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A B S T R A C T

Background and aims: Epstein�Barr virus (EBV) is associated with solid and hematopoietic malignancies. After
allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening con-
dition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-spe-
cific T cells for adoptive transfer is time-consuming and influenced by the donor’s T-cell receptor (TCR)
repertoire and requires a specific memory compartment that is non-existent in seronegative individuals.
The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T
cells and recognize EBV-infected cells.
Methods and Results: Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-
B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent
and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and
TCRab-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs
were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To con-
firm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-
B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes.
All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines.
Conclusions: The authors’ approach provides sets of EBV epitope-specific TCRs in two different HLA contexts.
Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice
with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome
unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.
© 2022 International Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Epstein�Barr virus (EBV) belongs to the family of gamma-her-
pesviruses, and more than 80% of humans over the age of 20 are
infected [1]. EBV predominantly infects B cells, resulting in differ-
ent forms of latent (non-productive) and lytic (virus producing)
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infection. Primary EBV infection of a human being is usually self-
limiting and controlled by T cell-dominated immune responses,
leading to latent virus persistence [2]. Infected cells present char-
acteristic sets of EBV peptides on HLA that can be recognized by
EBV-specific T cells [3,4]. In the proliferative latency III program of
B-cell infection, six EBV nuclear antigens and three latent mem-
brane proteins (LMPs), among others, are expressed. EBV nuclear
antigens regulate replication of the viral genome and are involved
in B-cell transformation, disruption of cell cycle checkpoints and
lymphoma development [5�8]. Although LMP1 is a major trans-
forming protein, LMP2 can drive proliferation in the absence of B-
cell receptor stimulation and is involved in the induction of lym-
phoma-like phenotypes in B cells [9�11]. During the lytic phase,
approximately 70 EBV proteins are expressed, including transcrip-
tion factors BRLF1 and BZLF1, messenger RNA export factor BMLF1
and DNA polymerase processivity factor BMRF1, which contain
peptides that can be presented on HLA [3].

Clinical observations and experiences from adoptive transfer of
EBV-specific T-cell products suggest that T-cell responses are critical
for controlling EBV infection and maintaining the latent phase
[12�16]. Immunodominant EBV epitopes that drive substantial CD8+

T-cell expansion have been identified in a variety of HLA contexts
[17�20]. Expanded EBV epitope-specific T cells persist after acute
infection [21] and can constitute up to 5% of circulating CD8+ T cells
in asymptomatic immunocompetent individuals [3].

Apart from often inapparent primary infection, EBV can cause life-
threatening complications, including post-transplantation lympho-
proliferative disorders (PTLDs), in states of severe immunosuppres-
sion associated with solid organ or allogeneic stem cell
transplantation (allo-SCT). During the first 100 days after allo-SCT, T
cells are typically substantially reduced in numbers and functionally
inhibited, allowing EBV reactivation in approximately 30% of patients,
with limited, non-specific treatment options available in clinical rou-
tine [22]. Especially at risk are EBV-seropositive patients who receive
stem cell grafts from seronegative donors—a constellation of increas-
ing relevance with rising numbers of younger haploidentical stem
cell donors [23]. PTLDs occur in 1�8% of patients after allo-SCT [24],
and close to 100% are EBV-associated when they develop within the
first 6 months [25]. In summary, it would be beneficial if clinical con-
ditions demonstrating impaired T-cell immunity and high risk of
EBV-associated complications could be bridged with easily accessible,
highly specific cellular products.

EBV-specific T-cell products have been shown to be effective in
controlling infections and associated malignancies [13,26,27]. Cur-
rent strategies for the generation of virus-specific T-cell products
include in vitro expansion of epitope-specific (third-party) T cells
from peripheral blood or stem cell grafts [27�29]. However, the fol-
lowing technical and clinical obstacles have prevented broad transla-
tion of such products into clinical routine: (i) in vitro expansion
requires an antigen-experienced memory compartment, (ii) frequen-
cies of epitope-specific T cells can be variable between individuals
and products, (iii) donor selection and HLA allotypes are likely to
influence functional capacities of the product and (iv) such products
are laborious to produce and only directly available at a few special-
ized centers.

The authors hypothesized that the T-cell compartment of alloge-
neic stem cell grafts could be used to identify sets of T-cell receptors
(TCRs) specific for carefully selected latent and lytic EBV epitopes in
the context of pre-defined HLA backgrounds. These TCRs would be
available “off-the-shelf” for production of EBV-specific T-cell
products within minimum amounts of time. The authors’
approach allows the use of T-cell sources of choice independent
of EBV serostatus, guarantees target epitope specificity with
clearly defined frequencies of EBV-specific T cells, results in a
product that can be tracked in vivo by specific antibodies and can
be expanded to other HLA allotypes for prophylaxis or treatment
of EBV and associated malignancies.

