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Introduction of Lazy Luna 
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multilevel comparison 
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Cardiovascular magnetic resonance imaging is the gold standard for cardiac function assessment. 
Quantification of clinical results (CR) requires precise segmentation. Clinicians statistically compare 
CRs to ensure reproducibility. Convolutional Neural Network developers compare their results 
via metrics. Aim: Introducing software capable of automatic multilevel comparison. A multilevel 
analysis covering segmentations and CRs builds on a generic software backend. Metrics and CRs are 
calculated with geometric accuracy. Segmentations and CRs are connected to track errors and their 
effects. An interactive GUI makes the software accessible to different users. The software’s multilevel 
comparison was tested on a use case based on cardiac function assessment. The software shows good 
reader agreement in CRs and segmentation metrics (Dice > 90%). Decomposing differences by cardiac 
position revealed excellent agreement in midventricular slices: > 90% but poorer segmentations in 
apical (> 71%) and basal slices (> 74%). Further decomposition by contour type locates the largest 
millilitre differences in the basal right cavity (> 3 ml). Visual inspection shows these differences being 
caused by different basal slice choices. The software illuminated reader differences on several levels. 
Producing spreadsheets and figures concerning metric values and CR differences was automated. A 
multilevel reader comparison is feasible and extendable to other cardiac structures in the future.

Non-invasive imaging techniques such as Cardiovascular Magnetic Resonance (CMR) have become prominent 
in research and medical practice in the cardiovascular  field1. CMR is accepted as the gold standard in several 
applications, such as biventricular function assessment. Echocardiography remains the first-line method in 
clinical routine for function assessment, but CMR is increasingly listed in guidelines of the European Society of 
 Cardiology2 as the back-up method. CMR offers quantification of cardiac function, volume and mass for the left 
and right ventricle (LV, RV). Volumes include the end-systolic, end-diastolic and the stroke volume (ESV, EDV, 
SV). Function means the ejection fraction (EF) whereas the mass refers to the myocardial mass. Calculating these 
values requires a reproducible and precise segmentation of the LV and RV cavities as well as the LV myocardium.
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In clinical practice as well as in research, readers annotate contours often in accordance with the SCMR 
 guidelines1. However, manual segmentation is time-consuming and remains prone to inter- and intraobserver 
 variability3,4. In order to characterize pathologies with diagnostic approaches, inter- and intraobserver analyses 
are performed in order to ensure the methods’ statistical reproducibility and  accuracy3–6. Segmentations are 
based on subpixel resolution producing contours as  polygons1. An objective analysis of segmentation differences 
could be based on segmentation metrics such as the Dice Similarity Coefficient (Dice) or the Hausdorff Distance 
(HD) as typically used in computer vision challenges and  tasks7–9. Metrics are typically not used to compare 
segmentation similarity in context to clinical relevance and decision-making.

In recent years several convolutional neural network (CNN) developers have trained CNNs to contour 
CMR-images similar to medical  experts9–14. The annotations are generated in a fraction of the time a reader 
would require and are often performed on subpixel resolution as segmentation  masks9,13–15. CNNs demonstrate 
promising clinical results within the variability of interobserver  errors16,17, while still making human atypical 
 mistakes18–20. Segmentation metrics (such as the Dice and HD) are typically used to compare CNNs to medical 
readers on the level of individual  segmentations9,16,21. The qualitative nature of the human atypical segmentation 
differences remains  elusive18,20.

The goal of this paper is to design software that is capable of an automatic multilevel reader comparison. 
Usability by CNN developers as backend software and by medical experts as a graphical user interface (GUI) 
should be given alike.

Methods
The software Lazy Luna was designed to offer a multilevel reader comparison that covers segmentations and CRs. 
Metrics and CRs are calculated accurately. Segmentations and CRs are connected to allow for error tracking. An 
interactive GUI makes the software accessible to clinical readers and CNN developers. Lazy Luna’s functionality 
was demonstrated by performing a multilevel interobserver analysis.

Data. The dataset encompasses short-axis balanced steady-state free precession (bSSFP) cine CMR images 
of 13 patients (39 ± 13 years, 7/6 male/female). They were produced on a 1.5 T Avanto fit, Siemens Healthineers. 
The cases were selected randomly from an on-going trial. The central criterion was the performance of an inter-
observer analysis of the right and left ventricle. A short image stack consists of 16–18 slices and 30 phases. Two 
expert readers segmented the images using Circle Cardiovascular Imaging: cvi42 version 5.12.1.22. They seg-
mented the LV and RV cavity and contoured the LV myocardium and papillary muscles.

