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Supplemental Methods:

Virus

Prior to infection, SARS-CoV-2 isolate (BetaCoV/Munich/BavPat1/2020) grown on
Vero EG6 cells in minimal essential medium (MEM; PAN Biotech) with 10% fetal bovine
serum (PAN Biotech) and 1001U/ml Penicillin G and 100 pg/ml Streptomycin (Carl
Roth). After incubation and titre determination, stocks were prepared and stored at -
80°C. Integrity of the furin cleavage site was confirmed through sequencing of stocks

prior to infection.

Infection

To ensure successful intranasal infection, hamsters were anaesthetised with a triple
anaesthesia consisting of midazolam (2 mg/kg), butorphanol (2.5 mg/kg) and
medetomidine (0.15 mg/kg). Subsequently 1x10° PFU SARS-CoV-2 diluted in 60 pl
MEM (PAN, Biotech) for Syrian hamsters (1) or 30 ul for Roborovski hamsters (2) were
applied intranasally.

Animal Experiment

The hamsters were randomly assigned to 4 groups. Treatment started on day 2 after
infection for Syrian hamsters and day 1 after infection for Roborovski hamsters. Group
1 received placebo therapy, whilst group 2 was treated with a single dose of anti-
SARS-CoV-2 antibody CV-07-209 (2) injected intra-peritoneally at a dose of 30 mg/kg.
Hamsters of the third group were treated daily with dexamethasone (2 mg/kg applied
intra-muscularly. In group 4 the animals received a combination of both therapies
described for group 2 and 3.

Hamsters were weighted daily and monitored for signs of disease twice-daily. Severely
sick animals were euthanized according to defined humane endpoints including body
temperature <33 °C, acute respiratory distress or weight loss >20%. Hamsters were
selected randomly for all scheduled take-out time points (day 3 and 5 for Roborovski
hamsters, day 5 and 7 for Syrian hamsters). Take out timepoints were scheduled
according to the different disease courses on day 5 and 7 for Syrian hamsters and on
day 3 and 5 for Roborovski dwarf hamsters. For euthanasia, animals were
anesthetised with medetomidine (0.15 mg/kg), midazolam (2 mg/kg), and butorphanol
(2.5 mg/kg) prior to exsanguination (1). To conduct virological, histopathological and
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single-cell sequencing analysis, serum, EDTA blood, lungs and oropharyngeal swabs
were collected.

RNA extraction and qPCR

RNA was extracted from oropharyngeal swabs and 25 mg homogenized lung tissue.
To do so innuPREP Virus DNA/RNA Kit (Analytic Jena, Jena, Germany) was used
according to manufacturer’s instructions. For quantification of viral RNA, we used NEB
Luna Universal Probe One-Step RT-qPCR Kit (New England Biolabs) and the gPCR
was conducted on the StepOnePlus Real-Time PCR System (Thermo Fisher
Scientific) (3).

Plaque assay

Titration was performed to quantify replication competent virus. Briefly, lung tissue was
homogenized in a bead mill (Analytic Jena). Thereafter, 50 mg of homogenized lung
were used to prepare 10-fold dilutions starting from - 1 to - 6 and transferred onto Vero
EG cells seeded in 24-well plates (Sarstedt, Numbrecht, Germany). Subsequently, the
plates were incubated for 2,5 hours at 37°C and overlayed with 1,5% methylcellulose
(Sigma Aldrich). After 72 hours cells were fixed in 4% formaldehyde, stained with
0.75% crystal violet and results were evaluated by counting the plaques.

Analysis of single-cell-RNA-Sequencing data
Analysis of the single-cell data was based on Seurat (4). All used code with annotation
is available through Github at https:/github.com/Berlin-Hamster-Single-Cell-

Consortium/Dwarf-Hamster-Dexamethasone-Antibody.

Details on single cell analysis and RNA velocity analysis can be found below:

Briefly, samples were integrated following SCtransform (5). Cell types were annotated
based on the expression of marker genes in Louvain clusters. Variability and statistical
tests were calculated based on three animals per group. Within the neutrophil
subclustering, differential analysis was based on Louvain clusters.