Methods

Stem cell grafts

The authors collected leftover material from six granulocyte col-
ony-stimulating factor-mobilized stem cell grafts of EBV-seropositive
donors who expressed either HLA-B*35:01 or HLA-A*02:01. Mononu-
clear cells were isolated using Ficoll-Paque PLUS (GE Healthcare, Chi-
cago, IL, USA) and cryopreserved in human serum albumin (Grifols,
Barcelona, Spain) supplemented with 10% dimethyl sulfoxide (Carl
Roth GmbH & Co. KG, Karlsruhe, Germany). The study was approved
by the local institutional review board (Ethikkommission der Char-
it�e�Universit€atsmedizin Berlin; approval no. EA2/197/18), all partici-
pants gave written informed consent and the entire study was
conducted in accordance with the principles of the Declaration of
Helsinki.

Peptide-specific in vitro expansion

Mononuclear cells were thawed, washed twice with CellGro DC
medium (Sartorius CellGenix GmbH, Freiburg, Germany) and rested
for 16 h at 37°C and 5% carbon dioxide (CO2). Subsequently, 5 £ 107

to 3 £ 108 cells were stimulated for 2 h with synthetic peptides (JPT
Peptide Technologies, Berlin, Germany) at 1 mg/mL per peptide. Cells
were washed twice and expanded for 9 days at 2.5 £ 106 cells/mL in
CellGro DC medium, 1% GlutaMAX (Life Technologies, Carlsbad, CA,
USA), 1% donor serum and 50 IU/mL IL-2 (aldesleukin; Novartis
Pharma GmbH, Fehrbellin, Germany) at 37°C and 5% CO2. Fresh
medium was supplied on day 5. After expansion, cells were cryopre-
served.

Flow cytometry

All flow cytometry reagents, including monoclonal antibodies and
live/dead dyes, were titrated and used according to the manufac-
turers’ instructions. Phycoerythrin- and allophycocyanin-labeled
peptide major histocompatibility complex (pMHC) tetramers
(National Institutes of Health Tetramer Core Facility, Atlanta, GA,
USA) were provided at 1.1�1.5 mg/mL in water and diluted as 20%
glycerol (SERVA Electrophoresis GmbH, Heidelberg, Germany) stocks.
Per stain, the authors used 0.63 mL of pMHC tetramer stock solution
in 150 mL phosphate-buffered saline (Life Technologies) supple-
mented with 2% fetal bovine serum (FBS) (Life Technologies). Flow
cytometry data were acquired on Navios (Beckman Coulter, Brea, CA,
USA), LSRFortessa (BD Biosciences, Franklin Lakes, NJ, USA) and
Aurora (Cytek Biosciences, Fremont, CA, USA) instruments.

Fluorescence-activated cell sorting

Cells were thawed, rested in Roswell Park Memorial Institute
(RPMI) 1640 with 10% FBS for 1 h at 37°C and 5% CO2 and stained
with monoclonal antibodies. Single cells were index-sorted into 96-
well plates pre-filled with OneStep reverse transcription polymerase
chain reaction buffer (QIAGEN, Hilden, Germany) using a FACSAria
Fusion cell sorter (BD Biosciences) as described previously [30].

Single-cell TCRab sequencing

Polymerase chain reaction amplification, molecular barcoding,
library preparation and MiSeq (Illumina, San Diego, CA, USA)
sequencing were carried out as previously described [31,32]. Clonal
expansion was defined as two or more cells with identical TCRa and
TCRb CDR3 amino acid sequences. Cells that expressed two TCRa



Table 1
Peptides for EBV epitope-specific in vitro expansion.

Label Amino acid sequence Protein Virus phase Presented on HLA

HPV HPVGEADYFEY EBNA1 Latency I, II, III B*35:01
YPL YPLHEQHGM EBNA3A Latency III B*35:01
EPL EPLPQGQLTAY BZLF1 Lytic B*35:01
GLC GLCTLVAML BMLF1 Lytic A*02:01
CLG CLGGLLTMV LMP2A Latency II, III A*02:01
FLY FLYALALLL LMP2A Latency II, III A*02:01
YVL YVLDHLIVV BRLF1 Lytic A*02:01
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chains in combination with the same TCRb chain were defined as one
clone if TCRa chains were identical; cells in which only one of these
TCRa chains was identified were also included in the clone.