The local ethics committee of Charité Medical University Berlin gave ethics approval for the original study 
(approval number EA1/198/20). All patients gave their written informed consent before participating in the 
study. All methods were carried out in accordance with relevant guidelines and regulations.

Cases. Cases contain images, annotations (i.e. segmentations, points, etc.) of these images and clinical values 
that were calculated on the basis of these images and their annotations (Fig. 1a). The images were sorted into 
phases and slices. Two cases can be compared to each other when they reference the same original images. When 
many comparable cases were segmented by two readers statistics can be performed on the metric values and CRs 
(Fig. 1).

The images, segmentations and CRs refer to the same case allowing for tracking the effect of failed segmenta-
tions on differences in assessed CRs. For many comparable cases the outliers of CRs can be identified and the 
causes for their particularity backtracked to their origin in specific contours and their cardiac position (i.e. basal, 
midventricular, apical).

The images are stored in the  Dicom23 (Digital Imaging and Communications in Medicine) format. Dicom 
images are used to store images as well as information pertaining to those images. The images are loaded using 
the Python package  Pydicom24. Annotations are stored in a custom Lazy Luna format, as pickle files contain-
ing a Python dictionary that maps contour names to  Shapely25 objects. Shapely is described in “Geometrical 
representation and metrics”.

Data pre‑processing. Lazy Luna was designed to emphasize precision. The analysis tool can only be 
applied if the user transforms images and annotations to fit Lazy Luna’s interface. Lazy Luna requires images 
in Dicom format and annotations as pickle-files containing Shapely objects. Thus, pre-processing the data is a 
requirement for using the tool. An easy to use Data Pre-processing GUI for labelling Dicom images as well as 
linking the images to segmentations was used.

Finding the short-axis cine Dicom images in a set of several thousand images is an error-prone task and user 
intervention is essential. Images are manually identified as short-axis cine images by adding a Lazy Luna Dicom 
tag. The clinicians contoured the relevant images and stored the contours as workspaces. These workspaces were 
converted into the custom Lazy Luna annotation format.

Geometrical representation and metrics. Lazy Luna uses Shapely to process annotations. Shapely is a 
Python package for manipulating and analysing geometric objects (i.e. polygons, lines, points)25. Segmentations 
are modelled as polygons (LV, RV endocardial contour and LV myocardium) or MultiPolygons (papillary mus-
cles). Shapely is capable of performing a wide array of precise geometrical operations, such as area calculation, 
intersection, union and calculating the Hausdorff distance (HD)26. The Dice metric is calculated using intersec-
tion and union operations on two Shapely objects (Fig. 1b). The millilitres and their differences (ml Diff) are 
calculated using Dicom tag information on pixel height, width and slice thickness in mm:
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Figure 1.  Multilevel Reader Comparison. Caption: At the top (a) a case comparison is presented. Comparable 
cases concern CMR images that were segmented by two different readers. Clinical results are generated from 
images and segmentations. Segmentation metrics (b), such as Dice and Hausdorff metric, provide quantitative 
comparisons of segmentations. Next to the metrics, qualitative visualizations of segmentation differences are 
presented. The first reader’s segmentation is coloured blue, the second red and their agreement in green. Reader 
comparisons are modelled as the distributions of clinical result differences and metric value distributions. LV: 
Left ventricle, RV: Right ventricle, ESV: End-systolic volume, EDV: End-diastolic volume, cA (cB): Contour of 
Area A, ml: Millilitre, HD: Hausdorff metric.
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We offer two different averages for the Dice metric. The first one averages over all images, the second only over 
images segmented by both readers. The first rewards correct segmentation decisions, e.g. if the CNN should not 
and does not segment an image it considers this as an example of 100% Dice. If it makes an incorrect segmenta-
tion decision then it considers this mistake as 0% Dice. The second Dice average only considers the segmentation 
similarity for segmented images and discounts the relevance of the segmentation decision. It exclusively reflects 
the similarity of segmentation areas.

In order to calculate precise values for segmentation masks (typical outputs of CNNs) these must also be 
converted to Shapely objects. The transformation method should outline the pixelated segmentation mask pre-
cisely. For example, Rasterio’s rasterize function can be used to produce outlines of segmentation masks in 
Shapely  format27.

