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Epidemiological, clinical and neuroscientific studies support a link between psychobiological stress and multiple sclerosis.
Neuroimaging suggests that blunted central stress processing goes along with higher multiple sclerosis severity, neuroendocrine stud-
ies suggest that blunted immune system sensitivity to stress hormones is linked to stronger neuroinflammation. Until now, however, no
effort has been made to elucidate whether central stress processing and immune system sensitivity to stress hormones are related in a
disease-specific fashion, and if so, whether this relation is clinically meaningful. Consequently, we conducted two functionalMRI ana-
lyses based on a total of 39 persons with multiple sclerosis and 25 healthy persons. Motivated by findings of an altered interplay be-
tween neuroendocrine stress processing and T-cell glucocorticoid sensitivity in multiple sclerosis, we searched for neural networks
whose stress task-evoked activity is differentially linked to peripheral T-cell glucocorticoid signalling in patients versus healthy per-
sons as a potential indicator of disease-specific CNS–immune crosstalk. Subsequently, we testedwhether this activity is simultaneously
related to disease severity.We found that activity of a network comprising right anterior insula, right fusiform gyrus, left midcingulate
and lingual gyrus was differentially coupled to T-cell glucocorticoid signalling across groups. This network’s activity was simultan-
eously linked to patients’ lesion volume, clinical disability and information-processing speed. Complementary analyses revealed that
T-cell glucocorticoid signalling was not directly linked to disease severity. Our findings show that alterations in the coupling between
central stress processing and T-cell stress hormone sensitivity are related to key severity measures of multiple sclerosis.
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Graphical Abstract

Introduction
Multiple sclerosis is a demyelinating disease of the CNS char-
acterized by neuroinflammation and neurodegeneration.1

The idea that stress might contribute to triggering multiple
sclerosis attacks can be traced back to the first description
of the disease by Charcot.2 Similarly, persons with multiple
sclerosis (PwMS) report that they perceive psychological
stress as one of the leading triggers for relapses.3 This notion

was also corroborated in a large population and sibling
matched retrospective cohort study indicating that a diagno-
sis of stress-related disorders significantly increased the risk
of subsequently developing an autoimmune disease, includ-
ing multiple sclerosis.4 Prospective and retrospective cohort
studies demonstrated an elevated risk of relapses during
times of increased stress (ranging from daily hassles to severe
life events), as confirmed by a meta-analysis.5 The most dra-
matic examples of such associations were reported in
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multiple sclerosis centers in Israel and Lebanon, where re-
lapse rates increased strongly during military hostilities.6,7

Finally, participation in a stress management programme re-
duced the incidence of new lesions in a follow-up period in a
randomized controlled trial.8

Neuroscience has shed light on peripheral, neuroendocrine,
and central contributors to stress processing. The hypothal-
amic–pituitary–adrenal (HPA) axis and the autonomic ner-
vous system (ANS) are regulators of the key peripheral
stress hormones cortisol (HPA) and (nor-) adrenaline (ANS)
and both, the HPA and ANS receive regulatory inputs from
higher-level brain regions including prefrontal, (para-) limbic
and cerebellar regions.9 Consistently, the activity of these re-
gions10–12 and their interplay or functional connectivity (FC),
respectively, have been identified as correlates of stress pro-
cessing.13–16 From a clinical standpoint, FCmight be especial-
ly important as the impact of stress can be affected by coping
strategies such as emotion regulation,17,18 which is primarily
reflected by the interplay between regions.19

Until now, biological mechanisms potentially mediating
the association between multiple sclerosis and stress were
investigated in an isolated, discipline-specific fashion.
Neuroendocrine studies found that impaired regulation
of the HPA axis is linked to disease severity.20,21

Furthermore, they found that PwMS has reduced sensitivity
to stress hormone regulation in T cells,22–24 which may con-
tribute to neuroinflammation. Neuroimaging studies investi-
gated potential mechanisms of disease severity from a
systems neuroscience perspective and found that blunted
neural stress processing in the anterior insula (AI), a key
interface between neural and immune functions,25 is asso-
ciated with higher clinical disability in a cross-sectional
study.10 Additionally, we showed that blunted neural stress
processing in limbic brain networks is linked to heightened
future brain atrophy accumulated across roughly 1000
days in PwMS in a longitudinal study.26 Thus, although
these studies provided first insights into the potential contri-
bution of individual stress (-related) mechanisms, they did
not investigate their interplay.

Consequently, we conducted a study employing an fMRI
stress paradigm comprising mental arithmetic with feedback
to measure stress-induced alterations in FC reflected by al-
terations in neural network activity. Additionally, we mea-
sured glucocorticoid (GC)-related gene expression in
CD4+ and CD8+ T cells as a cellular measure of immune
system responsivity to stress hormones.We aimed at answer-
ing two key questions. Motivated by findings demonstrating
CNS regulation of peripheral inflammation in healthy per-
sons (HPs),27 impairment of this regulation in stroke28 and
the impaired interplay between neuroendocrine stress pro-
cessing and T-cell GC sensitivity in multiple sclerosis,22–24

we first asked whether an altered CNS–immune system
crosstalk exists in multiple sclerosis. We tested the corre-
sponding hypothesis (H1) by evaluating whether neural net-
works exist, whose stress-induced activity is differentially
linked to GC-related T-cell gene expression in both groups.
Second, we asked whether such an altered CNS–immune

system interplay is also clinically meaningful. Following
studies underlining the importance of psychobiological stress
processing for heterogenous multiple sclerosis severity mea-
sures, we thus hypothesized and tested associations between
the activity of (i) network(s) fulfilling H1 and four important
disease severity measures, i.e. grey matter (GM) fraction
(H221), T2-weighted lesion load (H38), clinical disability
(H420) and information-processing speed (H529).

Materials and methods
Participants
Forty-five persons with relapsing-remitting multiple sclerosis
(RRMS) were recruited via the Charité outpatient clinics of
the NeuroCure Clinical Research Center and the
Experimental and Clinical Research Center. Thirty HPs
were recruited by advertisements and newsletters.
Recruitment and data collection took place between May
2017 and December 2018. Brain imaging took place in the
Berlin Center for Advanced Neuroimaging. All participants
provided written informed consent before enrolment and re-
ceived financial reimbursement for their time and effort.
Patients visited the outpatient/brain imaging centre for 2
days within a 2-week period (Day 1: clinical assessments
and blood draws, Day 2: neuroimaging).

Inclusion criteria for patients were (i) meeting diagnostic
criteria for RRMS30; (ii) stable treatment with immunomo-
dulatory drugs for the last 3 months [or no disease-
modifying treatment (DMT)]; (iii) age ≥18 years; (iv) the
physical andmental capability to use the test devices without
restriction. Patients were excluded if they (i) were pregnant;
(ii) met diagnostic criteria for psychiatric disorders (other
than affective disorders including major depression or anx-
iety disorders); (iii) had a diagnosis or history of neurological
disorders (other than multiple sclerosis); (iv) multiple scler-
osis relapse or steroid treatment in the last 4 weeks; or (v)
had contraindications for MRI scanning. Except for RRMS
diagnosis, relapses and treatments, the inclusion and exclu-
sion criteria were the same for controls.

After the application of inclusion and exclusion criteria,
the sample comprised 66 participants. Following quality as-
surance steps (preprocessing), 64 had high-quality data for
either fMRI or gene expression (NMS= 39; NHP= 25). This
data set serves as a reference for characterizing clinico-
demographic sample characteristics. Please see individual
analyses for further information on respective sample sizes.
The sample size is highly compatible with the sample size
in our recent study investigating associations between central
stress processing and disease severity measures in multiple
sclerosis irrespective of a potential interplay with T-cell GC
sensitivity based on independent data set.10 The study was
conducted in accordance with relevant guidelines (Helsinki
Declaration of 1975) and approved by the ethics committee
of Charité—Universitätsmedizin Berlin (EA1/208/16).
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Clinical assessments
Patients underwent neurological examination by experi-
enced neurologists (J.B., F.P., S.A., J.K.). Clinical disability
was assessed using Expanded Disability Status Scale
(EDSS) and its functional subscales.31 All participants under-
went a physical exam including a screening test for cognitive
function/information-processing speed [Symbol Digit
Modalities Test (SDMT)32]. Additionally, participants com-
pleted the Beck-Depression Inventory (BDI-I33).