TCR expression on 58a�b� cell lines

Missing sequence parts of leader, variable and constant regions of
selected TCRs were completed with data downloaded from the inter-
national ImMunoGeneTics information system. Reconstructed TCR
sequences were synthesized (Thermo Fisher Scientific, Waltham, MA,
USA) and expressed in 58a�b� cell lines as previously described
[32,33]. The 58a�b� cells expressed human CD8ab chains and green
fluorescent protein (GFP) under the control of the nuclear factor of
activated T-cell promoter [33], thus indicating T-cell activation by
GFP expression. TCR expression was confirmed by mouse CD3 stain-
ing and detection by flow cytometry. As positive control for TCR acti-
vation, TCR-recombinant cell lines were stimulated with plate-bound
anti-mouse CD3 for 16 h at 37°C and 5% CO2. GFP expression was
measured with flow cytometry and IL-2 production was detected in
cell culture supernatants using the DuoSet enzyme-linked immuno-
sorbent assay (ELISA) ancillary reagent kit 2 (R&D Systems, Minneap-
olis, MN, USA).

TCR expression on third-party human T lymphocytes

TCRs were expressed on T cells of a healthy female, EBV-seroposi-
tive donor that expressed HLA-A*02:01 and HLA-B*35:01. TCR inserts
were constructed as described earlier and human TCR constant
regions were replaced with mouse constant region sequences to min-
imize mispairing with endogenous TCR chains. All TCR constructs
were codon-optimized for expression in human cells. To generate
retroviral vector particles to transduce human cells, 18 mg MP71 vec-
tor, including the TCR insert, was diluted in 150 mL water and
250 mM calcium dichloride and combined with 150 mL transfection
buffer, comprising 1.6 g sodium chloride (Sigma-Aldrich, Burlington,
MA, USA), 74 mg potassium chloride (Sigma-Aldrich), 50 mg diso-
dium hydrogen phosphate (Sigma-Aldrich) and 1 g 4-(2-hydrox-
yethyl)-1-piperazine ethanesulfonic acid (Sigma-Aldrich), and
100 mL water adjusted to pH 6.76. The mixture was added dropwise
to 8.5 £ 105 293Vec-RD114 producer cells (BioVec Pharma, Qu�ebec,
Canada). Cells were cultured at 37°C and 5% CO2 for 6 h, and medium
was changed afterward.

For transduction, 1.5 £ 106 human lymphocytes were stimulated
with 400 IU/mL IL-2 (Chiron Corporation, Emeryville, CA, USA) in a
24-well plate pre-coated with 5 mg/mL anti-CD3 (BD Pharmingen,
San Diego, CA, USA) and 1 mg/mL anti-CD28 (BD Pharmingen) for
2 days. Afterward, cells were spinoculated on two consecutive days
for 90 min at 800 £ g and 32°C with 1 mL filtered (0.45mm pore size)
RD114 retroviral vector supernatant, 400 IU/mL IL-2 and 8 mg/mL
protamine sulfate (Sigma-Aldrich). Spinoculated cells were expanded
in cell culture medium supplemented with 400 IU/mL IL-2 for
10 days and rested for 2 days with 40 IU/mL IL-2 before cryopreserva-
tion. Efficiency of TCR transduction was determined with flow cytom-
etry by mouse TCRb constant region staining.

Lymphoblastoid and mini-lymphoblastoid cell lines

Lymphoblastoid cell lines (LCLs) were generated by transforma-
tion of peripheral blood mononuclear cells with supernatant of the
EBV strain B95.8 as previously described [34]. Mini-LCLs were pre-
pared by immortalizing HLA-B*35:01+ or HLA-A*02:01+ B cells with
the recombinant mini-EBV plasmid p1495.4 [35,36]. Mini-EBV plas-
mids contained less than half of the EBV genome, and mini-LCLs
could not produce infectious particles [37]. Detailed HLA class I data
of all LCLs and mini-LCLs used in this study are included in the sup-
plementary material.
Co-culture of TCR-recombinant cells with target cells

A total of 60000 TCR-recombinant 58a�b� cells were cultured
with 100000 antigen-presenting cells. Cells were co-cultured in 150
mL RPMI 1640 and 10% FBS in 96-well plates for 16 h at 37°C and 5%
CO2. For target peptide loading, 3 £ 106 antigen-presenting cells
were incubated with the respective target peptide at 7.5 mmol/L for
30 min prior to co-culture.

