness of such tumors [41], while tumors of higher stage tend to

have higher intensity of both signatures. Remarkably, tumors that arise from tissues with high

regenerative capacity have higher intensity of both signatures, presumably reflecting the innate

stem cell populations that maintain homeostasis.
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Intertumor variability correlates with survival

The intensity of stemness and proliferation signatures separates most tumors into two groups

corresponding to Normal and Stem clusters by the median of the PC1 axis. However, this subdi-

vision reflects global heterogeneity of stemness among all analyzed tumor types. In order to

assess the intertumor heterogeneity, i.e., the heterogeneity between different tumors of the same

tumor type, we used the PC1 median of a given tumor type rather than the global PC1 median

across all tumor samples to cluster samples into Stem and Normal groups specific to each tumor

type (Fig 5A). This approach provided balanced groups, which we used for survival analysis.

We observed a significant difference in survival between the Stem and Normal clusters only

in a fraction of tumors (Fig 5B). Remarkably, the hazard ratio was significant for tumors that

did not show the highest stemness and proliferation intensity (the bottom left quadrant in Fig

4), while tumors with the highest stemness and proliferation intensity (the upper right quad-

rant in Fig 4) did not show a significant difference in survival. For instance, we did not observe

a significant difference in hazard ratio for LUSC despite high stemness and proliferation inten-

sity, while skin cutaneous melanoma (SKCM), which had the stemness intensity on the level of

LUSC, showed a significant difference in the survival between Stem and Normal clusters (Fig

6). A similar heterogeneity was observed for tumors with low stemness intensity such as kid-

ney renal carcinoma (KIRC) and low grade glioma (LGG).

Intratumor heterogeneity

Unlike intertumor variability, which reflects differences between different tumors of the same

type from different patients, intratumor variability refers to genotypic and phenotypic

Fig 3. Heterogeneity of stemness and proliferation signatures across tumor types. The first principal component (PC1) encodes the signature of

stemness (A), proliferation (B), and EMT-MET signature genes (C). The samples are plotted separately for each tumor in the TCGA project, normal

tissues, and iPSCs. Tumor samples are colored according to their position relative to the PC1 median (black vertical line). Tumor samples located to the

right (left) of the median are assigned to the Normal (Stem) cluster, respectively. (D) The standard TCGA notation for cancer types.

https://doi.org/10.1371/journal.pone.0268626.g003
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differences between clonal populations of cells within a tumor. The quantitative measurement

of the transcriptional diversity of cells within a tumor are provided by transcriptomic profiling

at a single-cell resolution [69]. To assess the intratumor heterogeneity of stemness signature,

we re-analyzed the transcriptomes of 65,362 unsorted single cells from metastatic colorectal

Fig 4. The relationship between stemness and proliferation intensities. (A) Stemness intensity vs. proliferation intensity in 19 solid tumors with

different average project-wise tumor stage and median project-wise purity. (B) A heatmap of stemness and proliferation intensities across 19 solid

tumors from TCGA. Two groups of tumor samples are identified: top-right quadrant (stemness Intensity>0.5 and proliferation Intensity>0.5) and

bottom-left quadrant (stemness Intensity<0.5 and proliferation Intensity<0.5). The notation for cancer types as in Fig 3. Tumors from stem cell rich

organs are marked with asterisks.

https://doi.org/10.1371/journal.pone.0268626.g004
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Fig 5. Intertumor heterogeneity of stemness and proliferation signatures. (A) Stem and Normal clusters specific to each tumor type are defined by

the location of a sample relative to the median PC1 value across all samples of the given tumor (plotted as horizontal black lines). Samples above (below)

the median are assigned to the Normal (Stem) cluster, respectively. (B) Hazard ratios for the comparison of patient survival in Stem and Normal

clusters in two sample groups (top-right and bottom-left in Fig 4) with respect to stemness and proliferation intensity. Error bars denote 95%

confidence intervals. Tumor types are annotated at the bottom according to the average tumor stage and the median tumor purity. Codes for statistical

significance reported are as follows: NS − p-value>0.05, � − 0.01< p-value<0.05, �� − 0.001< p-value<0.01, ��� − p-value<0.001. The notation for

cancer types as in Fig 3.

https://doi.org/10.1371/journal.pone.0268626.g005
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cancers [38]. We used the loadings, i.e., the coefficients of the linear combination of stemness

signature genes, that correspond to the PC1 axis in Fig 2A to project the transcriptional pro-

files of single cancer and non-cancer cells onto PC1 (Methods). The 2D representation using

uniform manifold approximation and projection (UMAP) [70] revealed a clear separation of

cancer and non-cancer cells consistent with the annotation from [38] (Fig 7). Remarkably, the

cancer cell cluster shows a considerable increase of the stemness signature encoded within

PC1 (Fig 7A). However, not only the absolute value of the stemness signature, but also its vari-

ability was higher in the cancer cell cluster compared to non-cancer cell cluster indicating that

the heterogeneity of stemness signature is observed at all levels of cancer organization, includ-

ing single-cell level.