Experimental stress paradigm
We employed a widely established arterial spin labelling
(ASL) fMRI stress task comprising mental arithmetic and
performance feedback that corresponds to a shortened ver-
sion of the one used in our work,10,26 which was derived
from previous studies.12,34 The paradigm comprised five
consecutive stages. In three rating periods (Stages 1, 3 and
5), the participants reported their current degree of feeling
stressed, relaxed, anxious and frustrated on a nine-point
scale ranging from ‘not at all’ to ‘strongly’ with an
MR-compatible response box (please note that only the
stress ratings were evaluated in this work). Each of these
stages had a duration of 2 min. In the second stage (‘2.
Rest’; 8 min), resting ASL fMRI scans and heart rate signals
were acquired (see Supplementary material for details on
heart rate data processing). The fourth stage (‘4. Stress’;

12 min) comprised the fMRI stress task. Pulse data were ac-
quired in parallel to brain activity.

In Stage 4, the participants were asked to perform a series
of subtraction tasks with two operands X and Y depicted in
the upper part of a computer screen as fast as possible. In or-
der to solve a task, the participants had to select the single
correct answer included in a set of four possible answers de-
picted in the lower part of the screen with the response box.
At the beginning of the paradigm, operandXwas equal to 43
521 across all participants. Y ranged from 1 to 99 and was
randomly determined across all trials. The stress task was di-
vided into two consecutive stages, i.e. the ‘Evaluation’ stage
(4a) implemented to assess the participants’ personal per-
formance capability (4 min) and the ‘Feedback’ stage (4b) in-
cluded to derive neural and peripheral stress-processing
parameters (8 min). In the Evaluation stage, all participants
had 8 s time to select an answer across all trials, no feedback
was provided but response times were recorded. For trials
following correctly solved trials, X was equal to the differ-
ence X minus Y in the preceding trial. In case of false/too
slow answers, X remained unchanged. The Feedback stage
differed from the Evaluation stage in three important points.
First, the participants’ performance was rated additionally.
Specifically, depending on the difference between the fastest
correct response of the participant in the Evaluation stage
and the response time in a given trial of the Feedback stage,
the trial performance was evaluated in terms of school
grades ranging from ‘1—sehr gut’(very good) to ‘5—
ungenügend’ (insufficient). Second, the time provided for

Figure 1 fMRI stress paradigm. The paradigm comprised five consecutive stages. In three Rating periods (Stages 1, 3 and 5), the participants
reported their current degree of feeling stressed, relaxed, anxious and frustrated. Each of these stages had a duration of 2 min. In the second stage
(‘2. Rest’; 8 min), resting ASL fMRI scans and heart rate signals were acquired. The fourth stage (‘4. Stress’; 12 min) comprised the fMRI stress task
which was adopted from Weygandt et al. (2016). Pulse data were acquired in parallel to brain activity. For further details, see text.
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response selection (which was 8 s at the beginning of the
Feedback stage) was decreased (increased) by 10 per cent
in case of correct (false) answers in preceding trials.
Finally, third, X was reset to 43 521 in case of false/too
slow answers. Before the experiment, the participants were
told that they will take part in an arithmetic task comprising
feedback and that this feedback will evaluate their output in
terms of performance markers established in the overall
population. After task participation, they were informed
that the feedback was computed by relating their trial per-
formance to their performance in the Evaluation stage.
Figure 1 illustrates the paradigm.

MRI sequences
Anatomical brain scans were acquired with a T1-weighted
3D-magnetization prepared rapid gradient echo sequence
(MP-RAGE; 176 slices; 1 mm isotropic voxels; time of
repetition (TR)= 1900 ms; echo time (TE)= 3.03 ms; flip
angle (FA)= 9°; field of view (FOV)= 256 mm× 256 mm;
matrix size= 256× 256; 4 min 26 s) and a T2-weighted
fluid-attenuated inversion recovery sequence (FLAIR; 176
slices; 1 mm isotropic voxels; TR= 6000 ms; TE= 388 ms;
TI= 2100 ms; FA= 120°; FOV= 256 mm× 256 mm; ma-
trix size= 256× 256; 7 min 44 s). Functional scans were
measured with a pseudo-continuous ASL EPI sequence35

with 22 ascending transversal slices covering the whole brain
[slice thickness 5.75 mm (15% inter-slice gap); 3 mm×
3 mm in-slice voxel resolution; TR= 4000 ms;
TE= 19 ms; FA= 90°; FOV= 192× 192 mm2; matrix
size= 64× 64; label duration 1.5 s, post-label delay 1.2 s;
anterior to posterior phase-encoding direction]. In the Rest
condition (8 min), 60 control and 60 label ASL images
were acquired, in the Stress condition (12 min) 90 control
and 90 label scans. Two spin-echo EPI reference volumes
with matching read-out and geometry were acquired in ad-
vance to the rest and the stress ASL measurements to facili-
tate a distortion correction.

MRI preprocessing
Anatomical brain scans
A manual mapping of focal lesions, a tissue segmentation of
T1-weighted images, as well as a determination of a GM
group mask for the fMRI analyses were performed. For de-
tails, see Supplementary material.

Functional brain scans
The fully automatized fMRI preprocessing pipeline com-
prised seven steps which were performed with (toolboxes
for) SPM12 (Wellcome Trust Centre for Neuroimaging,
Institute of Neurology, UCL, London UK—http://www.fil.
ion.ucl.ac.uk/spm). In (i), we corrected the raw ASL images
for head motion using the ASL toolbox.36 In (ii), we used
the SPM12 coregistration algorithm to map both spin-echo
EPI reference images with opposing phase-encoding direc-
tion to the average motion-corrected image determined in

(i). In (iii), we used the HySCO toolbox37 and both coregis-
tered spin-echo EPI reference images to correct the realigned
fMRI images computed in (i) for inhomogeneity of the main
magnetic field. In (iv), we linearly coregistered the images de-
termined in (iii) to the high-resolution anatomical
T1-weighted images. After coregistration, (v) the images
were smoothed with a Gaussian kernel (8 mm full width
and half maximum). In (vi), we used the ASL toolbox to com-
pute voxel images of the average regional cerebral blood
flow (rCBF; ml/100 g/min) for the Rest (2) and the
Feedback-Stress stage (4b) based on control–label pairs.
Finally, (vii) we used the coregistration parameters deter-
mined in the segmentation of anatomical T1-weighted scans
(see Supplementary material) to register the average rCBF
maps of both task stages to the standard space defined by
the Montreal Neurological Institute38 (voxel size 3 mm×
3 mm× 3 mm). Finally, we identified ASL data of individual
participants with insufficient quality separately for both con-
ditions using the framewise displacement (FWD) metric, an
established data quality marker evaluating participants’
head (i.e. whole brain) motion.39 FWD scores across all par-
ticipants in individual conditions more extreme than the first
(third) quartile—(+) 1.5× inter-quartile range (IQR) were
considered outliers and excluded.