TCR-transduced human lymphocytes were cultured at 50 000 T
cells with 10000 potential target cells in 200 mL RPMI 1640 and 10%
FBS in 96-well plates at 37°C and 5% CO2 for 20 h. Exact effector-to-
target ratios of individual co-cultures depended on frequencies of
CD8+ and TCR-transduced T cells within individual T-cell prepara-
tions and can be found in the supplementary material. Interferon
gamma (IFN-g), granzyme B and tumor necrosis factor alpha (TNF-a)
were determined in cell culture supernatants using a human IFN-g
ELISA set (BD Biosciences), human granzyme B DuoSet ELISA kit (R&D
Systems) and human TNF-a DuoSet ELISA kit (R&D Systems).
Results

Expansion of EBV epitope-specific T cells from stem cell grafts

Efficient identification of EBV epitope-specific TCRs requires suffi-
cient frequencies of specific T-cell clones. Therefore, the authors used
in vitro expansion of 5 £ 107 to 3 £ 108 mononuclear cells from five
EBV-seropositive allogeneic stem cell grafts in the presence of three
synthetic EBV-derived peptides presented on HLA-B*35:01 and one
additional graft with four synthetic peptides presented on HLA-
A*02:01 (Table 1). The peptides used were selected immunodomi-
nant epitopes expressed during lytic and latent infection phases, and
frequencies of specific CD8+ T cells were determined by flow cytome-
try using pMHC tetramer staining.

During in vitro expansion, absolute numbers of CD8+ T cells
increased (Figure 1A), and peptide-specific CD8+ T cells expanded on
average 42-fold (range, 1�228). Degrees of expansion varied
between stem cell grafts and individual peptides (Figure 1B,C). Fre-
quencies of HPV-, YPL- and EPL-specific HLA-B*35:01-restricted CD8+

T cells increased on average 25-, 10- and 108-fold, respectively
(Figure 1B). Frequencies of GLC-, CLG-, FLY- and YVL-specific HLA-
A*02:01-restricted CD8+ T cells increased 14-, 8-, 26- and 27-fold,
respectively (Figure 1C). Detailed cell numbers for each stem cell
graft before and after expansion can be found in supplementary Table
1. Representative pMHC tetramer staining is shown in Figure 1D (see
supplementary Figure 1; see supplementary Table 2).
Single-cell identification of EBV epitope-specific TCRs

Reliable and efficient identification of paired TCRab sequences
from complex T-cell populations requires single-cell resolution. The
authors isolated epitope-specific CD8+ T cells by pMHC tetramer
staining of stem cell grafts expanded in vitro and subsequent fluores-
cence-activated cell sorting (see supplementary Table 2). Gating for
single-cell sorting is illustrated in Figure 2A. TCRab genes of every



Figure 1. Expansion of EBV peptide-specific T cells from stem cell grafts. Mononuclear cells from allogeneic stem cell grafts were expanded in vitro in the presence of EBV-derived
peptides for 9 days. (A) Total numbers of CD8+ T cells from five stem cell grafts (G1�5). (B) Total numbers and fold expansion of HLA-B*35:01-restricted peptide-specific T cells
from five stem cell grafts (G1�5). Gray lines and gray numbers indicate averages. (C) Total cell number and fold expansion of HLA-A*02:01-restricted peptide-specific T cells from
stem cell graft G6. (D) Frequencies of peptide-specific CD8+ T cells before (day 0) and after (day 9) expansion as determined by pMHC tetramer staining. HPV- and EPL (presented on
HLA-B*35:01)-specific expansions from stem cell graft G3 are shown as an example along with GLC- and CLG (presented on HLA-A*02:01)-specific expansions from stem cell graft
G6. Plots are pre-gated on live single T cells. Numbers within gates indicate percentages. Significance determined by two-sided paired sample t-test. *P < 0.05. APC, allophycocya-
nin; FITC, fluorescein isothiocyanate; PE, phycoerythrin.

Figure 2. Identification of EBV epitope-specific TCRs. (A) Gates for single-cell sorting are shown in red. Selection of peptide-specific CD8+TCRab+ cells after gating on single lympho-
cytes and exclusion of dead cells. Data for single-cell sorting of EPL-specific cells from stem cell graft G3 are shown as a representative example of all sorts (n = 13). Numbers adja-
cent to gates indicate percentages. (B) Frequencies of T-cell clones after pMHC tetramer-specific single-cell sorting and sequencing. Expanded clones share identical TCRab CDR3
amino acid sequences. Results from EPL-specific clonal expansion of stem cell graft G5 and YPL-specific clonal expansion of stem cell graft G2 are shown as examples. Numbers of
clonally expanded cells are indicated above each chart. Percentages indicate percentages of clonally expanded cells. (C) Frequencies of expanded epitope-specific T-cell clones of all
expansions (n = 13). Data points indicate individual expanded clones. Frequencies represent frequencies within clonally expanded cells for each peptide specificity. Numbers above
the plot indicate total numbers of clonally expanded T cells. APC, allophycocyanin; FITC, fluorescein isothiocyanate; FSC-A, forward scatter area; FSC-H, forward scatter height; FSC-
W, forward scatter width; 7AAD, 7-aminoactinomycin D; SSC-A, side scatter area; SSC-H, side scatter height; SSC-W, side scatter width.
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single sorted cell were sequenced using next-generation sequencing
(see supplementary Table 3), and clonal expansion was defined as
detection of identical TCRab CDR3 amino acid sequences in at least
two cells.

