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COVID-19 shares the feature of autoantibody production with systemic autoimmune dis-

eases. In order to understand the role of these immune globulins in the pathogenesis of the

disease, it is important to explore the autoantibody spectra. Here we show, by a cross-

sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors

(GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients

with moderate and severe disease are characterized by higher autoantibody levels than

healthy controls and those with mild COVID-19 disease. Among the anti-GPCR auto-

antibodies, machine learning classification identifies the chemokine receptor CXCR3 and the

RAS-related molecule AGTR1 as targets for antibodies with the strongest association to

disease severity. Besides antibody levels, autoantibody network signatures are also changing

in patients with intermediate or high disease severity. Although our current and previous

studies identify anti-GPCR antibodies as natural components of human biology, their pro-

duction is deregulated in COVID-19 and their level and pattern alterations might predict

COVID-19 disease severity.
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Autoantibodies have been identified in patients with cor-
onavirus disease 2019 (COVID-19), suggesting that the
infection by severe acute respiratory syndrome virus 2

(SARS-CoV-2) can display features similar to a systemic auto-
immune disease1–5. For instance, high levels of antiphospholipid
autoantibodies have been linked to severe respiratory disease by
inducing neutrophil extracellular traps (NET) and venous
thrombosis4,6–9. Further, high titers of neutralizing immunoglo-
bulin G (IgG) autoantibodies against type I interferons (IFN)
have been reported in patients with life-threatening COVID-1910.
Most recently, a wide range of autoantibodies in patients with
COVID-19 have been characterized using rapid extracellular
antigen profiling (REAP)11. This is a technology that allows
the comprehensive and high-throughput identification of auto-
antibodies by recognizing 2770 extracellular and secreted protein
components of the exoproteome (extracellular protein epitopes)12.
Wang et al. 11 showed that COVID-19 patients have multiple
autoantibodies against the exoproteome. While patients with mild
disease or asymptomatic infection exhibit increased autoantibody
reactivity relative to uninfected individuals, those with severe
disease have the highest reactivity scores.

These results are in line with our previous report13 on auto-
antibodies targeting the largest superfamily of integral membrane
proteins in humans14, i.e., G protein-coupled receptors (GPCR),
suggesting that these autoantibodies are natural components of
human biology that become dysregulated in autoimmune
diseases15. Our prior work indicated that GPCR-specific auto-
antibody signatures are associated with physiological and
pathological immune homeostasis13. Likewise, recent studies have
detected functional antibodies against GPCRs in the sera of
patients with COVID-19 and have indicated that they may be
associated with disease severity16–18. However, these investiga-
tions focused only on a few anti-GPCR autoantibodies. Impor-
tantly, they did not investigate their relationship with the
potential presence of autoantibodies targeting other GPCRs and
renin-angiotensin system (RAS)-related molecules, which play a
central role in the development of severe COVID-19. Thus, we
employ a systems immunology approach (Fig. 1a) to characterize
the relationship between autoantibodies targeting a broad group
of GPCRs and RAS-related molecules with COVID-19 severity by
determining their correlation signatures across SARS-CoV-2-
infected patients versus healthy individuals.

Results
Autoantibodies against GPCRs and the renin-angiotensin
system (RAS)-related molecules. Here, we investigated the
serum levels of autoantibodies targeting molecules belonging to
the RAS (including the GPCRs: MAS1, AGTR1, and AGTR2 as
well as the entry receptor for SARS-CoV-2, angiotensin-
converting enzyme II [ACE2])19–22. Furthermore, we assessed
the concentrations of autoantibodies against GPCRs involved in
chemotaxis and inflammation (CXCR323,24 and C5AR125), coa-
gulation (F2R26), and neuronal receptors (ADRA1A, ADRB1, and
ADRB2, CHRMs)27–31, which have been implicated in the
development of COVID-19 disease (see Supplementary Data 1–3
for autoantibody levels as well as abbreviations of autoantibodies
and their targets). In addition, we investigated autoantibodies
targeting receptors facilitating the infectivity of SARS-CoV-2, and
its entrance into host cells (neuropilin [NRP1]-aab)32. Finally, we
explored the potential presence of autoantibodies against STAB1
(STAB1-aab), a scavenger receptor, as a potential new candidate
in COVID-19 pathology since, despite the lack of investigations
into its role in COVID-19, its multifunctionality during leukocyte
trafficking, tissue homeostasis, and resolution of inflammation
suggests that it could be relevant for disease severity33,34.