Computation of stress-related neural
network activity
We determined stress-induced alterations in FC or neural net-
work activity, respectively, for each participant based on the
rCBF maps of those participants for whom non-outlier scans
were available for both fMRI conditions (NTotal= 59;NMS=
36; NHP= 23) using singular value decomposition (SVD).
SVD is a widely established data processing method frequent-
ly used in genetic and neuroimaging studies,40,41 which is
closely related to principal component analysis (PCA; i.e.
SVD is one matrix factorization method that can be used for
PCA). SVD is well suited to evaluate FC42 as it characterizes
a large set of input variables (matrixX in Fig. 2) by computing
(i) few new, mutually independent variables (i.e. ‘compo-
nents’; matrix U in Fig. 2) reflecting the characteristic vari-
ation in the input variables and (ii) variables (sometimes
referred to as ‘Eigenimages’; matrix V in Fig. 242) reflecting
the similarity between all components and input variables.
Based on these similarities, the input variables can be assigned
to groups of functionally connected regions or neural net-
works, respectively (see below). Each component can be
understood as single variable encoding the activity of a corre-
sponding network for each participant with a single number.
Moreover, SVD allows computing (iii) the proportion of vari-
ance explained in the input variables by the individual compo-
nents (using matrix S in Fig. 2).

In practical terms, we first calculated measures of regional
rCBF for each participant by averaging rCBF across all vox-
els located in a region included in an anatomical atlas and
covered by a GM mask (see Fig. 2 for details). This was
done for each atlas region and for Stages 2 and 4b separately.
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Then, we subtracted the average rCBF computed across all
regions from all regional signals for each participant and
condition (‘centring’). The data computed for stress (stage
4b) were then used as input data for SVD which was em-
ployed to determine parameters (i) to (iii) described above.
The number of components determined by SVD equals the
smaller dimension of the factorized data matrix (spanned
by 59 participants and 120 GM regions) and thus corre-
sponded to 59 in this case. Each component reflects the
shared characteristic variation in the average rCBF of indi-
vidual GM brain regions contributing to the corresponding
network across participants. Because computing (iii) showed
that the first component (explaining the maximum amount
of variation in the input variables in SVD) explained less

than half of the variation in the input variables (i.e. 45%),
we evaluated all 59 components in our subsequent analysis
of a differential coupling of brain activity and gene expres-
sion in patients and controls (see ‘Differential coupling of
brain activity and gene expression in patients and controls’
section). In the next step, we centred the regional rCBF
data acquired during Stage 2 and used these data and the
Eigenimages determined based on the stress data (i.e.
VStress) to compute component variables for the Rest condi-
tion. Furthermore, we subtracted the component variables
for Rest from those for Stress to obtain measures of differen-
tial network activity which were then evaluated in subse-
quent fMRI group analyses. Figure 2 illustrates the
procedure. Finally, we employed a ‘Winner-Takes-All’

Figure 2 Illustration of the network activity computation procedure. The coloured areas in the right column of brain slices highlight
specific regions included in the Neuromorphometrics brain atlas (http://Neuromorphometrics.com) and located in the respective slices. SVD was
used to decompose a matrix of (manifest, observable) input variables XStress, ctrd. into matrices of (latent, unobservable) variables UStress, SStress

and VStress. XStress, ctrd. comprised the averaged (and centred) rCBF acquired during the stress stage for each participant (one participant per
matrix row) and atlas regions (one region per matrix column) computed across all voxels located in a given region included in the atlas and covered
by the GM mask. Each column of the component matrix UStress reflects the activity of a given network (one column per network) across
participants (one column element per participant). The matrix of Eigenimages VStress reflects the similarity between the averaged and centred
regional activity and the network or component activity. Finally, the matrix of singular values SStress reflects the magnitude of the components’
contribution to the variance in the input variables and can be used to compute the explained variance. By computingX=U×S×VT it is possible
to reconstruct the manifest input data from the latent variables or to map the data from latent component space into manifest regional space,
respectively. Utilizing this fact, we calculated the activity of our networks during the resting stage as U*Rest=XRest× (SStress×VT

Stress)
+. Finally,

we computed differential stress response network activity as ΔU=UStress−U*Rest. Please note, that we could not compute URest via
decomposing XRest, ctrd., as the covariation among regions (i.e. the FC) during stress is different to that during rest. The figure was adapted from
Meyer-Arndt et al.26,76
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strategy, to group individual brain regions into neural net-
works. Specifically, we assumed that a region belonged to a
network/component, if the relative contribution of the com-
ponent’s signal to the regional signal (indicated by its abso-
lute value in VStress) was larger than that of any other
component.

Preprocessing of GC-related gene
expression data in T cells
We quantified gene expression of four major components of
theGC signalling in CD4+ andCD8+T cells: glucocorticoid
receptor (GR), FK506-binding protein 4 (FKBP4),
FK506-binding protein 5 (FKBP5) and glucocorticoid-
induced leucine zipper (GILZ). The GR is the main intracel-
lular receptor for GCs including cortisol and plays a key role
in immunoregulation.43 FKBP5 acts as a co-chaperon that
modulates GR activity and mediates the stress response in
the immune system (and other tissues44). Upon GC binding
of GR, FKBP5 is exchanged for FKBP4, thereby initiating nu-
clear translocation and downstream transcriptional activity.
Finally, GILZ is transcriptionally induced by GR and med-
iates major anti-inflammatory actions of GCs, particularly
in T cells.45 To quantify the expression of these eight mar-
kers, complementary DNA was amplified using a real-time
PCR System. Then, gene expression of the eight markers
was normalized to the expression of housekeeping genes
and delta cycle threshold (ΔCT) values were calculated by
subtracting the mean CT values of the gene of interest
from geometric mean of housekeeping genes. For details,
e.g. on isolation of peripheral blood mononuclear cells and
sorting of CD4+ and CD8+ T cells, RNA isolation, cDNA
synthesis and Real-Time Reverse Transcription PCR, see
Supplementary material.

Because the eight individual markers were considerably
inter-correlated (the average absolute correlation across all
28 marker pairs was 0.25, for four pairs the absolute correl-
ation was above 0.50), we then used the individual markers
to compute one characteristic summary marker of
GC-related T-cell gene expression to avoid redundant statis-
tical analyses. Specifically, in a first data quality assurance
step, we searched for outliers among gene expression data
in each of the individual markers (ΔCT values smaller than
the first quartile—1.5× IQR or larger than the third quartile
+1.5× IQR) and retained only the data of those 49 partici-
pants (NMS= 29; NHP= 20) for whom non-outlier data for
all eight markers were available. In the next step, we centred
the remaining data and performed a SVD based on all eight
individual markers as input variables. Because the first com-
ponent explained 70% of the variance in all eight individual
markers, this component was used as a single summary
measure of T-cell GC signalling in all subsequent analyses.
The variation in the summary marker was most similar to
GILZ and least similar to FKBP4 (correlation with CD8+
GILZ: r= 0.92; CD4+GILZ: r= 0.79; CD4+GR: r=
0.60; CD8+ FKBP5: r= 0.58; CD8+GR: r= 0.55; CD4+

FKBP5: r= 0.41; CD4+ FKBP4: r= 0.15; CD8+ FKBP4:
r=−0.08).

Statistical analyses
Psychological, peripheral and neural stress responses
To test the main effects of task stage/stress exposure, group
and their interaction on stress response measures [perceived
stress, 64 participants; heart rate, 54 participants; activity of
120 regions included in a neuroanatomical atlas and covered
by a GM mask (Supplementary material); 59 participants],
separate factorial repeated measures analyses were con-
ducted. This was done with linear mixed model (LMM) re-
gression (cf. Weygandt et al.46) implemented in MATLAB
2014a (MathWorks, Natick, MA, USA). Each LMM in-
cluded three fixed effects regressors or covariates of interest
(CI). One main effect regressor for task stage, one for group
and a regressor coding their interaction computed as their
element-wise product. Sex, age, disease duration since first
signs of multiple sclerosis, task load (Supplementary
material), depression (BDI) and an intercept corresponded
to the fixed covariates of no interest (CNI). An intercept
modelling each participant’s average perceived stress level/
heart rate/average rCBF across task stages was included as
random nuisance parameter. Perceived stress (task Stages 3
and 5), heart rate (2 and 4b) and rCBF (2 and 4b) averaged
across voxels located in individual atlas regions (i.e. columns
of XRest and XStress before centring) served as criterion vari-
ables. We determined the probability to obtain the observed
t-statistics by chance with a permutation method for re-
peated measures (10 000 within-subject permutations of
each CI). A significance threshold for undirected tests of
α= 0.05 was applied for perceived stress and heart rate. A
multiple comparison or family-wise error (FWE) corrected
significance threshold for undirected tests of α= 4.2× 10−4