Numbers and sizes of expanded T-cell clones varied between stem
cell grafts and between epitope specificities (Figure 2B,C). Although in
vitro expansion resulted in, for example, 24 different EPL-specific T-
cell clones, with dominant clones accounting for only 9% of clonally
expanded cells (EPL-specific expansion of stem cell graft G5), another
expansion contained seven different YPL-specific clones, with the
dominant clone comprising 82% of clonally expanded cells
(Figure 2B). Frequencies of epitope-specific T-cell clones from all in
vitro expansions are summarized in Figure 2C. The strongest clonal
expansion was observed for CLG-specific T cells from stem cell graft
G6, where only one expanded clone could be detected.

When comparing TCR sequences of epitope-specific clones
between individual grafts, five TCRs (two HPV- and three EPL-spe-
cific) were found in more than one stem cell graft, and their degree of
clonal expansion did not exceed 11% of clonally expanded T cells (see
supplementary Table 4). In summary, clonal expansion was stem cell
graft- and peptide-dependent and showed two patterns: (i) expan-
sion of a few dominant clones comprising almost the entire clonally
expanded T-cell compartment and (ii) expansion of a variety of less
dominant clones, each accounting for less than approximately 35% of
clonally expanded T cells.

Confirmation of target epitope specificity of expanded T-cell clones

Although identification of largely expanded dominant clones
within pMHC tetramer-sorted T cells suggested target peptide speci-
ficity, specificities of smaller size clones were less clear. To confirm
target peptide specificity, the authors expressed TCRs of 17 expanded
T-cell clones covering specificities for all peptides that had been used
for in vitro expansion on 58a�b� reporter T cells with nuclear factor
of activated T-cell-driven GFP expression (Table 2, Figure 3A). TCR-
recombinant cell lines were named “58-[name of the TCR]” and incu-
bated with antigen-presenting cells loaded with the respective pepti-
des. GFP expression and IL-2 production were measured as indicators
of T-cell activation. Mini-LCLs were used as antigen-presenting cells
and loaded with peptides of choice.

All TCR-recombinant cell lines produced GFP and IL-2 upon stimu-
lation with plate-bound anti-CD3 (see supplementary Figure 2). Upon
co-incubation with target peptide-loaded antigen-presenting cells,
Table 2
Epitope-specific, recombinantly expressed TCRs.

Label HLA restriction G TRAV CDR3a AA sequen

HPV13A10 B*35:01 G1 5*01 CAESYTGGFKTIF
HPV13B12 B*35:01 G1 10*01 CVVSEEGGFKTIF
HPV9A2 B*35:01 G3 20*01 CAVQELVTSGSRLT
HPV9C10 B*35:01 G3 20*01 CAVQAMTSSNYKL
YPL3D3 B*35:01 G2 19*01 CALSEAGGFGNEKL
EPL11A7 B*35:01 G1 1-2*01 CAVMSSGGSYIPTF
EPL11A12 B*35:01 G1 24*01 CAFPGGNKLVF
EPL7A4 B*35:01 G3 19*01 CALSRNYGQNFVF
EPL7A10 B*35:01 G3 1-2*01 CAVRGSGGSYIPTF
EPL11A10 B*35:01 G4 24*01 CALNAGGTSYGKLT
EPL13B9 B*35:01 G5 2*01 CAVEDMNSGGYQK
GLC1B11 A*02:01 G6 5*01 CAESTGKLIF
GLC1B4 A*02:01 G6 5*01 CAESTSWGKLQF
CLG3A10 A*02:01 G6 21*01 CAILMDSNYQLIW
FLY5D11 A*02:01 G6 17*01 CATEGDSGYSTLTF
FLY5B5 A*02:01 G6 17*01 CATVGNSGYSTLTF
YVL16D1 A*02:01 G6 38-2/DV8*01 CAYRSAFKLTF

AA, amino acid; cf, clone frequency; G, stem cell graft; TRAJ, TCRa J-gene and alle
V-gene and allele.

a Among clonally expanded cells specific for the respective epitope.
16 of 17 TCRs were activated, and no activation could be detected
upon incubation with non-target peptide-loaded antigen-presenting
cells (Figure 3B,C; also see supplementary Figure 3). TCR EPL7A4
could not be activated by its presumed target peptide and was
excluded from further analysis. Notably, 58-GLC1B11 and 58-GLC1B4
shared an identical TCRb chain but expressed different alpha chains
(Table 2). The authors expressed both alpha chains individually
together with the corresponding TCRb chain, and both combinations
resulted in productive TCRs specific for the same target peptide. In
summary, the authors confirmed specificity for a panel of 16 TCRs
targeting EBV epitopes presented during the latent and lytic infection
phase.