Figure 1b and c display the interactions of these autoantibody
targets represented by their physical protein-protein interaction
(PPI) (Supplementary Data 4) and gene ontology (GO) rela-
tionships (Supplementary Data 5), respectively.

We found significantly higher levels of autoantibodies mostly
directed against 11 receptors (AGTR1, AGTR2, ADRB1, BDKRB1,
MAS1, CXCR3, CHRM3, CHRM5, NRP1, F2R, STAB1) in the
moderate or severe COVID-19 groups than in the healthy control
and mild COVID-19 group (Fig. 2a and b). These findings
indicate that these autoantibodies reached the highest serum level
in patients with moderate and severe disease (Fig. 2c). These
receptors are involved in the modulation of inflammation and the
RAS, suggesting that there could be relevant biological pathways
which underly the identified associations between these auto-
antibodies and COVID-19 severity. In line with this, both controls
and the COVID-19 disease groups (mostly mild COVID-19
patients) were found to have some autoantibodies at similar levels
to lesser biologically relevant targets with respect to disease
severity. Most of these autoantibodies were targeting neuronal
receptors (e.g., ADRA1R, ADRB1, ADRB2, CHRM3, and
CHRM4)35–37, but also the receptor for complement C5a
(C5AR1), a potent anaphylatoxin chemotactic receptor38. Thus,
our data suggest that severe COVID-19 is associated with
autoantibodies toward certain groups of GPCRs. Additionally,
we found that the dysregulated production of autoantibodies
targeting GPCRs and RAS-related molecules in COVID-19
patients was accompanied by higher levels of some autoantibodies
associated with classic autoimmune diseases39 when compared to
healthy controls. For instance, while we found no significant
differences in antinuclear antibodies (ANA), the levels of
rheumatoid factor (RF), and autoantibodies targeting double-
stranded DNA (anti-dsDNA) significantly increased according to
COVID-19 severity (Fig. 2d). Of note, we did not include
asymptomatic individuals infected with SARS-CoV-2 in this
article because their sera were not available at the time of data
acquisition for this study. However, we are currently performing a
follow up study with a German cohort of COVID-19 patients and
have so far observed that healthy controls fully recovered from
COVID-19 have a pattern of autoantibodies targeting GPCRs and
RAS-related molecules that resembles that from healthy controls
and mild COVID-19 patients (manuscript in preparation).

Autoantibody stratification of COVID-19 severity using mul-
tivariate analyses. Next, we performed principal component
analysis (PCA) using a spectral decomposition approach40,41, to
examine the correlations between variables (autoantibodies) and
observations (individuals) while stratifying groups based on the
autoantibody levels. This approach indicated that autoantibodies
could be used to stratify COVID-19 patients according to disease
severity (mild, moderate, and severe) (Fig. 3a–d). While healthy
controls and patients with mild COVID-19 presented with more
similar autoantibody patterns, moderate and severe COVID-19
patients clustered together. In this context, autoantibodies such as
ACE2-aab, AGTR2-aab, BDKRB1-aab, CXCR3-aab, MAS1-aab,
CHRM5-aab, NRP1-aab, F2R-aab, STAB1-aab appeared to play a
major role in stratifying COVID-19 by disease burden. Alto-
gether, these results indicate that the association between auto-
antibodies against GPCRs and COVID-19-related molecules can
be used as biomarkers for COVID-19 outcomes.

Machine learning classification of COVID-19 patients based on
autoantibodies. To further explore the potential of auto-
antibodies as biomarkers of COVID-19, we used random forest
classification42 based on autoantibody for predicting disease
outcomes. The receiver operating characteristic (ROC) curve
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indicated a high false-positive rate for the classification of severe
patients with the stable curve showing the highest error rate (out-
of-bag or OOB) for this group (Fig. 4a and b). In accordance with
the PCA, random forest classification of COVID-19 groups
showed a higher error rate (low accuracy) when distinguishing
moderate patients from those with severe COVID-19, suggesting
that moderate and severe COVID-19 patients present a similar
autoantibody pattern.