To compare the stemness capacity among individual tumor cells and stem cells, we inte-

grated two additional scRNA-seq datasets of mESC [71] and human iPSC [72] cultures along

with scRNA-seq dataset of colorectal cancer. We computed the PC1 projection for each cell

using PCA loadings from Fig 2 as a quantitative proxy of stemness, proliferation and EMT sig-

natures. As expected, we observed a gradient of stemness signatures from normal to cancer

cells and then to stem cells, which encompass both adult stem cells residing in the niches of the

normal tissues (labelled ASC) and iPSCs with ESCs (Fig 8A). The proliferation signatures mir-

rored the stemness signatures with a notable exception of iPSCs, which had stemness signa-

tures below ASC while being proliferative more active. The EMT signatures were distributed

Fig 6. Intertumor heterogeneity of stemness and proliferation is predictive of poor survival. Kaplan-Meier survival curves grouped by clustering

according to stemness (proliferation) signature are plotted for skin melanomas (A), lung adenocarcinoma (B) and renal clear cell carcinoma (C). P-

values from the logrank test are reported. The notation for cancer types as in Fig 3.

https://doi.org/10.1371/journal.pone.0268626.g006
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bimodally with cells of positive scores having more mesenchymal expression characteristics.

Remarkably, while the majority of cancer cells had negative scores, presumably reflecting the

epithelial origin of colorectal cancer, a large fraction (25%) likely containing CSCs still had

mesenchymal signature. The reduction to two dimensions with UMAP revealed two clusters

with high overall stemness signatures, one that corresponded to ESC and another to iPSCs,

which both converged into a more differentiated state represented by a cluster that was shared

between ESCs and iPSCs (Fig 8B).

It was reported that cancer cells comprising metastatic outgrowths possess prominent

stem-like characteristics [73]. To investigate this trait of cancer cell stemness, we computed

PC1 projections for each cell in a scRNA-seq dataset that contains normal tissues, primary

tumors and metastatic lesions of lung adenocarcinoma [40]. Indeed, single cells from these

three categories showed significantly increased stemness signatures in metastatic lesions in

comparison to both primary tumors and normal tissues (Fig 8C).

Next, we questioned how the heterogeneity of stemness signature compares between indi-

vidual cells and between tumors that arise in different patients. To address this, we reanalyzed

stemness signatures of individual cells in the colorectal cancer cohort taking the patient infor-

mation into account and found that a substantial proportion of variance of stemness signature

(13.5%, 1-way ANOVA, P-value< 10−16) is attributed to intertumoral, as opposed to intratu-

moral heterogeneity. Remarkably, cancer cells in some patients (SMC10, SMC08) were bimod-

ally distributed along the stemness signature score, potentially suggesting a presence of cancer

cell subpopulations of different potency (Fig 8D).

Discussion

Transcriptome comparisons have been a powerful tool for studying gene expression signatures

in disease [74–76]. We used principal component analysis (PCA), which represents each sam-

ple as a point in an n-dimensional space with coordinates corresponding to gene expression

values and applies a dimensionality reduction to identify principal components with the largest

variance. The outcome of these transformations, however, critically depends on the set of

Fig 7. Cancer cells show substantial intratumor heterogeneity of stemness. (A) UMAP dimensionality reduction of the colorectal cancer single-cell

RNA-seq dataset. The annotation of normal and cancer cell clusters is from [38]. The cells are colored by the degree of stemness signature reactivation

(the absolute value of PC1 projection). (B) The distribution of stemness signature (PC1) (X axis) in normal and cancer cells.

https://doi.org/10.1371/journal.pone.0268626.g007
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genes that were chosen initially. For instance, the use of different gene sets led to opposite out-

comes with tissue-dominated and species-dominated clustering [77]. In this work, we identi-

fied a gene set corresponding to the stemness signature encoded in PC1, which followed the

stemness gene expression gradient from the normal tissues through tumors and ASC to ESC

Fig 8. Cancer cells show heterogeneity in stemness, proliferation and EMT scores. (A) Stemness, proliferation and EMT

scores in single cells by cell type. Boxplots colors correspond to normal (blue), colorectal cancer (orange), and stem (red) cells.

