PBS-treated mice

Supplementary Figure S1

Supplementary Figure S1.

(A) Representative FACS profiles illustrating gating scheme for HSCs from PBStreated mouse; BrdU proliferation and cell cycle analysis (icKi67-Hoechst 33342). (B) Representative FACS profiles illustrating gating scheme for HSCs from LPStreated mouse; BrdU proliferation and cell cycle analysis (icKi67-Hoechst 33342). (C) Relative count of indicated cell populations as percentage of peripheral blood cells after *in vivo* treatment of wt or *TLR4*^{-/-} mice with PBS (control) or LPS (0.25 mg/kg) for 18h (n=6 for wt mice, n=3 for *TLR4*^{-/-} mice). *P-values* were determined by ANOVA; Tukey`s post hoc test. PBS / LPS

18 hr 0

wt

CD45.2

IR

wt

BM harvest

PBS 4x LPS 1x LPS

0

Supplementary Figure S2

Supplementary Figure S2.

(A) Scheme indicating *in vivo* transplantation: BM was harvested from PBS (control) or LPS (0.25mg/kg, 18h) treated mice (CD45.2⁺) and transplanted ($3x \ 10^6$ BM cells) into irradiated wt mice (CD45.1⁺). Analysis was done 12 weeks post transplantation.

(B) Percentage of CD45.2 granulocytes of peripheral blood cells in recipient mice 4, 8 and 12 weeks post transplantation, transplantation set-up as indicated in Fig. 2SA (n=6); *P-values* were determined by unpaired t-test.

(C) Absolute numbers of HSCs (LSK CD150⁺CD48⁻CD34⁻, per 10⁶ BM cells) and mature blood cell types (B220⁺ B-cells, CD11b⁺Ly6C⁺ myeloid cells, CD11b⁺Gr.1⁺ granulocytes, CD3⁺ T-cells; x10³ per 10⁶ BM cells) in recipient mice 12 weeks post transplantation, as indicated in Fig. 2SA (n=6); *P-values* were determined by unpaired t-test and ANOVA; Tukey's post hoc test.

(D) Scheme illustrating CFU assay set-up: Lin^{neg}Kit⁺CD150⁺ (LKCD150⁺) (20.000) and CD11b⁺CD115⁺ (10.000) cells were sorted from wt mouse (n=4) into culture. Cells were treated with either PBS, LPS (single treatment vs. 4 treatments by refreshing medium every second day, 100ng/ml). After 7 days 2.000 cells out of each well were plated in duplicate for colony-forming unit (CFU) assay. Colonies were counted after 8 days.

(E) Absolute number of colonies counted in CFU assay. Experimental set-up as indicated in Fig. 2SD (n=8); *P-values* were determined by ANOVA; Tukey's post hoc test.

Supplementary Figure S3

Supplementary Figure S3.

(A) Cell cycle analysis (icKi67-Hoechst 33342) of HSCs (LK CD150⁺CD48⁻CD34⁻) from wt mice treated with PBS (control) or LPS (0.25 mg/kg, 18h) and pre-treated with control- or clodronate-loaded liposomes as indicated in Fig.3H (n=6). *P-values* refer to G_0 phase and were determined by ANOVA Tukey's post hoc test.

(B) Cell cycle analysis (icKi67-Hoechst 33342) of HSCs (LK CD150⁺CD48⁻CD34⁻) from PBS or LPS (0.25 mg/kg, 18h) treated wt and $TLR4^{-/-}$ mice (n=3); *P*-values refer to G₀ phase and were determined by ANOVA; Tukey's post hoc test.

(C) 14h BrdU (18mg/kg) uptake of HSCs (LK CD150⁺CD48⁻CD34⁻) from PBS (control) or LPS (0.25 mg/kg, 18h) treated wt and $TLR4^{-/-}$ mice (n=3); *P-values* were determined by ANOVA; Tukey's post hoc test.

(D) Percentage of HSCs (LK CD150⁺CD48⁻CD34⁻) in G₀ phase (icKi67^{neg} Hoechst 33342^{low}) at indicated time points after treatment of wt mice with PBS (control, time point 0h, grey dots) or LPS (0.25 mg/kg, blue dots) (n=6); *P-values* were determined by ANOVA; Tukey's post hoc test.

(E) Relative Sca-1 expression on sorted wt HSPCs (LK CD150⁺) after *in vitro* culture for 18h in the presence of wt Gr1⁺CD115⁺ monocytes, Gr1⁺CD115⁻F4/80⁺ macrophages or Gr1⁺CD115⁻ neutrophils. *P-values* were determined by unpaired t-test.

(F) Scheme indicating the *in vivo* transplantation: BM from wt (CD45.1/2⁺) and *Tnfrsf1*^{-/-} or *IL-1R*^{-/-} mice (CD45.2⁺) (1.5x10⁶ BM cells each) was transplanted into irradiated wt mice (CD45.1⁺). Mice were treated with PBS (control) or the respective cytokine TNF α (0.75 mg/kg, 18h), IL-1 α or IL-1 β (each 0.25 mg/kg, 18h) 12 weeks post transplantation.