Thus, we assigned moderate and severe COVID-19 patients to
the same group to identify the most relevant autoantibody
predictors of COVID-19 burden. Using this approach, the
merged moderate/severe patient group showed a lower error rate
than the healthy controls and mild COVID-19 patients,
reinforcing the previous observation that moderate and severe
groups have an overlapping autoantibody pattern. This model
resulted in an OOB error rate of 22.95% for all groups and areas
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under the ROC curve of 0.93, 0.87, and 0.96 for the healthy
control, mild COVID-19, and moderate/severe COVID-19
groups, respectively (Fig. 4c and d). Moreover, the random forest
model ranked these 17 autoantibodies based on their ability to
discriminate between healthy controls and COVID-19 disease
severity groups. Follow-up analysis indicated that CXCR3-aab,
AGTR1-aab, MAS1-aab, CHRM5-aab, and BDKRB1-aab were
the five most significant predictors of COVID-19 disease-severity
classification based on the number of nodes and the Gini decrease
criteria for measuring variable importance (Fig. 4e and f).
However, other autoantibodies such as F2R-aab and STAB1-aab
were also strong predictors of COVID-19 severity. The interac-
tion between anti-CXCR3 and anti-AGTR1 autoantibodies was
the most frequent interaction occurring in the decision trees
obtained by the random forest model (Supplementary Fig. 1).
Altogether, these results show that autoantibodies targeting
GPCRs and COVID-19-associated molecules perform well as
predictors of COVID-19 disease severity.

Of note, the aforementioned results were adjusted for age and
sex in the production of autoantibodies by randomly selecting
age- and sex-matched healthy controls and COVID-19 patients,
reducing the likelihood of confounding effects. As a further
precaution, we also assessed whether sex and age were associated
with the top 10 autoantibodies ranked as predictors of disease
severity by random forest analysis (Supplementary Fig. 2A and
B). Overall, except for the MAS1-aab, which was significantly
higher in control females versus control males, there were no sex
differences in the COVID-19 disease groups. We also further
analyzed whether the use of medications was associated with the
levels of these autoantibodies and observed significant changes in
the levels of some autoantibodies in severe patients receiving
vitamin C and zinc (Supplementary Fig. 3A–D). However, this
observation requires future investigation, because the influence of
several other variables could not be controlled for in our
study such as the inclusion of placebo as well as time and
dose–response groups. In this context, it will also be important to
assess the relationship between autoantibody levels and periph-
eral lymphocyte counts to evaluate, for instance, the impact of
changes in the number of circulating B lymphocytes on the serum
levels of autoantibodies. Detailed information on the demo-
graphics, therapeutics and clinical outcomes of the cohort of
SARS-CoV-2-infected patients is provided in Supplementary
Data 1.

Disruption of autoantibody correlation signatures in severe
forms of COVID-19. We recently reported that the hierarchical
clustering signatures of anti-GPCR autoantibody correlations
are associated with physiological and pathological immune

homeostasis13. Based on this concept, we investigated the corre-
lation signatures in healthy controls and patients with COVID-19
to explore whether changes in autoantibody relationships corre-
late with disease burden. Bivariate correlation analysis revealed a
progressive loss of normal correlation signatures from mild to
severe COVID-19 patients. In other words, patients with mild
COVID-19 exhibited only minimal differences in the autoanti-
body correlation signatures when compared to healthy controls
(Fig. 5a). Patients with moderate COVID-19 started to exhibit
new relationships among autoantibodies while the severe group
displayed the most different topological correlation pattern.
Topologically, a positive correlation predominated among the
autoantibodies. Of note, autoantibodies targeting nine different
molecules presented with significant changes in the total corre-
lation distribution, which was determined by the distribution of
the pairwise correlation between autoantibodies (Fig. 5b and
Supplementary Fig. 4). In summary, while the autoantibody
network signatures were relatively conserved in patients with
mild COVID-19 with respect to healthy controls, they were dis-
rupted in moderate and most perturbed in patients with severe
disease.