(B) Two dimensional embedding derived from UMAP colored by the stemness score from panel A. (C) Stemness scores

computed for single cells from primary lung adenocarcinomas (orange), metastatic lesions (red), and surrounding normal

tissues (blue). (D) Stemness scores of colorectal cancer cells from different patients.

https://doi.org/10.1371/journal.pone.0268626.g008
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and iPSCs. This gene set provides a better representation of the stemness axis compared to pre-

viously published gene sets [50, 55, 56].

The TCGA dataset showed a consistent reactivation of stemness in all solid tumors in com-

parison to normal tissues, in accordance with other reports [78–80]. At the same time, the

degree of reactivation of the stemness and proliferation signatures varied greatly between dif-

ferent tumor types and also inter- and intratumorally, thus extending the results of previous

studies on stemness heterogeneity to the TCGA dataset [27, 81]. Remarkably, tumors originat-

ing from the tissues that actively interact with the outside environment (lungs, urinary system,

skin, intestines) show strong reactivation of both stemness and proliferation programs consis-

tently with the hypothesis that tumors inherit their self-renewal capacity from the tissues of

origin. The presence and abundance of innate stem cell populations is an important factor that

contributes to the heterogeneity of stemness signatures between different tumor types.

An important aspect of the reactivation of gene expression programs in tumors is formu-

lated by the Lineage Addiction Model, which suggests that the mechanisms that promote

tumor progression involve master regulatory genes that also exert key survival roles in devel-

opment [82]. Multiple examples of cancer lineage addiction have been reported [83–86], how-

ever the effect of lineage addiction on the reactivation of the stemness program remains to be

studied in detail. In our analysis, only a few tumor types (Breast Cancer, Lung Adenocarci-

noma, Lung Squamous Cell Carcinoma) spanned the entire PC1 axis, while most tumor types

were fully localized to either Stem or Normal cluster. This observation supports the idea that

the majority of tumors are restricted to specific phenotypic spaces with respect to the reactiva-

tion of the stemness program.

In the study of Ben-Porath et al, high expression of stemness genes was shown to be predic-

tive of poor survival among the patients of three breast cancer cohorts [50]. Other studies also

reported reduced survival for the tumors of stem phenotype [87–90]. Overall, as one of the

hallmarks of cancer [91], stemness has been suggested before as a universal predictor of patient

survival [27]. In our analysis, however, only seven out of sixteen tumors, for which patient sur-

vival data were available, showed a significant negative correlation of stemness with survival.

These results highlight the absence of universal ties between patient survival and the degree of

stemness signature reactivation, indicating a substantial degree of heterogeneity in tumor reac-

tion to the latter [26]. This analysis suggests that in spite of associations with tumor stage and

aggressiveness, the stemness is not a universal predictor of survival and could be regarded

instead as a function of the molecular profile that is specific for every tumor type.

According to the cancer stem cell hypothesis, cancers arise from transformation of stem or

progenitor cells that are capable of multilineage differentiation. The analysis of CSCs in

scRNA-seq data cannot be carried out directly since their identities are not known. However,

heterogeneous stemness, proliferation, and EMT signatures may partially serve as indicators of

CSCs in a large pool of cells. We observed a larger heterogeneity of stemness signature both in

cancer cells and stem cells grown in culture, not including ASC, presumably due to inherent

transcriptomic instability of cancer cells that can potentially reach extremes in both differenti-

ation and dedifferentiation. The heterogeneity of stemness signature in iPSCs and ESCs seems

to arise from stochastic differentiation processes that are known to occur in cell culture [92,

93]. In this regard, transcriptomic instability of cancer cells that occasionally leads to stochastic

dedifferentiation could serve as a source of CSCs.

Interestingly, endothelial cells, fibroblasts and stromal cells all showed mesenchymal scores,

while iPSCs and ESCs yet again showed high variability covering both mesenchymal and epi-

thelial scores. This stands in line with previous observations that pluripotent stem cells in cell

culture persist in a dynamic balance between epithelial and mesenchymal identities [94]. How-

ever, most cancer cells are enriched in epithelial state, whereas a fraction of cells (likely CSCs)

PLOS ONE Stemness heterogeneity across tumors

PLOS ONE | https://doi.org/10.1371/journal.pone.0268626 May 19, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0268626


still possess high mesenchymal scores. This can be explained by the fact that the bulk of cells

comprising the tumor maintain epithelial identity with only a few cells undergoing EMT. It is

also known that cancer cells undergoing EMT are involved in metastasis of a tumor, in full

agreement with our results.