(computed with the Bonferroni method; i.e. 0.05/120) was
applied for tests of brain responses. Standardized regression
coefficients β are reported as effect size measures with |β|,
0.2 indicates a weak, 0.2≤ |β|, 0.5 a moderate and |β|≥
0.5 a strong effect.47

Differential coupling of brain activity and gene
expression in patients and controls
To evaluate whether an altered interplay between central
nervous stress processing and immunologic functioning ex-
ists in PwMS, we tested in an interaction analysis whether
stress-induced neural network activity is differentially linked
to T-cell GC signalling in PwMS andHP (i.e. hypothesis H1).
Specifically, one factorial analysis was computed with
robust regression (bisquare M-estimators implemented in
MATLAB) for each of the 59 networks based on the data
of the 44 PwMS and HPs (NMS= 26; NHP= 18) for whom
non-outlier fMRI and GC-related expression summary
data were available.

Robust regression is much less affected by outliers than
standard (i.e. ordinary least square) regression and has con-
sequently been proven to increase the statistical power of
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tests conducted.48 In each analysis, an interaction regressor
was computed as the element-wise product of differential
network activity (Stress minus Rest) and group was included
in the model as CI. In addition, a main effect regressor for
group (enabling an estimation of differences in GC-related
gene expression between PwMS and HP) and for differential
activity, as well as regressors for disease duration, sex, age,
task load, depression (BDI) and a constant were also in-
cluded in the model. The T-cell GC expression summary
marker served as criterion. A robust permutation algorithm
(10 000 permutations49) evaluating the resampling distribu-
tion of a Wald (W)-statistic was used for inference which is
asymptotically valid even in case predictors and errors are
uncorrelated, but not independent (e.g. in heteroscedastic re-
gression). Given that evaluating H1 required conducting
multiple (i.e. 59) tests, we report interaction effects signifi-
cant according to an FWE-corrected threshold for undirected
tests of αFWE= 0.05 [i.e. αsingle test (0.05)/number of tests
(59)× 0.0008]. Again, we report β coefficients as effect size
measures for the CI.

Importantly, we repeated this analysis by replacing the
T-cell GC expression summarymarker once with parameters
of the average diurnal salivary cortisol levels and once with
the daytime decline in salivary cortisol to evaluate a differen-
tial coupling between stress-related neural network connect-
ivity and salivary cortisol in PwMS versus HPs. Additionally,
we tested group differences in salivary cortisol, and differen-
tial associations between the T-cell GC-summary marker
and salivary cortisol across groups in supplementary ana-
lyses (Supplementary Table 1 and Fig. 1).

Brain activity and disease severity
Assuming that analysis of differential coupling of brain ac-
tivity and gene expression in patients and controls would
identify an altered interplay between CNS stress processing
and immunologic functioning in PwMS, we evaluated
whether the activity of the identified network(s) fulfilling
H1 is associated with four important multiple sclerosis dis-
ease severity outcomemarkers in patients to evaluate its clin-
ical importance. In particular, we evaluated whether activity
of this/these network(s) is associated with GM fraction (H2),
T2-weighted lesion load (H3), clinical disability (EDSS; H4)
and information-processing speed (SDMT; H5). To test hy-
potheses H2–H5, activity of networks fulfilling the criterion
of H1 was entered into robust regression analyses as CI
(CNI: disease duration, sex, age, task load, depression and
constant) and used to model the patients’ GM fraction,
T2-weighted lesion load, SDMT and EDSS in independent
analyses. Lesion load was log-transformed [i.e. log(number
of lesion voxels+ 0.001)] before the analysis to account for
the skewness in its distribution. Permutation testing (10
000 permutations49) was used for inference. In order to
test H2–H5, we applied a significance threshold of α=
0.05 for undirected tests. Nomultiple comparison correction
was necessary, because (i) specific hypotheses could be de-
rived from the literature for predicting each of the four spe-
cific severity markers (H221; H38; H420; H529) and (ii) only a

single predictor/CI was used (as only one network was found
in testing H1; see below) to model each of them.50 Again, we
report coefficients β as effect size measure for the CI.
Additionally, we report the strength of the association be-
tween the activity of the network selected for severity predic-
tion based on its differential link to T-cell GC sensitivity
across groups (i.e. via testing H1) and the four severity mea-
sures relative to the strength of this association computed for
all other 58 networks’ activity to estimate the relative clinical
importance of altered CNS–immune crosstalk in multiple
sclerosis. Finally, we also tested associations between the ac-
tivity of neural networks showing a differential link between
stress-related neural network connectivity and salivary corti-
sol in PwMS vs. HPs with disease severity in patients as well
as direct associations between cortisol and disease severity
markers (Supplementary Table 1 and Fig. 1).

GC-related T-cell gene expression and disease
severity
In a complementary analysis, we tested direct associations
between GC-related gene expression in T cells and the four
disease severity parameters with robust regression. The
gene expression summary marker computed with SVD
served as CI, sex, age, disease duration and depression
(plus constant) as CNI. All other aspects were as reported
for brain activity-based severity prediction.

Software accessibility
The in-house software used in the study will be made available
by the corresponding author without restrictions on request.

Data availability
Structural MRI (sMRI) images will not be made available
due to privacy issues of clinical data. Moreover, all data
used in this research were collected subject to the informed
consent of the participants. Consequently, access to all other
(i.e. non-sMRI) data will be granted by the corresponding
author on request only in line with that consent, subject to
approval by the project ethics board and under a formal
Data Sharing Agreement.

Results
Demographic and clinical participant
characteristics
Demographic and clinical descriptors of the study sample are
provided in Table 1. PwMS and HPs were comparable with
regard to age and sex. Six of 39 PwMS were treated with di-
methyl fumarate, eightwith β-interferons, fivewith glatiramer
acetate, five with fingolimod and four with teriflunomide.
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Psychological, peripheral and neural
stress responses
The task induced a stress response in perceived stress and
heart rate. However, neither main effects of group, nor inter-
action effects of task stage and group were found. Analyses
of neural stress responses revealed several areas with stron-
ger activity during Stress than Rest including right AI and fu-
siform gyrus (FG; Fig. 3). An interaction of task stage and
group was found in only one of 120 regions, i.e. in right par-
ietal operculum (t= 4.24, P, 10−4, β= 0.17).

Differential coupling of brain activity
and gene expression in patients and
controls
The factorial analyses conducted for each of the 59 neural
networks to test an altered coupling between stress-triggered
network activity and T-cell GC gene expression in PwMS vs.
HPs showed a strong interaction effect for a network com-
prising right AI, right FG, left midcingulate and lingual gyrus
on an FWE-corrected significance level (t=−4.49, W=
20.20, P= 0.0004, β=−0.76; see Fig. 4). Please note, that
for the same network, a moderate main effect of group/a
moderate difference in GC-related gene expression of T cells
between PwMS and HPs was observed which was significant
according to an uncorrected threshold (t= 1.93, W= 3.74,
P= 0.048, β= 0.47).

Brain activity and disease severity
Brain network activity found in the above analysis showing a
differential link to GC-related T-cell gene expression in
PwMS vs. HPs showed a significant association with
T2-weighted lesion load, clinical disability (EDSS), and
information-processing speed (SDMT). The relative strength
of the association between the 58th network/component
(which was selected due to its differential link to T-cell GC
sensitivity or testing of H1, respectively) and GM fraction

was low as it had the 25th closest association among all 59
networks (i.e. Rank 25 of 59). However, the relative associ-
ation was strong for the three other measures (second rank
for T2-weighted lesion and information-processing speed,
seventh rank for clinical disability). Figure 5 provides details.