To better understand these changes in autoantibody correlation
signatures, we performed canonical-correlation analysis (CCA), a
multivariate statistical method that determines the linear
relationship between two groups of variables43. CCA was carried
out by splitting autoantibodies into two groups (as performed in
Fig. 1b as well as Fig. 2a and b): those against molecules belonging
or influencing the RAS (Dataset X) and those targeting other
GPCRs, NRP1, and STAB1 (Dataset Y). This approach confirmed
the changes in the autoantibody relationship patterns revealed by
the bivariate correlation analysis. In addition, the CCA indicated
changes based on COVID-19 severity were in agreement with the
findings of the random forest model. For instance, in this
multivariate correlation approach, autoantibodies targeting
CXCR3 showed Spearman’s rank correlation coefficients > 0.6
only in the moderate and severe groups (Fig. 5c). In this context,
while BDKRB1-aab appeared only in the severe group, AGTR1-
aab, MAS1-aab, and CHRM5-aab exhibited changes in their
correlation patterns that were only observed in the severe group.

Discussion
Our work reinforces the idea that SARS-CoV-2 infection may
trigger a life-threatening autoimmune disease, suggesting that
this occurs against multiple molecules with key functions in
immune and vascular homeostasis1–3,44 such as GPCRs and RAS-
related molecules. The precise mechanisms by which SARS-CoV-2
infection triggers the production of autoantibodies remain
unknown. However, potential antigenic cross-reactivity (molecular

Fig. 1 Study workflow. a After data acquisition, we carried out different statistical analyses (written on the top) to characterize the signature of
autoantibodies against GPCRs and COVID-19-associated molecules (e.g., renin-angiotensin system) in COVID-19 patients when compared with healthy
controls. Created with BioRender.com. b Interaction network of autoantibody targets: molecules belonging or influencing the RAS (on the right) as well as
additional molecules (other GPCRs, NRP1, and STAB1; on the left). The network highlights interactions among the autoantibody targets (blue edges), ACE-
2 interactors connecting to the other targets (green edges), and gene ontology (GO) biological processes (node color). The number of interacting partners
for each target is proportional to the node size. The circles associated with each autoantibody target are formed by their interactors, whose names are
omitted. c Circos plot illustrating the functional relationships between the antibody targets and biological processes as indicated by GO enriched processes,
which are denoted by letters: A renin-angiotensin system, B adrenergic signaling in cardiomyocytes, C calcium signaling, D renin secretion, E GP130/JAK/
STAT, F toll-like receptor signaling network, G complement and coagulation cascades, H inflammatory mediator regulation of TRP channels, I regulation of
actin cytoskeleton, J inflammation mediated by chemokine and cytokine signaling, K immune system, L innate immune system, M neutrophil degranulation,
N actions of nitric oxide in the heart, O human T-cell leukemia virus 1 infection, P VEGF and VEGFR signaling network, Q scavenging by class H receptors.
The Circos plot shows only a few GO enriched processes; the complete list of relationships is provided in Supplementary Data 5. The size of the rectangles
in the outer circles is proportional to the involvement of autoantibody targets in multiple pathways. The size of rectangles forming the inner circle
represents genes and datasets with more connections to each other. Colors, numbers and percentages on the outer circles denote pleiotropy and gene-
pathway associations. GO, gene ontology. Source data are provided as a Source Data file.
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mimicry) between SARS-CoV-2 and human tissues has been
hypothesized45–50. Furthermore, the hyperinflammatory reaction
triggered by the virus results in tissue damage, causing systemic
autoimmune-related manifestations that have been reported in
patients with COVID-1951. In this context, while the mechanistic
action of several autoantibodies that we identified remains to be
investigated, we previously described13,15,52,53 that anti-AGTR154

and anti-CXCR3 (previous work55 and unpublished data) have
agonist properties (e.g., on cell migration) and associate, for
instance, with pulmonary fibrosis and cardiac death. Thus, these
autoantibodies possibly potentialize the signaling triggered by their
natural ligand, promoting the migration of immune cells, such as
CD4+ and CD8+ T cells that are critical for both the killing of
SARS-CoV-2 in the lung and deleterious hyperinflammation56,57.
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Regardless that we did not investigate the activity of autoantibodies
on their targets, the results of our work underscore those of recent
studies3,6,10–12 that have reported the generation of autoantibodies
following SARS-CoV-2 infection. Importantly, our data indicate
that an additional immunopathological layer is present in which
autoantibodies targeting GPCRs and RAS-related molecules are
associated with COVID-19 burden. This association potentially
sheds new light on the proposed immunopathological mechanisms
underlying the development of COVID-19 infection, which is
based on the abnormal activation of the ACE-II/angiotensin II
(Ang II)/AGTR1/RAS axis together with a reduction of the ACE-
II/angiotensin-(1-7)/MAS1 branch occurring together with several
immunological dysregulation events58.