The major limitation of the present study arises from the use of bulk RNA-seq, which is

unable to capture cellular heterogeneity. Single-cell RNA-seq experiments provide an orthogo-

nal view to the bulk RNA-seq by measuring the transcriptional profiles of individual cells,

however at the expense of sparse coverage. Here, we used colorectal cancer to demonstrate as a

proof of principle that the expression of stemness signature is highly heterogeneous not only

intertumorally, but also at the level of individual cancer cells, with a larger contribution from

intratumoral heterogeneity. Additionally, it was reported that specific patterns of hyper/hypo

methylation follow the stem phenotype in cancer cells [95, 96]. Therefore, another source of

stemness heterogeneity may come from the epigenetic component or from other factors such

as variability in pre-mRNA splicing [97] and expression of non-coding genes, e.g. transposons

[98]. A combined analysis of single-cell transcriptomes, pre-mRNA splicing by bulk RNA-seq,

epigenetic assays based on ChIP-seq, and non-coding RNA quantification is needed for the

detailed characterization of the stemness heterogeneity landscape. Growing amounts of this

information in the public domain enable such characterization from the multi-omics perspec-

tive and open new directions for future studies.

Conclusion

Tissue-independent reactivation of the stemness program represents a unifying feature which

ties together tumors of different origins. Nonetheless, the degree to which this program

becomes reactivated strongly fluctuates between different tumor types and also inter- and

intratumorally, thus suggesting that the effect of the stemness program on the tumor pheno-

type is highly heterogeneous. Multiple studies, including those based on single cell technology,

have described tumor heterogeneity arising at different levels through various mechanisms.

Here, we pinpoint yet another and previously unappreciated aspect of heterogeneity, one that

is related to the reactivation of the stemness program, thus adding to an already complex pic-

ture of tumorigenesis and potentially impacting the diagnostic protocols and the development

of new anticancer treatments.

Supporting information

S1 Fig. The distribution of the consensus purity estimate (CPE) values across the 19

tumors. The tumor types on the x axis are listed by in the descending order by the mean CPE

value.

(TIF)

S2 Fig. Correction of gene expression values. (A) The distribution of log2(1 + CPM), where

CPM denotes median counts per million, for the raw and CPE-corrected gene expression val-

ues. The gene expression counts were first normalized by edgeR and then corrected for tumor

purity (See Methods—Correction for tumor purity). (B) A scatter plot of CPE-corrected vs.

raw log2(1 + CPM). Each point represents a gene.

(TIF)

S3 Fig. Higher order principal components corresponding to Fig 2. Panels (A), (B), and (C)

correspond to the stemness, proliferation, and EMT-MET signatures, respectively.

(TIF)
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S4 Fig. Clustering of tumor, normal, and ESC samples according to previously reported

stemness signatures: (A)—Ben-Porath et al [50], (B)—Bhattacharya et al [55], (C)—Wong

et al [56].

(TIF)

S5 Fig. Expression of transcriptional repressors (CBX7, SALL1) and positive regulators of

stemness (POU5F1, SALL4) in tumor samples along the PC1 axis in Fig 2A. Samples were

stratified into quartiles according to PC1.

(TIF)

S6 Fig. The positions of LUSC and LUAD tumors in the clustering diagram in Fig 2A. All

tumor samples except for LUSC and LUAD are colored gray. The expression of CBX7 drops

(B), and the expression of SOX2 increases (C) in tumors on the way from normal samples to

iPSCs and ESCs.

(TIF)

S7 Fig. Differentially expressed genes (DEGs) in the LUSC compared to the LUAD and the

respective enrichment of their associated GO-terms.

(TIF)

S8 Fig. PCA clustering of tumor, normal, and ESC samples based on the controls sets of

random genes that were matched by expression levels to stemness (A), proliferation (B),

and EMT (C) signatures.

(TIF)

S9 Fig. The gradient of expression of mesenchymal (A-D) and epithelial (E-F) genes on the

PCA clustering diagram corresponding to EMT signatures (see Fig 2C). Normal tissues are

shown as gray background. Stem cells are colored as in Fig 2.

(TIF)

S1 Table. The accession numbers and description of the public RNA-seq datasets that were

used in the principal component analysis along with TCGA data; n denotes the (effective)

dataset size.

(TIF)

S2 Table. GEO accession numbers of the datasets that were used to assemble a set of stem-

ness signature genes. Additional information is reported in Methods (see Signature gene sets

section for details). log2 FC denotes log-fold-change threshold (Treatment vs Control); log2 E
denotes log gene expression level threshold (Treatment + Control); Comparisons denotes the

list of comparisons for differential gene expression analysis.

(TIF)

S1 File. TCGA sample subtype annotation and Stem cluster attribution.

(TSV)

S2 File. Table of literature sources of manually curated stemness markers.

(TSV)

S3 File. The list of stemness, proliferation and EMT/MET signature genes.

(TSV)
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