GC-related T-cell gene expression
and disease severity
Despite the size of the negative association between the
GC-summary marker and clinical disability/EDSS was mod-
erate, it did not reach statistical significance (t=−1.50,W=
2.26, P= 0.145, β=−0.30). Also for the other three para-
meters, no significant associations were found (GM fraction:
t= 0.50, W= 0.25, P= 0.621, β= 0.07; T2-weighted lesion
load: t=−0.54, W= 0.29 P= 0.584, β=−0.14;
information-processing speed/SDMT: t= 0.97, W= 0.94,
P= 0.335, β= 0.22).

Discussion
The link between stress and multiple sclerosis has primarily
been investigated in an isolated, discipline-specific fashion.
To address this link from an interdisciplinary perspective,
we investigated whether CNS stress processing and immune
system sensitivity to stress hormones are linked in a disease-
specific fashion and whether this link is clinically meaning-
ful. We found that the activity of a network including AI
was differentially coupled to T-cell GC signalling in PwMS
and HPs and that this network’s activity was simultaneously
linked to patients’ lesion volume, clinical disability and
information-processing speed.

Preparatory analyses underlined the basic ability of the
fMRI task to induce stress, as they revealed a marked stress
response on a psychological, peripheral and neural level.
Distinct stress-driven neural activity was primarily found
in frontal, cerebellar and occipital areas (including FG), as

Table 1. Demographic and clinical participant characteristics of the 64 participants for whomeither high-quality fMRI
or gene expression data were available

Group Sex
(f/m)

Age
(yrs)

SDMT
(#corr. trials)

BDI-I
(pts.)

GM
(fract.)

T2LL
(cm3)

EDSS
(pts.)

#
MN
SD

MN
SD

MN
SD

MN
SD

MD
RG

MD
RG

MS 25/14 47.12
11.85

53.85
9.92

9.82
7.47

0.40
0.05

6.35
0.15–52.99

2.50
0–6

HP 17/8 42.10
17.06

59.08
15.35

2.84
2.32

0.44
0.05

0.17
0–8.10

χ2

p
t
p

t
p

t
p

t
p

ta

p
0.10
0.749

1.39
0.169

−1.66
0.102

4.52
2.8× 10−5

−2.74
0.008

5.90
1.6× 10−7

T2LL, lesion load as indicated by T2-weighted FLAIR images; f, female; m, male; yrs, years; corr., correct; pts., points; fract., fraction; #, number of cases; MN, mean; MD, median; SD,
standard deviation; RG, range.
aInferential statistics testing group differences in T2-weighted lesion load were computed based on log-transformed lesion voxel counts.
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well as AI. This regional pattern strongly overlaps with areas
found in similar studies.10,11

In our first main analysis, we testedwhether CNS stress pro-
cessing and T-cell GC sensitivity are linked in a disease-specific
fashion,asboth factors showedasimilarpatternofassociations
withmultiple sclerosis severity in prior studieswhich, however,
addressed these associations in an isolated, discipline-specific

fashion only. In particular, neuroimaging studies found that
blunted CNS stress-processing goes alongwith higher multiple
sclerosis severity10 and that neural activity associated with
dampenedpsychological stress experience is linked tohigher fu-
ture brain atrophy.26 Neuroendocrine animal research has un-
derlined the importance of (non-blunted) T-cell GC sensitivity
for regulation of autoimmune neuroinflammation by

Figure 3 Psychological, peripheral and neural stress responses. To test main effects of task stage/stress exposure, group and their
interaction on stress response measures, separate factorial repeated measures analyses were conducted with LMM regression for each of the
parameters. The dotted horizontal lines in (A) and (B) show the mean, the vertical lines the standard deviation for the raw values of the depicted
parameter and group. The bar graph in (C) depicts the t-statistic for the main effect of stress exposition/task stage (feedback during Stress vs. Rest)
across both groups for all 120 regions included in the neuroanatomical atlas and covered by the GMmask. Regional labels attached to selected bars
highlight regions with significant activation differences according to an FWE-corrected threshold for undirected tests of 0.05/120= 4.2× 10−4.
For these regions, we also show the standardized regression coefficients β as effect size measures. In particular, significant stress responses (i.e.
exclusively positive ones) were observed in AI, calcarine cortex (CC), cerebellum exterior (CE), cerebellar vermal lobules (CVL), frontal
operculum (FO), inferior frontal gyrus (IFG), inferior occipital gyrus (IOG) and inferior temporal gyrus (ITG). Moreover, such responses were
found in middle frontal gyrus (MFG), occipital fusiform gyrus (OFG), occipital pole (OP), precentral gyrus (PG), supramarginal gyrus (SG),
supplementary motor cortex (SMC), superior occipital gyrus (SOG) and superior parietal lobule (SPL)—either of the left (L) or right (R)
hemisphere.
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demonstrating that T cells downregulate GR expression and
dynamically develop functional GC insensitivity during the
early phase of experimental autoimmune encephalomyelitis,
the animal model of multiple sclerosis.22 Consistently, Engler
et al.51 could show that GC sensitivity is reduced in PwMS,
Gold et al.22 that blunted GC sensitivity of T cells in PwMS is
associatedwithneuroinflammationasGCsensitivitywas lower
in patients with vs. without activeMRI lesions. Thus, together,
these studies argue that the interplay between neuroendocrine

stress processing and T-cell GC sensitivity is altered inmultiple
sclerosis. Aiming to test a disease-specific CNS–immune inter-
play that might resemble this altered neuroendocrine-immune
one, we tested H1 in our first main analysis and searched for
neural networks whose stress task-evoked activity is differen-
tially linked to peripheral T-cell GC signalling in PwMS vs.
HPs as a potential indicator of a disease-specific CNS–immune
crosstalk. The analysis revealed a strong (β=−0.76) differen-
tial link for the activity of a neural network comprising right

Figure 4Differential coupling of neural network activity withGC-related gene expression in T cells across groups. (A) t-Statistics
for the effect of the interaction between differential stress-activity and group on the GC gene expression summary marker across all 59 neural
networks/components. We depict the t-statistic instead of the Wald-statistic (used for inference) as the t-statistic indicates the directionality of
effects. The dashed line depicts the t-statistic corresponding to αFWE= 0.05 (equal to α= 0.05/59= 0.0008 on a single test level) in an undirected
test according to a parametric t-distribution for illustrative purposes. (B) Differential coupling of GC-related gene expression and stress-induced
brain activity in patients and controls for the 58th network showing a significant interaction effect. The left scatter graph depicts the association
between the interaction regressor and gene expression and thus reflects the tested effect directly. The right graph depicts the association between
brain activity and gene expression for both groups separately as an additional illustration of the interaction. Other than for the model used to
compute the fit depicted in the left graph, the models used to compute the two group-specific fits depicted in the right did not include the main
effect regressor for group and the interaction regressor for group× network activity. (C) Brain areas related to the 58th network/component
(see Supplementary material for the network to brain region allocation procedure) and their component loadings. Finally, (D) correlations
between manifest average voxel rCBF signals for atlas regions belonging to the network across participants. To ease comprehensibility, the
encircled numbers again depict the regional component loadings.
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AI, right FG, leftmidcingulate and lingual gyrus. Inferred from
the right graph in Fig. 4B, network activity and T-cell GC sen-
sitivity were linked in PwMS but not in HP.

AI is akeyhubbetween theCNSand the immune systemthat
is sensitive toGC administration52,53 and that measures stress-
related (peripheral) inflammatory parameters.54 Importantly,
animal studies revealed that insular cortex can also efferently
regulate immunologic processes by demonstrating that lesions
induced to the rat insular cortex disrupt the ability to acquire
conditioned immunosuppression (i.e. an immune response
learnedviaPavlovian conditioning55,56).Thus, althoughobser-
vational studies do not allow drawing causal inference, these
findings on (‘efferent’) conditioned immunosuppression argue
that the differential link between stress-related CNS activity

and T-cell GC-sensitivity across groups found in our study
might potentially indicate an impaired CNS regulation of im-
mune functioning in multiple sclerosis.