The random forest model revealed an overlap between the
autoantibody patterns of the moderate and severe COVID-19
groups, suggesting that an increase in autoantibody levels

accompanies progression from mild disease. Our cross-sectional
study cannot show whether these antibodies were generated de
novo. However, Chang et al. 59 reported a subset of antibodies
against autoantigens similar to those observed in classic auto-
immune diseases, as well as anti-cytokine antibodies that are
generated de novo following SARS-CoV-2 infection. Accordingly,
we have also identified higher levels of autoantibodies (anti-
dsDNA and RF) in our COVID-19 cohort versus healthy controls
and the details about their relationship with the clinical features
of COVID-19 will be published elsewhere. Chang et al. 59 also
showed that while some autoantibodies were at or below the
average levels of healthy controls and increased over time during
the SARS-CoV-2 infection, other autoantibodies were already
elevated at the first time point of measurement in some ser-
opositive patients, which is in accordance with the recently
reported studies on preexisting autoantibodies to type I IFNs in

Fig. 2 Autoantibodies against GPCRs and COVID-19-associated molecules are dysregulated during SARS-CoV-2 infection. a and b Box plots of
autoantibodies investigated in mild (n= 74), moderate (n= 63), and severe (n= 32) COVID-19 patients compared to healthy controls (n= 77):
a autoantibodies against molecules belonging to or influencing the RAS; b autoantibodies targeting GPCRs and other molecules (NRP1-aab, and STAB1-
aab). c Heatmap of −log10 p-value obtained from the comparisons of each COVID-19 group in relation to the control group. The bars aside the heatmap
represent the sum of −log10 p-value. d Box plots of classical autoantibodies (antinuclear antibodies or ANAs; double-stranded DNA or dsDNA; and
rheumatoid factor or RF) associated with autoimmune diseases. Each box plot shows the median with first and third interquartile range (IQR), whiskers
representing minimum and maximum values within IQR, and individual data points. Significance was determined using two-sided Wilcoxon rank-sum tests
and is indicated by asterisks (*p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, and ****p≤ 0.0001). Source data are provided as a Source Data file.

Fig. 3 Autoantibodies stratify COVID-19 patients by disease severity. a Principal component analysis (PCA) with spectral decomposition based on 17
different anti-GPCR-autoantibodies show the stratification of moderate (n= 63) and severe (n= 32) COVID-19 patients from mild (n= 74) COVID-19
patients and healthy controls (n= 77). Variables with positive correlation point to the same side of the plot, contrasting with negatively correlated
variables, which point to opposite sides. Only autoantibodies highly contributing to the stratification of moderate and severe COVID-19 patients from mild
patients and healthy controls are shown. Small circles are concentration ellipses around the mean points of each group. Histograms aside the PCA
represent the density of the sample (individual) distribution. b Graphs of variables (antibodies) obtained by PCA of COVID-19 mild, moderate and severe
groups and healthy controls, indicating the autoantibodies highly associated with moderate and severe COVID-19. The color scale bar indicates the
contribution of each autoantibody to the principal component (PC). c Biplot of individuals (dark gray dots: c control, Mo moderate; Mi mild; S severe) and
variables (autoantibodies: blue names) of same groups as in (a). Individuals with a similar autoantibody profile are grouped together. Healthy controls
n= 77; COVID-19 groups: mild n= 74, moderate n= 63, and severe n= 32. Source data are provided as a Source Data file.
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Fig. 4 Ranking autoantibodies as predictors of disease severity reveals an overlap between their patterns in moderate and severe COVID-19.
a Receiver operating characteristic (ROC) curves of 17 antibodies from mild (n= 74), moderate (n= 63), and severe (n= 32) COVID-19 patients versus
healthy controls (n= 77) with an area under the curve (AUC) of 89.8% (for controls), 87.6% (for mild), 88,7% (for moderate), and 75.5% (for severe).
b Stable curve showing number of trees and out-of-bag (OOB) error rate of 30.05%. c ROC curve of the same antibodies as in (a) from mild COVID-19 and
moderate/severe COVID-19 patients compared to healthy controls with an AUC of 93.1% (for controls), 87.7% (for mild) and 96.2% (for moderate/
severe). d Stable curve showing number of trees and OOB error rate of 22,95%. e Ranking of the top 10 autoantibody predictors of disease severity
according to the mean minimal depth (black vertical bar with the mean value) calculated based on the number of trees. The blue color gradient reveals the
minimum and maximum minimal depths for each variable. f Variable importance score plot based on Gini decrease and number (no.) of nodes for each
variable showing which variable (antibody) presents a higher score in predicting COVID-19 severity. Source data are provided as a Source Data file.
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COVID-19 patients60,61. These data suggest that SARS-CoV-2
infection increases the production of autoantibodies or that at
least some COVID-19 patients may have an unreported or
undiagnosed pre-existing autoimmune disease. To the best of our
knowledge, none of our patients had previously experienced
autoimmune diseases and we do not have follow-up information
available concerning the development of post-COVID auto-
immune phenomena in the enrolled cohort. In this context, a