Software conception. The software Lazy Luna builds on several implemented classes following the object 
oriented programming paradigm. Classes are indicated with a capital letter. The Cases described above are a 
container class for images and annotations. An Annotation Type (i.e. segmentations of short-axis cine images) 
can be attached to a case and offers several visualization functions as well as geometric operations. Categories 
can be attached to a case in order to structure the case’s images into slices and phases by using Dicom image 
information. Categories identify relevant phases for Clinical Results. Clinical Result classes can be attached to a 
Case in order to calculate CRs based on the images, annotations and categories. Case Comparisons contain two 
cases that reference the same images. Metrics can be attached to a Case Comparison to calculate metric values.

Figures are classes that inherit their behaviour from the Python package  Matplotlib28. Matplotlib figures 
allow for creating professional static and interactive visualizations.  Seaborn29 (a wrapper Python package around 
Matplotlib) is used for statistical visualizations (Fig. 2). Tables are classes that extend Pandas DataFrame objects. 
 Pandas30 allows for extensive data analysis and easy storing of spreadsheets, extensive tabular information trans-
formation and data manipulation.

The graphical user interface (GUI) builds on PyQt5, which has Python bindings to Qt version  531. Matplotlib 
figures and DataFrames are easy to integrate into PyQt5 GUIs. Interactive Matplotlib figures (Figs. 3, 4) can also 
be integrated, allowing for tracking function by linking different figures to each other that offer insights on several 
levels of analysis (such as CRs and metric values, or metric values and qualitative visualizations).

Lazy Luna offers several automated outputs. These include the calculation of tables of metric values (for all 
phases and slices) for all cases and the calculation of tables of CRs and their differences for all cases (supple-
mentary information). It also produces summary tables for clinical value differences and a metric evaluation 
of the contours they are based on (Table 1) and for the metric values decomposed by contour type and cardiac 
position (Table 2). Lazy Luna offers the automatic generation of figures, such as Bland–Altman plots for clinical 
value distributions and Dice values as boxplots (Fig. 2).

Ethical approval. The local ethics committee of Charité Medical University Berlin gave ethics approval 
for the original study (approval number EA1/323/15). All patients gave their written informed consent before 
participating in the study. All methods were carried out in accordance with relevant guidelines and regulations.

Results
It was possible and feasible to merge the evaluation methods of medical experts and CNN developers. The 
software automatically structures Dicom images and annotations allowing for comparisons between readers. 
The cases are compared via their segmentations and CR simultaneously while tracking errors. Calculating all 
metrics and CRs on the contour level provides sub-pixel accuracy. Lazy Luna can be used to perform inter- and 
intraobserver analyses. As the software package is described in “Methods” the results section presents Lazy Luna’s 
GUI and its generated outputs to illustrate a reader comparison performed with Lazy Luna.

Quantitative results for the use‑case. The comparison of the readers’ cardiac function assessments 
produced the following analysis. The readers show good general agreement on quantitative CRs and segmenta-
tion metric values (Table 1). Lazy Luna calculated a CRs spreadsheet (supplementary information), which was 
used to calculate Pearson’s correlation coefficients for the CRs assessed by both readers. These are LVESV: 91%, 
LVEDV: 99%, RVESV: 96%, RVEDV: 95%, LVSV: 95%, LVEF: 74%, RVSV 87%, RVEF: 78%, LVM: 97%. Average 
Dice values are 91.9% for all images and 92.2% for images segmented by both readers. Details are in Table 1. 
Furthermore, these results can be displayed as single plots to illustrate the result similarities and differences. This 
is given in Fig. 2, which shows an automatically produced overview of CRs.