TCR-transduced third-party human lymphocytes recognize EBV-infected
cell lines

To determine their translational potential, the authors selected
three HLA-B*35:01- and four HLA-A*02:01-restricted TCRs, con-
firmed that they were not broadly cross-reactive with HLA other
than the target HLA (see supplementary Figure 4; see supplementary
Table 5), expressed them in human lymphocytes and tested their
reactivity with EBV-infected cells. TCRs were expressed on CD4-
depleted human lymphocytes, and TCR-transduced T cells were co-
cultured with four EBV-infected LCLs (named B01, JY, B03 and DJS).
TCR-transduced lymphocytes were named “hL-[name of the TCR],”
and recombinant TCR expression was detectable on average on 34%
of CD8+ T cells (see supplementary Figure 5). CD137 expression on
CD8+ T cells and IFN-g in cell culture supernatants were measured as
readouts for T-cell activation, and activation was assumed if either of
them was detectable.

TCR-transduced T cells of all six epitope specificities significantly
upregulated CD137 expression when incubated with at least one of
the corresponding LCLs (Figure 4A; also see supplementary Figure 6).
T cells specific for EPL, GLC, CLG, YVL and FLY also produced signifi-
cant amounts of IFN-g in comparison with non-transduced T cells
(Figure 4B). T cells expressing the HPV-specific TCR (hL-
HPV13A10) were activated, as indicated by CD137 expression;
however, IFN-g production was low and did not reach statistical
significance because of relatively high background IFN-g levels of
non-transduced T cells, which varied between different LCL and
co-incubation experiments.

To further characterize the activation response of TCR-transduced
human T cells, the authors selected hL-EPL11A7 as an example and
ce TRAJ TRBV CDR3b AA sequence TRBJ % cfa

9*01 6-1*01 CASGTEAFF 1-1*01 67
9*01 12-5*01 CASGLGGSNEQFF 2-1*01 14

F 58:01 9*01 CASTGAGEGPFF 1-1*01 39
TF 53*01 9*01 CASSARTGELFF 2-2*01 14
TF 48*01 10-3*01 CAISDPRDSYEQYF 2-7*01 82

6*01 10-3*01 CAISTGDSNQPQHF 1-5*01 13
47*01 10-3*01 CAISEWDSPTLNSPLHF 1-6*01 10
26*01 12-3*01 CASSLLAATYNEQFF 2-1*01 5
6*01 10-3*01 CATGTGDSNQPQHF 1-5*01 11

F 52*01 7-3*01 CASSRDFYAYNEQFF 2-1*01 98
VTF 13*02 28*01 CASKRTATYEQYF 2-7*01 8

37*01 29-1*01 CSVGTGGTNEKLFF 1-4*01 17
24*02 29-1*01 CSVGTGGTNEKLFF 1-4*01 25
33*01 10-2*02 CASSEDGMNTEAFF 1-1*01 100
11*01 6-5*01 CASSYQGGNYGYTF 1-2*01 30
11*01 6-5*01 CASSKQGGNIQYF 2-4*01 23
48*01 30*01 CAWSVPLGRREKLFF 1-4*01 14

le; TRAV, TCRa V-gene and allele; TRBJ, TCRb J-gene and allele; TRBV, TCRb



Figure 3. Confirmation of target peptide specificity of expanded T-cell clones. (A) TCRs selected for expression in 58a�b� reporter T cells. Data points indicate individual T-cell
clones. Clone frequencies are indicated as frequencies of each individual clone within clonally expanded pMHC tetramer-sorted cells. (B) TCR-recombinant cell lines were co-incu-
bated with peptide-loaded antigen-presenting cells, and GFP expression was measured by flow cytometry as an indicator for T-cell activation. “Alone” refers to TCR-recombinant
58a�b� reporter cell lines alone. All histograms are pre-gated on live TCRab+CD8+ cells. One co-culture per peptide specificity is shown as an example. (C) IL-2 production as mea-
sured by ELISA in cell culture supernatants corresponding to (B) TCR-recombinant data. APC, allophycocyanin; n.d., not detectable.
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additionally determined CD107a expression and granzyme B and
TNF-a secretion after stimulation with two HLA-A*02:01-matched
LCLs (B01 and DJS) and one HLA-A*02:01-mismatched LCL (JY) in the
presence of increasing target peptide concentrations. As expected,
responses were substantially stronger when LCLs were artificially
loaded with the target peptide. However, significant CD137 and
CD107a expression as well as IFN-g , granzyme B and TNF-a secretion
could already be detected without target peptide loading, and T-cell
activation was detectable only upon co-culture with HLA-matched
LCLs (see supplementary Figure 7).