previous report13 of our group indicates that anti-GPCR auto-
antibodies are natural components of human biology that can
dysregulate and trigger the development of autoimmune diseases
(a concept discussed in detail elsewhere)15,62. Thus, we cannot
exclude the possibility that at least some of our patients had
dysregulated levels of autoantibodies targeting GPCRs and RAS-
related molecules prior to SARS-CoV-2 infection. Thus, a lim-
itation of our report that needs further investigation is the lack of
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a longitudinal analysis of anti-GPCR/-RAS antibodies to evaluate
their levels from disease onset until convalescence. Further, any
potential link to post-acute COVID-19 syndrome remains to be
investigated.

Our results suggest that autoantibodies targeting CXCR3 and
AGTR1 are the most important predictors of COVID-19 severity.
There is an essential biological connection between CXCR3 and
AGTR1; blocking AGTR1 impairs the release of several chemo-
kines, including CXCL10, the ligand for CXCR363, a chemokine
receptor highly expressed by effector T cells controlling the
trafficking and function of CD4+ and CD8+ T cells during
inflammation64–67. Furthermore, both CXCR3 and AGTR1 have
been strongly associated with both autoimmune and inflamma-
tory diseases68,69. Additionally, increased levels of angiotensin II
together with the hyperactivation of its receptor (AGTR1) have
been associated with unfavorable COVID-19 disease17,70. This
pathological mechanism has been explored as a therapeutic
approach for COVID-19 by clinical trials with losartan, an
AGTR1 antagonist8,71. AGTR1 orchestrates several important
immunological functions and losartan treatment has been pre-
viously demonstrated to have immunomodulatory properties.
Angiotensin II is the main effector molecule of the RAS that,
upon binding to AGTR1, promotes vasoconstriction, inflamma-
tion, oxidative stress, coagulation, and fibrosis, all of which play
an important pathological role during SARS-CoV-2 infection20.

We also found an alteration in the normal relationship between
autoantibodies targeting GPCRs and RAS-related molecules that
was associated with COVID-19 severity by increasing disruption
of autoantibody correlations according to disease burden. This
observation provides new insights into the biology of auto-
antibodies, which is in line with our previous observation that
GPCR-specific autoantibody signatures are associated with phy-
siological and pathological immune homeostasis13. Since GPCRs
comprise the largest superfamily of integral membrane proteins
in humans14, it is also possible that several additional anti-GPCR
autoantibodies remain to be discovered. Likewise, several SARS-
CoV-2 strains have been identified72 and it will be important to
investigate whether they induce different autoantibody patterns
that may contribute to disease outcome. Of note, autoantibodies
are present in healthy individuals and immunization with GPCR-
overexpressing membranes can induce the production of auto-
antibodies targeting GPCRs13. Thus, another important issue to
be addressed is whether the recently developed vaccines against
COVID-1973 could influence the production of anti-GPCR
autoantibodies.