Qualitative results for the use‑case. Furthermore, the use-case was also evaluated qualitatively with a 
visualization of segmentation differences, which was implemented for the GUI. That allows an identification of 

ml Diff (A,B) = (|A| − |B|)× area per pixel × slice thickness

Dice(A,B) =
2× |A ∩ B|

|A| + |B|

HD(A,B) = max{maxa∈cA(minb∈cBd(a, b)),maxb∈dc(mina∈cAd(a, b))}
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Figure 2.  Automatic Generation of Clinical Results Overview. Caption: This plot is automatically generating 
after loading the cases into Lazy Luna’s GUI. Bland-Altman plots show clinical result averages and differences 
as points for all cases. Point size represents difference size. The solid line marks the mean difference between 
readers; the dashed lines mark the mean differences ±1.96 standard deviations. The last plot offers two Dice 
boxplots per contour type, one for all images, another restricted to images segmented by both readers. The 
clinical result differences hover around zero for the LV and the RV. The variance is larger for results concerning 
the RV. Dice values are higher for the LV cavity than for LV myocardium or RV cavity. GUI: Graphical user 
interface, RV: Right ventricle, LV: Left ventricle, ESV: End-systolic volume, EDV: End-diastolic volume, EF: 
Ejection fraction, LVM: Left ventricular mass, Dice: Dice similarity coefficient.
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different slice selection or interpretation, which may lead to large volume differences. An example of a disagree-
ment is given in Fig. 3.

Tracking differences in the use‑case. CR differences can be caused in different cardiac positions and 
structures. Lazy Luna can track segmentation differences and their impacts on CRs. For this use-case investigat-
ing the cardiac position of segmentation difficulties reveals that the midventricular slices have higher Dice values 
for all contour types (LV cavity: 97%, LV myocardium: 91%, RV cavity: 94%). As a result millilitre differences 
remain small in these slices (< 1 ml). Segmentation difficulties are larger in basal and apical slices (Table 2). The 
Dice metric is poorest for the LV myocardium in the apical slices (74%). However, the impact in clinical values 
is smaller because the millilitre differences remain small (< 0.5 ml). The Dice metric values are also lower in the 
basal slices (LV cavity: 88%, LV myocardium: 87%, RV cavity: 72%) (Table 2, Fig. 3). However, the millilitre dif-
ferences are larger in the basal slices, especially those concerning the RV (> 3 ml, Table 2), which causes larger 
millilitre differences in the CRs. One of Lazy Luna’s interactive GUI tabs allows for exploring this phenomenon 
(Fig. 4). An interactive metrics correlation plot shows that RV endocardial segmentation disagreements produce 
the largest RV millilitre differences and provides visualizations of selected differences.

Discussion
Our main achievement is the implementation of the investigative software Lazy Luna, which is capable of per-
forming a multilevel analysis on reader differences with a graphical user interface. The functionality of Lazy 
Luna was illustrated by carrying out an interobserver analysis between two experienced readers. This analysis 

Figure 3.  Tracking and Visualizing Reader Differences with Lazy Luna’s GUI. Caption: On the left, two tabs of 
Lazy Luna’s GUI are presented. On the right, parts of these tabs are magnified. For the top tab the RVESV Bland-
Altman plot (outlined in blue) is magnified. For the bottom tab the visualization of segmentation differences is 
magnified. The first reader’s segmentations (subplot 1) are in red, the second reader’s are in blue (subplot 3). In 
the second subplot agreement is in green and areas exclusive to one reader are in that reader’s respective colour. 
The top tab includes a table of clinical result averages per reader next to their average differences (top left), a 
QQ-plot (bottom left) and paired boxplots (top right). Clicking a point in the Bland-Altman plot opened the 
lower tab. This tab’s table presents all metric values concerning the case’s segmentations. RV: Right ventricle, 
ESV: End-systolic volume, GUI: Graphical user interface, QQ-plot: Quantile-quantile plot.
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allowed for elucidating segmentation differences in order to give a detailed description of reader differences for 
short-axis cine images.

Backtracking CR differences in Bland–Altman plots to visualizations of segmentation differences indicated 
that major millilitre differences might accumulate in basal slices. Correlation plots of all metric values offered 
insights into qualitative reasons for RV endocardial contour disagreements. It also provided visual confirmation 
of the RV being difficult in the basal slices and a common cause for larger millilitre differences in CRs. The tabular 
metric values provided further quantitative evidence for basal slices causing the largest millilitre differences, 
although the apical slices are similarly difficult to segment accurately.

Furthermore, it is expected, that Lazy Luna could be helpful as a tool for CNN developers and medical 
experts alike. It allows for streamlining the comparison of readers in a fashion that satisfies both communities. 
Lazy Luna calculates accurate CRs and metric values, automatizing error-prone and time-intensive spread sheet 
generation. Interactive visualizations allow for understanding differences on several levels of analysis as well as 
suggest causal relationships between segmentation failures and CR outliers.