Figure 4. Human T cells transduced with EBV epitope-specific TCRs recognize EBV-infected cells Three HLA-B*35:01-restricted (EPL11A7, EPL11A12, HPV13A10) and four HLA-
A*02:01-restricted (GLC1B11, CLG3A10, FLY5D11, YVL16D1) TCRs were expressed in human lymphocytes (named “hL-[name of the TCR]”) and cultured with LCLs (B01, B03, DJS,
JY). HLA-B*35:01-restricted TCRs were cultured with HLA-B*35:01-expressing B01 and DJS LCLs. HLA-A*02:01-restricted TCRs were cultured with HLA-A*02:01-expressing B03, DJS
and JY LCLs. Non-transduced T cells were used as negative controls. (A) CD137 expression determined by flow cytometry. Plots are pre-gated on live CD8+ lymphocytes. Data show
three replicates from one experiment. (B) IFN-g in cell culture supernatants was measured by ELISA. Data are representative of independent experiments (n = 3). Co-cultures of
each experiment were done in triplicate. All bars represent mean values § standard error. Significance determined by Welch two-sample t-test. *P < 0.05, **P < 0.01, ***P < 0.001.
PE, phycoerythrin.
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Discussion

The authors’ research addresses the unmet clinical need of avail-
ability of highly specific T-cell products with reliable and reproduc-
ible characteristics for prophylaxis and treatment of EBV infection
and associated malignancies within minimum amounts of time. The
authors defined sets of TCRs that guarantee EBV epitope specificity,
recognize EBV-infected cells in two different HLA contexts and can be
expressed in T-cell sources of choice.

There are a variety of elegant methodologies for identification of
virus-specific TCRs and in-depth characterization of their immune
phenotypes [38�40]. The authors decided to use stem cell grafts for
epitope-specific T-cell expansion, which was especially helpful for
identification of otherwise potentially low-frequency T-cell clones
against target antigens (e.g., derived from LMP2A). Although in the-
ory any T-cell source, including peripheral blood, may be sufficient,
stem cell grafts have considerable advantages: (i) detailed HLA typing
is readily available, (ii) EBV serostatus is provided, (iii) they are char-
acterized with regard to T-cell content and (iv) leftover material from
one routine stem cell transplantation is sufficient for epitope-specific
T-cell expansion, circumventing otherwise unnecessary higher vol-
ume blood draws from healthy individuals. Access to already HLA-
typed stem cell donors can be especially helpful for identification of
epitope-specific TCRs in the context of uncommon HLA types. In
addition to these rather technical advantages, virus-specific T cells
generated from stem cell donor specimens have already been used
for clinically effective treatment [41�43], making them T-cell sources
of choice for the authors’ purposes.

To increase the chances of successful epitope-specific T-cell
expansion and broad applicability of potentially resulting T-cell prod-
ucts, the authors chose target epitopes that had previously been well
characterized, are known to strongly contribute to life-long EBV-spe-
cific T-cell memory and effector repertoires in infected individuals
[3,20,44�46] and are presented on HLA types covering
approximately 30�40% of the population (HLA-A*02: 29%, HLA-B*35:
6%) [47].

Reliable identification of EBV-specific TCRs required identification
of epitope-specific T cells and highly efficient TCRab sequencing at
the single-cell level. The authors used pMHC tetramer staining for
fluorescence-activated cell sorting index sorting of single peptide-
specific T cells and subsequent paired TCRab single-cell sequencing
[30,48]. The authors have previously demonstrated that the combina-
tion of these technologies represents one of the most reliable and
efficient approaches for identification of paired TCRab sequences
and associated immune phenotypes of single cells [31, 32]. In theory,
epitope-specific T cells could have been sorted without prior in vitro
expansion; however, frequencies of epitope-specific T cells were low
before expansion (<1% of T cells), and accuracy and efficiency of sin-
gle-cell sorting and TCRab sequencing increase substantially with
higher frequencies of target populations [49]. Degrees of clonal
expansion varied between stem cell grafts and peptides used for in
vitro expansion, yet epitope-specific TCRs could be successfully iden-
tified even in cases of oligoclonal expansions, in which clones of
interest occupied less than 35% of CD8+ clonally expanded T cells.