Overall, although we postulate that dysregulated auto-
antibodies targeting GPCRs and RAS-related molecules represent
a pathological autoimmune phenomenon, it is also possible that
some of them may have neutralizing activities, which requires
future investigation. Considering the role of the immune system
in homeostasis beyond host defense74–76, these autoantibodies

could also represent both a physiological attempt of the immune
system to promote body homeostasis during SARS-CoV-2
infection. In conclusion, this study identifies new auto-
antibodies that are dysregulated by SARS-CoV-2. Our data also
indicate that anti-GPCR antibodies represent potential new
clinically relevant biomarkers that predict COVID-19 severity.
The increasing disruption of autoantibody network signatures
moving from patients with mild, to moderate and finally severe
disease suggests a gradual loss of autoantibody homeostasis that
accompanies the progression of COVID-19 triggered by the
SARS-CoV-2-induced immune dysregulation. Since a better
understanding of the COVID-19 pathogenesis may open new
avenues to improve diagnostic and therapeutic options77,78, the
results reported here may provide new insights to improve the
clinical management of COVID-19 patients.

Methods
Patient cohort. We included 246 adults from Jewish communities across 5 states of
the United States of America. Among them, there were heathy controls and
patients who had developed symptomatic COVID-19 disease before receiving any
SARS-CoV-2 vaccine. The patients participated in an online survey developed to
determine the most common symptoms and outcomes of SARS-CoV-2
infection79,80. Details about the survey study, patient demographics and symptoms
have been previously described79,80 and are present in Supplementary Data 1.
Seventy-seven randomly selected age- and sex-matched healthy controls (SARS-
CoV-2 negative and without COVID-19 symptoms) were included in this study
and their autoantibody data were compared to those of 169 individuals who were
SARS-CoV-2 positive (determined by positive nasopharyngeal swabs). The SARS-
CoV-2 infected cohort were divided into mild COVID-19 (n= 74; fever
duration ≤ 1 day; peak fever of 37.8 °C), moderate COVID-19 (n= 63; fever
duration ≥ 7 day; peak fever of ≥38.8 °C) and severe COVID-19 groups (n= 32;
severe symptoms and requiring supplemental oxygen therapy). Disease severity for
SARS-CoV-2-positive individuals was determined based on the World Health
Organization (WHO) severity classification81. All healthy controls and all patients
provided written consent to participate in the study, which was performed in
accordance with the Declaration of Helsinki and approved by the IntegReview
institutional review board. In addition, this study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline.

Detection of IgG autoantibodies. Human IgG autoantibodies against 14 different
GPCRs (AGTR1, AGTR2, MAS1, BDKRB1, ADRA1A, ADRB1, ADRB2, CHRM3,
CHRM4, CHRM5, CXCR3, F2R, C5AR1, CHRNA1), 2 molecules serving as entry
for SARS-CoV-2 (ACE2, NRP1), and antibodies against the transmembrane
receptor STAB1 were detected from frozen serum using commercial ELISA kits
(CellTrend, Germany) according to the manufacturer’s instructions (https://
www.celltrend.de/), as previously described55. Briefly, duplicate samples of a
1:100 serum dilution were incubated at 4 °C for 2 h. The autoantibody con-
centrations were calculated as arbitrary units (U) by extrapolation from a standard
curve of five standards ranging from 2.5 to 40 U/ml. The ELISA kits were validated
according to the Food and Drug Administration’s Guidance for Industry: Bioa-
nalytical Method Validation. Autoantibodies associated with classic autoimmune
diseases (ANA, RF, anti-dsDNA) were also measured using commercial ELISA kits
according to the manufacturer’s instructions (Inova Diagnostics, San Diego,
CA, USA).

Interaction network and enrichment analysis of autoantibody targets. We used
IID ver 2021-0582 to search for physical protein interactions of the autoantibody

Fig. 5 Autoantibody correlation signatures associate with disease burden. a Correlation matrices of autoantibodies targeting GPCRs and the RAS
(denoted by numbers as per legend) for the control (n= 77) and COVID-19 groups (mild [n= 74], moderate [n= 63], and severe [n= 32]). The color
scale bar represents the range of Spearman’s rank correlation coefficient. b Box plots ilustrating the correlation distribution of autoantibodies with
significant changes (as defined in Supplementary Fig. 4) in pairwise correlations: those belonging to the RAS are placed in the upper row, and
autoantibodies targeting other GPCRs are exhibited in the lower row. Antibodies with the highest or lowest correlations and thus contributing more to
changes in the correlation pattern of the severe COVID-19 group are indicated. Each box plot shows the median with first and third interquartile range
(IQR), whiskers representing minimum and maximum values within IQR, and individual data points. c Canonical-correlation analysis (CCA) of
autoantibodies. Correlation between autoantibodies against molecules belonging to or influencing the RAS (dataset X, in green) versus the other
autoantibodies (those targeting other GPCRs, NRP1, and STAB1; dataset Y, in blue). Only autoantibodies with Spearman’s rank correlation coefficient≥ 0.6
are shown while those with a correlation coefficient < 0.6 (gray points) have their names omitted. Autoantibody correlations are plotted based on their
relation to the first 2 canonical variates (x-CV1 and x-CV2; y-CV1 and y-CV2: ranging from −1 to 1). Autoantibodies located close in the same CCA
quadrant region are those with the highest Spearman’s rank correlation coefficient. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28905-5 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1220 | https://doi.org/10.1038/s41467-022-28905-5 | www.nature.com/naturecommunications 9