Importantly, AI does not only measure and potentially
regulate immunological functions, it is also involved in a var-
iety of cognitive and affective processes.25 Specifically, insula
is the key area for measuring, signalling, encoding and re-
membering affectively relevant internal bodily states (so-
called ‘gut-feelings’57), a domain impaired in PwMS.58,59

Thus, when considering frequent insula atrophy in
PwMS60 and their impaired ability to perceive and evaluate
peripheral stress signals,61,62 one might speculate that al-
tered immunological and affective processes in multiple
sclerosis might be connected via AI functioning.

Figure 5 Disease severity modelling in patients based on brain network activity differentially linked to GC-related gene
expression across groups. (A) The topology of and internal connectivity within the 58th network linked to GC-related gene expression in a
group-specific fashion to ease the interpretation of the following panels. (B) The relation between network activity and each of the four disease
severity markers in PwMS. (C) The strength of the association between activity of all 59 networks/components and all four severity measures in
PwMS, sorted in a descending fashion based on the absolute t-statistic to enable an estimation of the relative clinical importance of each network.
The network/component whose t-statistic is highlighted by the arrowhead is the component selected via testing of H1 (i.e. the 58th network). The
rank of this component is additionally illustrated by the first number following the arrowhead.
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In the second main analysis, we investigated whether the
activity of the network identified in testing H1 is associated
with disease severity. This analysis supported the majority
of the four corresponding hypotheses (H2–H5), as it showed
that three of four key severity measures were related. In par-
ticular, the network’s activity was linked to lesion load (H3),
clinical disability (EDSS; H4) and information-processing
speed (SDMT; H5). The effect size of each of the three asso-
ciationswasmoderate (lesion load: β= 0.43; EDSS: β= 0.36;
SDMT: β=−0.33). These findings show that the altered
CNS–immune system crosstalk in multiple sclerosis may be
clinically meaningful.

Several aspects of the study might warrant further discus-
sion. First, the inability of our study to reveal a direct link be-
tween T-cell GC sensitivity and disease severity might appear
surprising on first sight. This fact might become comprehen-
sible, however, when considering that Gold et al.22 found
such an association in PwMS with current inflammatory dis-
ease activity whereas the present study exclusively recruited
patients on stable immunotherapy and during remission.
Thus, this lacking direct link together with the association
between three important severity markers on one hand and
neural network activity identified by searching for an altered
CNS—T-cell GC sensitivity link in PwMS on the other sug-
gests that although T-cell GC signalling might not directly
drive disease pathology, it is presumably a part of a larger
stress-related mechanism that does.

Similarly, one might wonder why diurnal cortisol did not
significantly differ between PwMS and HP and did also not
correlate significantly with clinical disability (see
Supplementary Table 1 and Fig. 1) although it did in other
studies.63 Some of these differences might be attributable
to differences in the composition of groups between studies.
For example, our study did not comprise secondary-
progressive MS patients—and cross-sectional associations
between EDSS and salivary cortisol were restricted to such
patients.63 Having said that, our analyses are in linewith pre-
vious findings of (i) a differential link between cortisol and
brain activity across groups for a network comprising both
frontal poles and (ii) a link between salivary cortisol and net-
work activity in HP but not PwMS (Supplementary Fig.1H,
J) as an association between of frontal pole activity and cor-
tisol in HP was also previously reported.12,64

Another point might relate to the question of whether re-
ceiving the diagnosis of multiple sclerosis, a severe neuro-
logical disease, or subsequent structural alterations might
drive differences in central stress-responsivity between pa-
tients and controls and whether these differences underly
the findings made in the study. Although we agree that struc-
tural alterationsmight lead to alterations in central stress pro-
cessing, no differences in regional central stress processing
between PwMS and HPs were found in the corresponding
analysis conducted in this study (e.g. on psychological, per-
ipheral and neural stress responses). Moreover, missing dif-
ferences in regional neural stress responses between PwMS
and HPs are consistent with findings made in our recent
study10 employing voxel-wise analyses based on the same

task and an independent data set. Despite these points, how-
ever, replication and extensionof thesefindings in longitudin-
al studies and/or randomized controlled trials (e.g. applying
stress management interventions; see Mohr et al.8 and
Grossman et al.65) will be needed to further strengthen the
confidence in a linkbetweenpsychological stress andmultiple
sclerosis.

Additionally, one might wonder whether DMTs applied
might have influenced GC-related gene expression in T cells.
Human studies addressing this question for the DMTs used
in this study, however, did not report significant changes in
gene expression for our genes of interest GR, FKBP5,
FKBP4 orGILZ.66–69Moreover, PwMS taking steroid treat-
ment in a period of 4 weeks preceding a potential study par-
ticipation were not included in the study.

It should be noted that our assays focused on T-cell gene
expression as measured by quantitative PCR (qPCR) and
we did not includemeasures of protein levels of these targets.
It has been shown that mRNA expression measured by
qPCR closely reflects protein levels (e.g. GR,70 FKBP4,71

FKBP5,72 GILZ73). Moreover, analyses of the transcription
of GC target genes can add important information as respon-
siveness of GC-inducible genes such as GILZ also depends
on chromatin accessibility of the regulatory regions (enhan-
cers and promoters). Thus, our approach is a composite
measure that captures GC signalling on various levels (in-
cluding epigenetic regulation) and we, therefore, believe
that our choice of mRNA targets provides an excellent esti-
mate of the GC signalling within each cell population stud-
ied. Having said that, future studies should expand these
read-outs by adding analyses on the protein level as well as
functionally probing GC sensitivity.

A final aspect that could be discussed is that the 58th of 59
fMRI networks/components was relevant in this study (i.e. a
component that explains only a small fraction in the vari-
ation of the input data), as some authors proposed the heur-
istic that only components explaining a lot of variation can
be useful in follow-up regression analyses.74 However, this
heuristic was disproved by Jolliffe75 almost as early as it
was formulated by providing several simple examples show-
ing that and why this is not true.

In conclusion, our study shows that stress-related CNS
functioning is linked to T-cell stress hormone sensitivity in
a disease-specific fashion and simultaneously related to dis-
ease severity in multiple sclerosis. Thus, it might have helped
to increase our knowledge on factors contributing to the im-
portance of psychological stress for multiple sclerosis re-
ported in large epidemiological studies4 and clinical
observation5–7 as well as treatment studies.8

Acknowledgements
Wewould like to thank all participants for taking part in this
study.

Stress processing and multiple sclerosis BRAIN COMMUNICATIONS 2022: Page 13 of 15 | 13

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac086#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac086#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac086#supplementary-data


Funding
Theworkwas supported by the GermanResearch Foundation
(WE 5967/2-1 and WE 5967/2-2 to M.W., GO1357/5-2 and
GO1357/9-1 to S.M.G. and Exc 257 to J.D.H. and F.P.).
Moreover, it was in part supported by a Mentor-Based
Postdoctoral Fellowship Program in Rehabilitation Research
(MB-1707-28359) and a grant (RG5225A1/1) from the
National Multiple Sclerosis Society (to S.M.G.). J.B. was sup-
ported by the Deutsche Forschungsgemeinschaft (DFG) under
Germany’s Excellence Strategy—EXC-2049–390688087.
Our funding sources did not influence the study design, the col-
lection, analysis and interpretation of data, the writing of the
report or the decision to submit the article for publication.

Competing interests
None of the authors has a competing interest in the context
of this work.

Supplementary material
Supplementary material is available at Brain
Communications online.

References
1. Filippi M, Bar-Or A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis

Primer. 2018;4:43.
2. Charcot J-M. Lectures on diseases of the nervous system. New

Sydenham Society; 1877.
3. Simmons RD, Ponsonby A-L, van derMei IAF, Sheridan P.What af-

fects your MS? Responses to an anonymous, internet-based epi-
demiological survey. Mult Scler. 2004;10:202–211.