For RNA velocity analysis, sequencing reads from scRNA-seq were classified as
spliced or unspliced using velocyto (6). Based on this classification, RNA velocity was
inferred with the stochastic model of scvelo (7) after filtering out genes with less than

spliced and unspliced 20 mRNA counts in total. Diffusion components were computed
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with a scanpy (8) implementation of diffusion map (9). Hallmark gene signatures were
retrieved from MSigDB (10) and scored using scanpy. All reported linear correlations
between diffusion axis and genes or hallmarks were significant (p < 0.05) according to

spearman correlation.
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Supplemental Figures and legends:
Figure E1
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Histopathology of the left lungs of Roborovski hamsters and Syrian hamsters at 3 and
5 or 5 and 7 days, respectively, after infection with wild type SARS-CoV-2, hematoxylin
and eosin stain. (A — D) Lungs of mock treated Roborovski hamsters at both time points
had marked and multifocal to coalescing bronchointerstitial pneumonia. (A, C) The
bronchiolar epithelium occasionally appeared irregularly hyperplastic with single cell
necrosis and accumulation of cellular debris in the bronchial lumen. (B) Alveoli were
infiltrated by macrophages, neutrophils and lymphocytes, in addition to necrosis of
alveolar epithelial cells and hemorrhage at 3 days. Blood vessels developed marked
endothelialitis predominantly at day 3 (inset). Note that main figure 3F bottom left
contains a part of this panel. (D) At day 5, alveolar type Il epithelial cells were
hyperplastic. (I — L) Syrian hamsters treated with a combination of Dex + mAb
developed milder lesions at both time points. (1) At 3 days after infection, bronchi had
only moderate necrosis of bronchial epithelial cells as well as milder transmigration of
neutrophils into the bronchial lumen whereas (J) alveoli revealed random areas of mild
necrosis and infiltration by only very few macrophages and neutrophils with mild
alveolar edema. Endothelialitis was not observed at all. At day 5 after infection (K)
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bronchial epithelium was only mildly hyperplastic (L). Activated alveolar macrophages
were the dominating cells in the alveolar lumen, eliminating debris of immune cell
responses. (Q - T) Treatment with Dex alone also had an advantageous affect
compared to the non-treated group and resembled the histopathology patterns of the
combination treated group. (Q) Bronchial changes were characterized by mild to
moderate, necrotizing and suppurative bronchitis at day 3 and (S) minimal bronchitis
at day 5. (R) Alveolar changes also included mild alveolar epithelial necrosis as well
as moderate infiltration with macrophages, neutrophils and lymphocytes at day 3.
There was no endothelialitis (inset). (T) Dex treated hamsters had increased alveolar
macrophages and areas of interstitial thickening with mixed inflammatory cell infiltrates
at day 5. (Y — AB) Lungs of mAb treated hamsters developed moderate to marked,
extensive necrosuppurative, bronchointerstitial pneumonia with only one animal
reaching the second endpoint (AA — AB) at day 5. (Y) In addition to the typical
moderate and necrosuppurative bronchitis, (Z) there was moderate alveolar epithelial
cell necrosis with marked infiltration by neutrophils, macrophages and lymphocytes as
well as moderate to marked necrosis of alveolar epithelial cells. Blood vessel adjacent
to the affected areas had moderate endothelialitis (inset). The hamster that reached
the day 5 endpoint had only mild, necrosuppurative bronchitis (AA) and moderate
hyperplasia of alveolar epithelial cells type Il (AB).

(E — F) Lungs of mock treated Syrian hamsters at day 5 after infection had patchy
areas of bronchointerstitial pneumonia and epithelial cell necrosis. (E) Bronchi showed
signs of bronchial epithelial hyperplasia as well as intraluminal accumulation of cellular
debris originating from deeper airways. (F) Alveoli presented with consolidation and
marked interstitial as well as intra-alveolar infiltration with macrophages, lymphocytes
and neutrophils, accompanied by necrosis of alveolar epithelial cells. Blood vessels
adjacent to affected areas developed moderate endothelialitis. Alveolar type |l
epithelial cells were hyperplastic. (G — H) At day 7 after infection mock treated lungs
still had multifocally consolidated areas as well as (G) bronchial epithelial hyperplasia.
(H) Lungs at later time points had less immune cell infiltrates but showed severe
hyperplasia of alveolar type Il epithelial cells with prominent mitotic activity. (M - P)
Lungs of Syrian hamsters treated with a combination of Dex + mAb developed no or
only little consolidation at 5 and 7 days. (M) Sporadic single cell necrosis was detected
in the bronchial epithelium at 5 days. (O) No significant changes were detected at day
7 anymore. (N) Macrophages were the predominant cell type at day 3 in the alveolar
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lumen, eliminating immune cell debris. Endothelialitis was absent (inset). (N, P)
Alveolar walls appeared mildly expanded at both time points. (U - X) Syrian hamsters
treated with Dex developed only patchy areas of interstitial thickening but no
parenchymal consolidation. (U) The bronchial epithelium appeared moderately
hyperplastic a day 5 and (W) returned to normal thickness at day 7. (V, X) Alveolar
walls were only mildly thickened and infiltrated by moderate numbers of neutrophils,
macrophages and lymphocytes. Alveolar epithelial cells were mildly hyperplastic and
endothelialitis was absent (V, inset). (AC - AF) In contrast, mAb alone treated lungs
developed stronger bronchointerstitial pneumonia with areas of markedly consolidated
parenchyma and (AC, AE) bronchial epithelial hyperplasia at both time points. (AD,
AF) Alveolar changes were similar to lesions observed in the non-treated group,
including moderate infiltration with macrophages, neutrophils and lymphocytes as well
as moderate hyperplasia of alveolar type Il epithelial cells and moderate endothelialitis
in blood vessels adjacent to inflamed areas (AD, inset). Scale bar for all = 25 ym
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Figure E2
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Gene expression was quantified using polyA RNA high-throughput sequencing from
Syrian hamster (A) and Roborovski hamster (B) lung samples. Shown are z-scores
of fpkm values calculated over all samples on a color scale ranging from blue (-4) to
red (+4). Time points and treatments are shown on top of the heatmap. Samples
from animals taken out at 2 dpi are shown in orange (B). The displayed genes are
those from the type | Interferon / Interferon gamma response set that are annotated in