The Dice metric and the Hausdorff distance were taken from the surrounding literature in CNN 
 development9,13,14,16,32. Two different methods were used for calculating average Dice metrics, one value concerns 
all images, the other concerns only images segmented by both readers. In literature it is often unclear how the 
Dice metric values are averaged over cases and both considerations capture relevant aspects of the segmenta-
tion  task16,33. The metrics were extended to include the millilitre difference for the medical community, which is 
usually more interested in the impact of segmentation choices on volume differences.

These metrics could be arbitrarily expanded to meet other needs. Several other metrics can also be found in 
the surrounding literature such as the Intersection over  Union19 or the Average Surface  Distance9,17, which could 
be implemented accurately to apply to Shapely objects.

Pre-processing images for Lazy Luna requires manual selection due to the lack of common image-type 
identifiers among vendors and sequence types. Lazy Luna currently semi-automates this by presenting the user 
all images concerning a case in a table grouped by Dicom tags (including seriesDescription, seriesInstanceUID 

Figure 4.  Interactive Correlation Plots of Segmentation Comparisons. Caption: The above window shows the 
interactive plot in the GUI. Below the plot is enlarged. Every point represents a contour comparison as millilitre 
difference and Dice value. Its colour distinguishes LV endocardial contour (red), LV myocardium (green) and 
RV endocardial contour (blue) contours. The point size represents the absolute millilitre difference. On the right 
visualizations of the comparisons are presented. The arrows show where they were selected from within the 
correlation plot. GUI: Graphical user interface, RV: Right ventricle, LV: Left ventricle, ES: End systole, ED: End 
diastole, Endo: Endocardial contour, Myo: Myocardial contour, Abs. ml diff: Absolute millilitre difference.
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and annotations by group) so that the relevant images can be selected manually. In literature, several machine-
learning supported image classification methods have been experimented with to automate this  task34,35. Pre-
processing should be simplified in the future by assisting the user with automated suggestion of image types.

Training readers in CMR as well as in other fields includes curriculum-based education, simulation and 
competency  assessment6,36,37. One-on-one teaching with immediate feedback is considered most  effective37. The 
relevance of training has been shown to increase the quality of LV volume  evaluation6,38. However, this type of 

Table 1.   Title: Reader comparison of clinical results and segmentation metric values. Caption: Clinical result 
differences between readers are presented in their averages and standard deviations (in blue). They are joined 
with metric value averages concerning the clinical results above them (in grey). For example: the Dice values 
below LVEF, LVEDV, LVESV concern the LV cavity. The table presents two Dice values, one for all slices, 
another restricted to slices segmented by both readers. LV: Left ventricle, LVEF: Left ventricular ejection 
fraction, Legend: LVEDV: Left ventricular end-diastolic volume, LVESV: Left ventricular end-systolic volume, 
HD: Hausdorff metric, LVM: Left ventricular myocardial mass, RVEF: Right ventricular ejection fraction, 
RVEDV: Right ventricular end-diastolic volume, RVESV: Right ventricular end-systolic volume, Std.: Standard 
deviation.

Clinical result Mean Std

0 LVEF [%] − 2.6515 2.892012

1 LVEDV [ml] − 0.1255 2.716635

2 LVESV [ml] 4.009375 4.37966

3 Dice (all slices) [%] 94.28326 2.868816

4 Dice (slices contoured by both) [%] 95.23182 1.746661

5 HD [mm] 0.652106 0.355608

6 LVM [g] − 1.03389 4.35594

7 Dice (all slices) [%] 90.59014 6.579328

8 Dice (slices contoured by both) [%] 88.8001 6.948619

9 HD [mm] 0.849034 0.523192

10 RVEF [%] − 0.75374 3.131688

11 RVEDV [ml] − 2.39193 11.12953

12 RVESV [ml] − 0.41506 6.187294

13 Dice (all slices) [%] 90.18286 5.009351

14 Dice (slices contoured by both) [%] 91.15519 3.469649

15 HD [mm] 1.628765 0.764461

16 Dice (all slices. all contours) [%] 91.90448 4.006083

17 Dice (slices contoured by both. all contours) [%] 92.15594 3.055814

18 HD (all contours) [mm] 1.082155 0.482872

Table 2.  Title:  Segmentation metric values by contour and cardiac position. Caption: The columns specify the 
contour type. The sections refer to different cardiac positions (defined by the first reader). The table presents 
two Dice values, one for all slices, another restricted to slices segmented by both readers. Legend: Midv.: 
Midventricular, HD: Hausdorff metric, Abs. ml diff.: Absolute millilitre difference.