4. SongH, Fang F, TomassonG, et al.Association of stress-related dis-
orders with subsequent autoimmune disease. JAMA. 2018;319:
2388–2400.

5. Mohr DC, Hart SL, Julian L, Cox D, Pelletier D. Association be-
tween stressful life events and exacerbation in multiple sclerosis: A
meta-analysis. BMJ. 2004;328:731.

6. Yamout B, Itani S, HouranyR, Sibaii AM,Yaghi S. The effect of war
stress on multiple sclerosis exacerbations and radiological disease
activity. J Neurol Sci. 2010;288:42–44.

7. Golan D, Somer E, Dishon S, Cuzin-Disegni L, Miller A. Impact of
exposure to war stress on exacerbations of multiple sclerosis. Ann
Neurol. 2008;64:143–148.

8. Mohr DC, Lovera J, Brown T, et al. A randomized trial of stress
management for the prevention of new brain lesions in MS.
Neurology. 2012;79:412–419.

9. Gold SM, Mohr DC, Huitinga I, et al. The role of stress-response
systems for the pathogenesis and progression of MS. Trends
Immunol. 2005;26:644–652.

10. Weygandt M, Meyer-Arndt L, Behrens JR, et al. Stress-induced
brain activity, brain atrophy, and clinical disability in multiple scler-
osis. Proc Natl Acad Sci U S A. 2016;113:13444–13449.

11. Dedovic K, Rexroth M, Wolff E, et al.Neural correlates of process-
ing stressful information: An event-related fMRI study. Brain Res.
2009;1293:49–60.

12. Wang J, Rao H, Wetmore GS, et al. Perfusion functional MRI re-
veals cerebral blood flow pattern under psychological stress. Proc
Natl Acad Sci U S A. 2005;102:17804–17809.

13. Maron-Katz A, Vaisvaser S, Lin T, Hendler T, Shamir R. A
large-scale perspective on stress-induced alterations in resting-state
networks. Sci Rep. 2016;6:21503.

14. Vaisvaser S, Lin T, Admon R, et al.Neural traces of stress: Cortisol
related sustained enhancement of amygdala-hippocampal function-
al connectivity. Front Hum Neurosci. 2013;7:313.

15. Veer IM, Oei NYL, Spinhoven P, van Buchem MA, Elzinga BM,
Rombouts SARB. Beyond acute social stress: Increased functional
connectivity between amygdala and cortical midline structures.
Neuroimage. 2011;57:1534–1541.

16. vanMarle HJF, Hermans EJ, Qin S, Fernández G. Enhanced resting-
state connectivity of amygdala in the immediate aftermath of acute
psychological stress. Neuroimage. 2010;53:348–354.

17. Folkman S, Lazarus RS. Coping as amediator of emotion. J Pers Soc
Psychol. 1988;54:466–475.

18. Warheit GJ. Life events, coping, stress, and depressive symptom-
atology. Am J Psychiatry. 1979;136:502–507.

19. Ochsner KN, Ray RD, Cooper JC, et al. For better or for worse:
Neural systems supporting the cognitive down- and up-regulation
of negative emotion. Neuroimage. 2004;23:483–499.

20. Gold SM, Raji A, Huitinga I, Wiedemann K, Schulz KH, Heesen C.
Hypothalamo–pituitary–adrenal axis activity predicts disease
progression in multiple sclerosis. J Neuroimmunol. 2005;165:
186–191.

21. Schumann EM, Kümpfel T, Then Bergh F, Trenkwalder C, Holsboer
F, Auer DP. Activity of the hypothalamic–pituitary–adrenal axis in
multiple sclerosis: Correlations with gadolinium-enhancing lesions
and ventricular volume. Ann Neurol. 2002;51:763–767.

22. Gold SM, Sasidhar MV, Lagishetty V, et al. Dynamic development
of glucocorticoid resistance during autoimmune neuroinflamma-
tion. J Clin Metab. 2012;9:E1402–E1410.

23. Wüst S, van den Brandt J, Tischner D, et al. Peripheral T cells are the
therapeutic targets of glucocorticoids in experimental autoimmune
encephalomyelitis. J Immunol. 2008;180:8434–8443.

24. Ysrraelit MC, GaitánMI, Lopez AS, Correale J. Impaired hypothal-
amic–pituitary–adrenal axis activity in patients with multiple scler-
osis. Neurology. 2008;71:1948–1954.

25. Sinha R. Disgust, insula, immune signaling, and addiction. Biol
Psychiatry. 2014;75:90–91.

26. Meyer-Arndt L, Hetzer S, Asseyer S, et al. Blunted neural and psy-
chological stress processing predicts future grey matter atrophy in
multiple sclerosis. Neurobiol Stress. 2020;13:100244.

27. Schiller M, Ben-Shaanan TL, Rolls A. Neural regulation of immun-
ity: Why, how and where? Nat Rev Immun. 2021;21:20–36.

28. Wong CHY, Jenne CN, Lee W-Y, Leger C, Kubes P. Functional in-
nervation of hepatic iNKT cells is immunosuppressive following
stroke. Science. 2011;334:101–105.

29. Rao SM,Martin AL,Huelin R, et al.Correlations betweenMRI and
information processing speed in MS: A meta-analysis. Mult Scler
Int. 2014;2014:975803.

30. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for
multiple sclerosis: 2010 revisions to the McDonald criteria. Ann
Neurol. 2011;69:292–302.

31. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An
expanded disability status scale (EDSS). Neurology. 1983;33:
1444–1452.

32. Smith A. Symbol Digit Modalities Test (SDMT) manual, revised.
Western Psychological Services; 1982.

33. Beck AT,Ward CH,MendelsonM,Mock J, Erbaugh J. An inventory
for measuring depression. Arch Gen Psychiatry. 1961;4:561–571.

34. KirschbaumC, Pirke K-M, Hellhammer DH. The ‘Trier Social Stress
Test’—a tool for investigating psychobiological stress responses in a
laboratory setting. Neuropsychobiology. 1993;28:76–81.

35. WuW-C, Fernández-SearaM, Detre JA,Wehrli FW,Wang J. A the-
oretical and experimental investigation of the tagging efficiency of

14 | BRAIN COMMUNICATIONS 2022: Page 14 of 15 J. Brasanac et al.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac086#supplementary-data


pseudocontinuous arterial spin labeling. Magn Reson Med. 2007;
58:1020–1027.

36. Wang Z, Aguirre GK, Rao H, et al. Empirical optimization of ASL
data analysis using an ASL data processing toolbox: ASLtbx.Magn
Reson Imaging. 2008;26:261–269.

37. Ruthotto L, Kugel H, Olesch J, et al. Diffeomorphic susceptibility
artifact correction of diffusion-weighted magnetic resonance
images. Phys Med Biol. 2012;57:5715–5731.

38. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al.
Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain. Neuroimage. 2002;15:273–289.

39. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL,
Petersen SE. Methods to detect, characterize, and remove motion
artifact in resting state fMRI. Neuroimage. 2014;84:320–341.

40. Mourão-Miranda J, Bokde ALW, Born C, Hampel H, Stetter M.
Classifying brain states and determining the discriminating activa-
tion patterns: Support vector machine on functional MRI data.
Neuroimage. 2005;28:980–995.

41. WallME, Rechtsteiner A, Rocha LM. Singular value decomposition
and principal component analysis. A practical approach to micro-
array data analysis. Kluwer; 2003:91–109.

42. Friston KJ. Functional and effective connectivity in neuroimaging: A
synthesis. Hum Brain Mapp. 1994;2:56–78.

43. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids.
Nat Rev Immunol. 2017;17:33–247.

44. Zannas AS, Wiechmann T, Gassen NC, Binder EB.
Gene-stress-epigenetic regulation of FKBP5: Clinical and translation-
al implications. Neuropsychopharmacology. 2016;41:261–274.