the respective genomes.
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151
152 (A) Left, cells from all single-cell RNA-sequencing samples were integrated and

153  clustered using the Louvain algorithm based on their individual transcriptomes, and
154  two-dimensional projections performed using the UMAP algorithm. Cells were
155  colored by their cluster identity. Right, the expression of cell type marker genes per
156  cluster was displayed as a heatmap. Based on marker gene expression, clusters were
157  manually assigned to cell types and were colored by cell type (B). Changes in cellular
158  density on the UMAP projection were calculated, and cells colored by fold changes of
159  the indicated treatment vs. mock treatment, mAb vs mock (C), Dex vs. mock (D), and
160 Dex + mAb vs mock (E). Red indicates increased density, and blue indicates
161 decreased density, as for example the amount of T / NK cells is reduced upon
162  dexamethasone treatment (D). mAb: monoclonal antibody, Dex: dexamethasone, vs:
163  versus.
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Percentage of indicated cells per lung lobe in hamsters at 2 dpi depending on treatment
with mock, mAb, DEx, and Dex + mAb; AT2 and endothelial cells (F), T and B
lymphocytes (G) and various innate immune cells (H). Percentages (I) and calculated
numbers of indicated small cell populations. Data from scRNA-Seq and lung cell
counting (Fig. 2A). Data display means + SD. n = 3 per group. (F —J) Two-way ANOVA,
Tukey’s multiple comparisons test. * P < 0.05, *x P < 0.01, #xx P < 0.001, *xxx P <
0.0001. (K) Expression of proliferation marker genes Mki67 and TopZ2a in endothelial
cells. Shown are the fraction of cells with = one mRNA count (top, means + SD, n = 3)
and the expression levels in the cells with = one mRNA count (bottom, boxplots, lower
and upper hinges correspond to first and third quartiles. Whiskers extend to a
maximum of 1.5 times the distance between first and third quartile. Outliers beyond
are marked by single dots).
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Expression of dexamethasone-induced genes F13a71 (A), Dusp1 (B), and Saa3 (C) in
indicated cell types. Shown are fraction of cells with =2 one mRNA count (top panels,
means * SD, n = 3) and the expression levels in cells with =2 one mRNA count
(bottom panels, boxplots, lower and upper hinges correspond to first and third
quartiles. Whiskers extend to a maximum of 1.5 times the distance between first and
third quartile. Outliers beyond are marked by single dots). (D) Expression of the
glucocorticoid receptor gene Nr3c1 in the indicated cell types in Roborovski hamsters
(top, this study) and Syrian hamsters (bottom, from (11)). Shown are the fraction of

cells in which 2 one mRNA count (means = SD, n = 3).
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Dotplots of differentially expressed genes for all three treatments compared to each
other (E). For every comparison and every cell type, the two most significantly changed
genes are shown. Size and colors of the dots indicate log2-transformed fold changes
(FC) and p-values, respectively. Adjusted (adj) p-values were calculated by DEseq2
using Benjamini-Hochberg corrections of two-sided Wald test p-values. Genes are

ordered by unsupervised clustering.
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205  Data from: Nouailles G, Wyler E, Pennitz P, et al. Nat Commun. 2021;12(1):4869.
206 (F) Plotted are log2-transformed gene expression fold changesin monocytic
207  macrophages from Syrian hamsters (from (11)) against each other, comparing 2 dpi to
208 uninfected (vertical axis) and comparing cells containing viral RNA vs. cells without
209 viral RNA (horizontal axis). Gene sets were defined as either predominantly NF-kB-
210 dependent (orange oval, right) or predominantly interferon-dependent (light blue oval,
211 top).
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222 colored by the expression values of the respective genes. (E) Expression of the
223 indicated genes over all animals in the clusters as defined in Figure 5A. The dot size
224  indicates the fraction of cells in the clusters as indicated on the left from mock-treated
225 animals, with = one mRNA count detected for the respective gene. The color
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animal (note that every represents four animals, namely one of mock, one of mAb, one
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