Five TCRs were expanded across different stem cell grafts. In the
setting of only partially matched HLA types and peptide-driven in
vitro expansion followed by pMHC tetramer-specific sorting, overlap
of TCR repertoires of sorted populations is difficult to predict and will
be influenced by the diversity of TCR repertoires and limited overlap
between individuals. For nine of the re-expressed TCRs, the
TCRa and/or TCRb chains had already been deposited in the public
database VDJdb; however, paired TCRab information, which is criti-
cal for specificity, was available only for TCRs GLC1B11 and FLY5D11
[50]. For example, the TCRb chain of TCR HPV13A10 has been
described as part of a Melan A-specific TCR, whereas the alpha chain
of the same TCR can be part of a cytomegalovirus IE1-specific TCR.
The authors proved experimentally that, in combination, these alpha
and beta chains compose the EBV epitope-specific TCR HPV13A10,
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underlining the importance of paired TCRab single-cell sequencing.
Furthermore, among pMHC tetramer-sorted cells, the authors identi-
fied TCRb chains that paired with two different TCRa chains. For one
of these TCRb chains, the authors showed experimentally that com-
bining with either TCRa chain resulted in the productive TCRs
GLC1B4 and GLC1B11, which were specific for the same epitope.

To confirm epitope specificity of selected TCRs, the authors used
modified 58a�b� cells as reporter cells and mini-LCLs as antigen-pre-
senting cells. Mini-LCLs contain a selected set of latent EBV genes
[35]; however, none of the TCR-recombinant 58a�b� cell lines were
activated by mini-LCLs, most likely due to low target antigen expres-
sion/presentation. Nevertheless, mini-LCLs could efficiently present
artificially loaded peptides.

EBV epitope specificity for a variety of publicly available TCRs
has already been demonstrated using artificially peptide-loaded
antigen-presenting cells; however, data on TCRs that recognize
EBV-infected cells without additional peptide loading are limited.
The single-cell resolution of the authors’ approach yielded sets of
candidate TCRs specific for the target peptides of choice. To dem-
onstrate that the identified TCRs could indeed recognize virus-
infected cells, seven TCRs against latent and lytic phase epitopes
were expressed on human lymphocytes and incubated with LCLs
that expressed the required HLA-A*02:01 or B*35:01 allele. LCLs
show a latency III EBV gene expression pattern and a general cel-
lular phenotype that closely correspond to PTLDs [51]. All tested
TCRs showed in vitro reactivity with LCLs by CD137 upregulation
and/or IFN-g production, making them promising candidates for
translation into highly specific T-cell products for adoptive trans-
fer. The authors chose IFN-g secretion as the readout for T-cell
activation because it requires triggering of at least 20�50% of
TCRs on a T cell, and cytotoxic activity can be assumed if IFN-g
secretion is detectable [52]. As an example, for one TCR, the
authors showed that in case of target antigen recognition, both
CD107a expression and granzyme B and TNF-a secretion were
also detectable. Although the majority of LCLs are not in the lytic
infection phase, it has already been shown that LCLs can effi-
ciently activate T cells recognizing lytic phase epitopes [53].

With respect to potential TCR cross-reactivity with HLAs other
than the target HLA, the authors could not detect T-cell activation
upon incubation with HLA-mismatched mini-LCLs for all seven TCRs
that were transduced into human peripheral blood lymphocytes.
However, more detailed studies of HLA cross-reactivity are likely
required before therapeutic application can be implemented. For TCR
expression in human peripheral blood lymphocytes, the authors
replaced the human TCR constant regions with their murine counter-
parts to (i) avoid mispairing of TCRab chains [54] and (ii) allow stain-
ing with mouse TCRb constant region antibodies. Whether
expression of the murine constant regions could result in therapeuti-
cally relevant immunogenicity has to be determined in further stud-
ies; however, TCRab mispairing could also be avoided by using
minimally murinized TCR constant regions, reducing the risk of
immunogenicity [55].

In addition to EBV infection and PTLDs, there are a variety of EBV-
associated solid malignancies in which the pathophysiological role of
EBV is still a matter of debate. Especially in Hodgkin lymphoma, natu-
ral killer/T-cell lymphoma and nasopharyngeal carcinoma, not all
EBV antigens can be assumed to be equally expressed and presented
[40,56]. Nevertheless EBV-directed T-cell therapy might represent a
targeted therapeutic option with tolerable side effects and promising
results in (pre-)clinical applications [57,58].

Conclusions

The authors present efficient identification of EBV-specific
TCRs for translation into highly specific cellular therapeutics that
can be available within minimum amounts of time. T-cell
products will have exactly defined EBV epitope-specific T-cell
content and can be tracked in vivo by mouse TCRb constant
region staining. T-cell sources for TCR expression and composi-
tions of T-cell subsets are the investigator’s choice and can poten-
tially be adjusted and functionally manipulated before adoptive
transfer. The authors’ methodologies can be expanded to other
epitopes and HLA types and might be successfully applied beyond
EBV and other viral infections.
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