https://www.celltrend.de/
https://www.celltrend.de/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


targets, which was used to build a network figure prepared using NAViGaTOR
version 3.0.1583. NAViGaTOR was also used to visualize the interactions of
autoantibody targets and highlight their GO biological processes (node color),
direct interactions among the 17 autoantibody targets (blue edges), and ACE-2
interactors connecting to the other targets (green edges). The network was then
exported in an SVG format, and the final TIFF image with legends was prepared in
Adobe Illustrator ver 26.0. All protein interactions with annotation are available in
Supplementary Data 2. Comprehensive pathway analysis of the 17 autoantibody
targets and their interactors was performed using pathDIP ver 4.184. A circos
plot of antibody targets and pathway associations was built using the Circos
online tool85.

Differences in autoantibody levels. Box plots showing the different expression
levels of 17 anti-GPCR-autoantibodies from COVID-19 patients (mild, moderate
and severe groups) and healthy controls were generated using the R version 4.0.5
(The R Project for Statistical Computing. https://www.r-project.org/), R studio
Version 1.4.1106 (R-Studio. https://www.rstudio.com/), and the R packages
ggpubr, lemon, and ggplot2. Statistical differences in autoantibody levels were
assessed using a two-sided Wilcoxon rank-sum test as previously described11.

Principal component analysis. PCA with spectral decomposition40,41 was used to
measure the stratification power of the 17 autoantibodies in distinguishing between
COVID-19 (mild, moderate, and severe patients) and healthy controls. PCA was
performed using the R functions prcomp and princomp, through factoextra
package (principal component analysis in R: prcomp vs. princomp)86.

Machine learning model and autoantibody ranking. We employed random
forest model to construct a classifier for discriminating among controls and mild,
moderate, and severe COVID-19 patients. This approach aimed to identify the
most significant predictors for severe COVID-19. We trained the random forest
model using the functionalities of the R package randomForest (version 4.6.14)87.
Five thousand trees were used, and three variables were resampled. Follow-up
analysis was conducted with the Gini decrease, number of nodes, and mean
minimum depth as criteria to determine variable importance. The adequacy of the
random forest model as a classifier was assessed through the out-of-bags error rate
and the ROC curve. For cross-validation, we split the dataset into training and
testing sets, using 75% of the observations for training and 25% for testing.

Autoantibody correlation signatures: bivariate and multivariate correlation
analysis. Bivariate correlation analysis of autoantibodies for each group (controls
and mild, moderate, and severe COVID-19 patients) was performed using the
corrgram, psych, and inlmisc R packages. In addition, multilinear regression
analysis of the relationships between different variables (autoantibodies) was per-
formed using the R packages ggpubr, ggplot2 and ggExtra. CCA88 of auto-
antibodies against molecules associated with the RAS, other GPCRs and SARS-
CoV-2 entry molecules was performed using the R packages CCA and whitening88.
CCA is a classic statistical tool for performing multivariate correlation analysis. We
used log-transformed antibody levels to perform both bivariate correlation and
CCA analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A reporting summary for this article is available as a Supplementary Information file. All
data generated in this study are provided in the Supplementary Data/Source Data files.
The source data underlying the Main and Supplementary Figures are provided as a
Source Data file. Source data are provided with this paper.

Code availability
All R packages used in this manuscript are described in the Reporting Summary and are
available at the following link: https://github.com/lschimke/The-relationship-between-
autoantibodies-targeting-GPCRs-and-the-renin-angiotensin-system-associates-
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