Position Metric LV Endocardial Contour LV Myocardial Contour RV Endocardial Contour

0 basal Dice (all slices) [%] 87.99322 87.053 71.76934

1 basal Dice (slices contoured by both) 
[%] 93.40139 81.29877 74.57156

2 basal HD [mm] 1.930015 2.130997 8.128019

3 basal Abs. ml diff. (per slice) [ml] 1.361211 0.937157 3.167208

4 midv Dice (all slices) [%] 96.91416 91.09024 94.12743

5 midv Dice (slices contoured by both) 
[%] 96.12728 89.18645 93.35773

6 midv HD [mm] 0.835387 0.990279 2.024506

7 midv Abs. ml diff. (per slice) [ml] 0.307792 0.421006 0.609953

8 apical Dice (all slices) [%] 83.54174 74.24892 81.71449

9 apical Dice (slices contoured by both) 
[%] 83.60426 66.52359 82.93531

10 apical HD [mm] 0.99975 1.372196 1.579264

11 apical Abs. ml diff. (per slice) [ml] 0.184053 0.468395 0.234856
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training requires time intensive training sessions with a teacher present who explains many cases directly. That 
could be supported by Lazy Luna as the fast and automatic comparison of two readers may help to improve the 
training of trainees without direct coaching including significant time investment for manual evaluation and to 
bring support in the place in which additional coaching is required.

Furthermore, CNNs play an increasing role in CMR post-processing. Several confounders can complicate the 
automatic segmentation of images. Generalizing over different datasets can be difficult. Confounders include: dif-
ferent sequences such as the short-axis cine images in this  paper5,39,40, different  scanners19, different  pathologies17 
(i.e. LV and RV hypertrophies) and artefacts that must be identified and excluded before automatic  segmentation1. 
Lazy Luna offers functionality for the calculation of inter- and intraobserver comparisons for the assessment of 
segmentation accuracy.

CNNs should be compared to readers on a contour level for precise evaluation. Several CMR segmenta-
tion contests include sophisticated evaluations for segmentation quality and CRs. However, they disregard the 
inaccuracy caused by comparing on pixelated segmentation masks as ground truth segmentations instead of 
comparing contours as  polygons16,41.

CNN training procedures could integrate Lazy Luna’s capabilities as part of the training procedure. By stor-
ing the annotations for the evaluation dataset in Lazy Luna’s format, Dice metric values would be offered, but 
clinically relevant outliers of cases would also be analysed accordingly. This would enhance the evaluation by 
considering the interconnected nature of Dice metric values and the volumetric differences they cause.

In several guidelines it is recommended to perform evaluation based on the AHA  model1. In the future, Lazy 
Luna will provide the AHA model as an intermittent analysis step, allowing for tracking of annotation differences 
from AHA-segments.

The classes generically keep track of images and annotations. This software backend can be extended to 
include other quantification techniques as well.

Limitations. Lazy Luna is intended to be generic, however currently it is limited to short-axis cine stacks 
and should be shown to generalize to other cardiac structures and imaging sequences. Other outputs such as AI 
segmentations maps and other software vendors are to be tested in future work.

Lazy Luna is intended to be open-source in the future as to be available to and extendable by other research-
ers. Other image and annotation pre-processing steps (i.e. steps typically necessary for AI-contests) will be 
automatically addressed before source-code publication so that researchers can reproduce results on available 
segmentation contests.

Conclusion
The introduced software Lazy Luna enables an automatic multilevel evaluation of readers on quantitative results. 
In our use-case the readers showed an overall good agreement on the level of individual segmentations and 
clinical results. Lazy Luna allowed pinpointing origins of large millilitre difference to segmentation differences 
in specific cardiac structures and locations. Future developments include generalizing the software’s applicability 
to different sequences and anatomical structures.

Data availability
The datasets analysed during the current study are not publicly available due to patient data privacy but are avail-
able from the corresponding author on reasonable request after communication with the legal department as 
there are special rules based on the EU law and the rules of the Berlin data officer rules. The datasets generated 
during this study are included in this published article and its supplementary information files.
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