(G) Cell cycle analysis (icKi67-Hoechst 33342) of wt (CD45.1/2⁺) and *Tnfrsf1^{-/-}* (CD45.2⁺) HSCs (LSK CD150⁺CD48⁻CD34⁻) in mixed BM chimeras as indicated in Fig.3SF, treated with PBS (control) or TNF α (0.75 mg/kg, 18h) (n=4 for PBS, n=6 for TNF α). *P-values* refer to G₀ phase and were determined by ANOVA; Tukey's post hoc test.

(H) Cell cycle analysis (icKi67-Hoechst 33342) of wt (CD45.1/2⁺) and *IL-1R^{-/-}* (CD45.2⁺) HSCs (LSK CD150⁺CD48⁻CD34⁻) in mixed BM chimeras as indicated in Fig.3SF, treated with PBS (control) or IL-1 α (0.25 mg/kg, 18h) (n=3). *P-values* refer to G₀ phase and were determined by ANOVA; Tukey's post hoc test.

(I) Cell cycle analysis (icKi67-Hoechst 33342) of wt (CD45.1/2⁺) and *IL-1R^{-/-}* (CD45.2⁺) HSCs (LSK CD150⁺CD48⁻CD34⁻) in mixed BM chimeras as indicated in Fig.3SF, treated with PBS (control) or IL-1 β (0.25 mg/kg, 18h) (n=3). *P*-values refer to G₀ phase and were determined by ANOVA; Tukey's post hoc test.

Supplementary Tables

Table 1. Flow-Cytometry Antibodies

Company	Antigen	clone	Channel	Cat number
eBioscience	cKit	2B8	PE	12-1171-82
eBioscience	cKit	2B8	APC	17-1171-82
Biolegend	ckit	2B8	BV711	105835
eBioscience	cKit	2B9	APC-eFluor 780	47-1171-82
eBioscience	Gr-1	RB6-8C5	PE	12-5931-82
eBioscience	Gr-1	RB6-8C6	PECy7	25-5931-82
eBioscience	B220	RA3- 6B2	РВ	2016454
eBioscience	B220	RA3- 6B2	PECy5	15-0452-82
eBioscience	B220	RA3- 6B2	PECy7	25-0452-82
eBioscience	CD48	HM48-1	PE	12-0481-82
eBioscience	CD4	GK1.5	PECy7	25-0041-82
eBioscience	CD8a	53-6.7	PECy7	25-0081-82
eBioscience	CD11b	M1/70	РВ	48-0112-82
eBioscience	CD11b	M1/70	PECy7	25-0112-82
eBioscience	TER-119	TER-119	PECy7	25-5921-82
eBioscience	CD45.1	A20.1	FITC	11-0453-82
eBioscience	CD115	AFS98	APC	17-1152-82
eBioscience	CD34	RAM34	Alexa700	56-0341-82
Biolegend	CD150	TC15-12F12.2	PECy5	115904
Biolegend	CD150	TC15-12F12.2	APC	115910
Biolegend	CD48	HM48-1	PE-CY7	103424
Biolegend	CD48	HM48-1	РВ	103418
Biolegend	CD45.2	104	РВ	109820
Biolegend	B220	RA3- 6B2	biotin	103204
Biolegend	CD11b	M1/70	biotin	101204
eBioscience	CD8a	53-6.7	РВ	48-0081-82
Biolegend	CD8a	53-6.7	biotin	100704
eBioscience	CD4	GK1.5	РВ	48-0041-82
Biolegend	CD4	GK1.5	biotin	100404
Biolegend	Gr-1	RB6-8C5	biotin	108404
eBioscience	Gr-1	RB6-8C5	РВ	48-5931-82
eBioscience	TER-119	TER-119	РВ	48-5921-82
Biolegend	TER-119	TER-119	biotin	116204
BD Pharmingen	ki67	B56	FITC	556026
BD Pharmingen	ki67	B56	Alexa Fluor 647	558615
BD Pharmingen	CD45.2	104	Alexa700	560693
BD Pharmingen	Sca-1	D7	APCCy7	560654

Table 2. qRT-PCR Primers

Gene	FW/RV	Sequence
IFNa	FW	CTGCTGGCTGTGAGGACATA
	RV	AGGAAGAGAGGGCTCTCCAG
IL-1a	FW	TTGGTTAAATGACCTGCAACA
	RV	GAGCGCTCACGAACAGTTG
IL-1b	FW	AGTTFACGGACCCCAAAAG
	RV	AGCTGGATGCTCTCATCAGG
TNFa	FW	CCACCACGCTCTTCTGTCTA
	RV	AGGGTCTGGGCCATAGAACT
sdha	FW	AAGTTGAGATTTGCCGATGG
	RV	TGGTTCTGCATCGACTTCTG
socs3	FW	CACACAAGGAGCCAAACACA
	RV	TAGCCACCTGGGTGAATCC