45. Cannarile L, Delfino DV, Adorisio S, Riccardi C, Ayroldi E.
Implicating the role of GILZ in glucocorticoid modulation of
T-cell activation. Front Immunol. 2019;10:1823.

46. Weygandt M, Spranger J, Leupelt V, et al. Interactions between
neural decision-making circuits predict long-term dietary treatment
success in obesity. Neuroimage. 2019;184:520–534.

47. AcockAC.Agentle introduction to Stata. 4th edn. Stata Press; 2014.
48. Wager TD, Keller MC, Lacey SC, Jonides J. Increased sensitivity in

neuroimaging analyses using robust regression.Neuroimage. 2005;
26:99–113.

49. DiCiccio CJ, Romano JP. Robust permutation tests for correlation
and regression coefficients. J Am Stat Assoc. 2017;112:1211–1220.

50. Hsu J. Multiple comparisons. Theory and methods. Chapman and
Hall; 1996.

51. Engler JB, Kursawe N, SolanoME, et al.Glucocorticoid receptor in
T cells mediates protection from autoimmunity in pregnancy. Proc
Natl Acad Sci U S A. 2017;114:E181–E190.

52. Serfling G, Buades-Rotger M, Harbeck B, Krämer UM, Brabant G.
The corticosteroid prednisolone increases amygdala and insula re-
activity to food approach signals in healthy young men.
Psychoneuroendocrinology. 2019;99:154–165.

53. Fornari RV, Wichmann R, Atucha E, Desprez T, Eggens-Meijer E,
Roozendaal B. Involvement of the insular cortex in regulating gluco-
corticoid effects on memory consolidation of inhibitory avoidance
training. Front Behav Neurosci. 2012;6:10.

54. Kraynak TE, Marsland AL, Wager TD, Gianaros PJ. Functional
neuroanatomy of peripheral inflammatory physiology: A
meta-analysis of human neuroimaging studies. Neurosci Biobehav
Rev. 2018;94:76–92.

55. Ramírez-Amaya V, Alvarez-Borda B, Bermudez-Rattoni F.
Differential effects of NMDA-induced lesions into the insular cortex
and amygdala on the acquisition and evocation of conditioned im-
munosuppression. Brain Behav Immun. 1998;12:149–160.

56. Ramírez-Amaya V, Alvarez-Borda B, Ormsby CE, Martı´nez RD,
Pérez-Montfort R, Bermúdez-Rattoni F. Insular cortex lesions im-
pair the acquisition of conditioned immunosuppression. Brain
Behav Immun. 1998;10:103–114.

57. Mayer EA.Gut feelings: The emerging biology of gut–brain commu-
nication. Nat Rev Neurosci. 2011;12:453–466.

58. Weygandt M, Wakonig K, Behrens J, et al. Brain activity, regional
grey matter loss, and decision-making in Multiple Sclerosis. Mult
Scler. 2018;24:1163–1173.

59. Kleeberg J, Bruggimann L, Annoni J-M, vanMelle G, Bogousslavsky
J, SchluepM. Altered decision-making in multiple sclerosis: A sign of
impaired emotional reactivity? Ann Neurol. 2004;56:787–795.

60. Bendfeldt K, Kuster P, Traud S, et al. Association of regional gray
matter volume loss and progression of white matter lesions in mul-
tiple sclerosis—A longitudinal voxel-based morphometry study.
Neuroimage. 2009;45:60–67.

61. Wakonig K, Eitel F, Ritter K, et al.Altered coupling of psychological
relaxation and regional volume of brain reward areas in multiple
sclerosis. Front Neurol. 2020;11:568850.

62. Kleeberg J, Bruggimann L, Annoni J-M, van Melle G,
Bogousslavsky J, Schluep M. Altered decision-making in multiple
sclerosis: A sign of impaired emotional reactivity? Ann Neurol.
2004;56:787–795.

63. Kern S, Krause I, Horntrich A, Thomas K, Aderhold J, Ziemssen T.
Cortisol awakening response is linked to disease course and progres-
sion in multiple sclerosis. PLoS One. 2013;8:e60647.

64. Urry HL, van Reekum CM, Johnstone T, et al. Amygdala
and ventromedial prefrontal cortex are inversely coupled during
regulation of negative affect and predict the diurnal pattern of
cortisol secretion among older adults. J Neurosci. 2006;26:
4415–4425.

65. Grossman P, Kappos L, Gensicke H, et al.MS quality of life, depres-
sion, and fatigue improve after mindfulness training: A randomized
trial. Neurology. 2010;75:1141–1149.

66. Gafson AR, KimK, CencioniMT, et al.Mononuclear cell transcrip-
tome changes associated with dimethyl fumarate in MS. Neurol
Neuroimmunol Neuroinflamm. 2018;5:e470.

67. Friess J, Hecker M, Roch L, et al. Fingolimod alters the transcrip-
tome profile of circulating CD4+ cells in multiple sclerosis. Sci
Rep. 2017;7:42087.

68. Henig N, Avidan N,Mandel I, et al. Interferon-beta induces distinct
gene expression response patterns in human monocytes versus T
cells. PLoS One. 2013;8:e62366.

69. ThamilarasanM, Hecker M, Goertsches RH, et al.Glatiramer acet-
ate treatment effects on gene expression in monocytes of multiple
sclerosis patients. J Neuroinflammation. 2013;10:126.

70. Goecke A, Alvarez C, Henríquez J, et al.Methotrexate regulates the
expression of glucocorticoid receptor alpha and beta isoforms in
normal human peripheral mononuclear cells and human lympho-
cyte cell lines in vitro. Mol Immunol. 2007;44:2115–2123.

71. Ward BK, Mark PJ, Ingram DM, Minchin RF, Ratajczak T.
Expression of the estrogen receptor-associated immunophilins, cy-
clophilin 40 and FKBP52, in breast cancer. Breast Cancer Res
Treat. 1999;58:267–280.

72. Giraudier S, Chagraoui H, Komura E, et al. Overexpression of
FKBP51 in idiopathic myelofibrosis regulates the growth factor in-
dependence of megakaryocyte progenitors. Blood. 2002;100:
2932–2940.

73. Shi X, Shi W, Li Q, et al. A glucocorticoid-induced leucine-zipper
protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO
Rep. 2003;4:374–380.

74. Mansfield ER,Webster JT, Gunst RF. An analytic variable selection
technique for principal component regression. Appl Statist. 1977;
26:34–40.

75. Jolliffe IT. A note on the use of principal components in regression. J
Royal Stat Soc. 1982;31:300–303.

76. Meyer-Arndt L, Schmitz-Hübsch T, Bellmann-Strobl J, Brandt AU,
Haynes JD, Gold SM, Paul F,WeygandtM.Neural processes of psy-
chological stress and relaxation predict the future evolution of qual-
ity of life in multiple sclerosis. Front Neurol. 2021;12:753107.

Stress processing and multiple sclerosis BRAIN COMMUNICATIONS 2022: Page 15 of 15 | 15


	Central stress processing, T-cell responsivity to stress hormones and disease severity in multiple sclerosis
	Introduction
	Materials and methods
	Participants
	Clinical assessments
	Experimental stress paradigm
	MRI sequences
	MRI preprocessing
	Anatomical brain scans
	Functional brain scans

	Computation of stress-related neural network activity
	Preprocessing of GC-related gene expression data in T cells
	Statistical analyses
	Psychological, peripheral and neural stress responses
	Differential coupling of brain activity and gene expression in patients and controls
	Brain activity and disease severity
	GC-related T-cell gene expression and disease severity

	Software accessibility
	Data availability

	Results
	Demographic and clinical participant characteristics
	Psychological, peripheral and neural stress responses
	Differential coupling of brain activity and gene expression in patients and controls
	Brain activity and disease severity
	GC-related T-cell gene expression and disease severity

	Discussion
	Acknowledgements
	Funding
	Competing interests
	Supplementary material
	References


