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single-cell proteome changes upon perturbation
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Abstract

Single-cell technologies are revolutionizing biology but are today
mainly limited to imaging and deep sequencing. However, proteins
are the main drivers of cellular function and in-depth characteriza-
tion of individual cells by mass spectrometry (MS)-based proteo-
mics would thus be highly valuable and complementary. Here, we
develop a robust workflow combining miniaturized sample prepa-
ration, very low flow-rate chromatography, and a novel trapped
ion mobility mass spectrometer, resulting in a more than 10-fold
improved sensitivity. We precisely and robustly quantify
proteomes and their changes in single, FACS-isolated cells. Arrest-
ing cells at defined stages of the cell cycle by drug treatment
retrieves expected key regulators. Furthermore, it highlights
potential novel ones and allows cell phase prediction. Comparing
the variability in more than 430 single-cell proteomes to transcrip-
tome data revealed a stable-core proteome despite perturbation,
while the transcriptome appears stochastic. Our technology can
readily be applied to ultra-high sensitivity analyses of tissue mate-
rial, posttranslational modifications, and small molecule studies
from small cell counts to gain unprecedented insights into cellular
heterogeneity in health and disease.
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Introduction

In single-cell analysis, biological variability can directly be attrib-

uted to individual cells instead of being averaged over an ensemble

or complex tissue (Regev et al, 2017). While microscopy has always

been single-cell based, specialized deep sequencing technologies

have achieved this for systems biological approaches (Smith et al,

2010; Ramsköld et al, 2012; Jaitin et al, 2014; Schnitzbauer et al,

2017; Schaum et al, 2018; Lundberg & Borner, 2019). At the level of

proteins, the functional actors of cells, single cells are currently

studied by antibody-based technologies, which are by necessity

directed against previously chosen targets (Uhl�en et al, 2015;

Stoeckius et al, 2017; Jackson et al, 2020). In contrast, mass spec-

trometry (MS)-based proteomics is unbiased in the sense that it

measures all proteins within its range of detection (Larance &

Lamond, 2015; Aebersold & Mann, 2016). Thus, it would be highly

desirable to apply this technology to single cells if the required

sensitivity and robustness could be achieved. Previous approaches

that employed chemical multiplexing of peptides have labeled a

small number of single cells but combined them with a dominant

booster channel for MS analysis (Budnik et al, 2018; Tsai et al,

2020; Schoof et al, 2021), which can hamper signal deconvolution

(Brenes et al, 2019; Cheung et al, 2021). Alternatively, proof of prin-

ciple has been demonstrated for unlabeled approaches using sophis-

ticated sample preparation methods in pico-liter devices (Li et al,

2018; Liang et al, 2020; Williams et al, 2020).

Here, we set out to develop an ultrasensitive MS-based workflow

that would allow quantitatively precise and accurate MS proteomics

data by injecting single cells one by one into the MS—which we call

true single-cell–derived proteomics (T-SCP). To achieve scale,

robustness, and community adoption, we aimed to combine tech-

nologies that could readily be made commercially available. We
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apply our T-SCP technology to a drug perturbation experiment,

capturing functional, dynamic responses on a single-cell population.

Results

Noise-reduced quantitative mass spectra

We recently introduced parallel accumulation–serial fragmentation

(PASEF), a mass spectrometric acquisition scheme in which peptide

ions are released from a trapped ion mobility (TIMS) device into the

vacuum system in concentrated packages (Meier et al, 2015, 2018).

Chemical noise is widely distributed as a result of its heterogeneous

nature and the 10-fold increased peak capacity due to TIMS (Fig 1A

and B; Meier et al, 2020b). These precursors can be fragmented in a

highly sensitive manner, either in data-dependent (ddaPASEF) or

data-independent (diaPASEF) mode, resulting in very high ion utiliza-

tion and data completeness (Meier et al, 2020a). To explore sensitivity

limits of our initial LC-MS setup (See Material and Methods), we

measured a dilution series of HeLa cell lysate from 25 ng down to the

equivalent of a few single cells on a quadrupole time-of-flight instru-

ment (TIMS-qTOF). This identified more than 550 proteins from

0.8 ng HeLa lysate with the DDA acquisition mode and a conservative

MaxQuant analysis (Fig 1C; Cox & Mann, 2008). Proteins were quan-

tified with the linear signal response expected from the dilution

factors (Fig 1D). Furthermore, quantitative reproducibility in repli-

cates at the lowest level was still excellent (R = 0.96, Fig 1E). Given

that the protein amount of a single HeLa cell is as low as 150 pg

(Volpe & Eremenko-Volpe, 1970), and accounting for inevitable losses

in sample preparation including protein digestion, we estimated that

we would need to increase sensitivity by at least an order of magni-

tude to enable true single-cell proteomics.

True single-cell proteome analysis

Three main factors govern MS sensitivity: ionization efficiency,

transfer efficiency into the vacuum system, and ion utilization by

the instrument (Wilm & Mann, 1996). We first constructed an instru-

ment with a brighter ion source, introduced different ion optic

elements and optimized parameters such as detector voltage.

Together, this led to a more than fourfold higher ion current

(Fig 2A). Next, we FACS sorted zero, one, and up to six single HeLa

cells in quadruplicate into individual 384 wells, processed them

separately, and analyzed them on this modified mass spectrometer.

This resulted on average in 843, 1,279, and 1,890 identified proteins

for one, two, and six cells, respectively. Note that this analysis

A

C D E

B

Figure 1. TIMS enables virtually noise-free spectra and ultra-high sensitivity proteomics.

A, B The TIMS-qTOF principle separating singly charged background peaks from multiply charged peptide precursor ions, making precursor ions visible at extremely low
signal levels (0.8 ng HeLa digest).

C Quantified proteins from a HeLa digest dilution series from 25 ng peptide material down to 0.8 ng (arrow), roughly corresponding to the protein amount contained
in three HeLa cells on our initial LC–MS setup (See Material and Methods).

D Linear quantitative response curve of the HeLa digest experiment in C (Box and Whiskers; The middle represents the median, the top and the bottom of the box
represent the upper and lower quartile values of the data, and the whiskers represent the maximum and minimum value of the data).

E Quantitative reproducibility of two successive HeLa digest experiments at the lowest dilution (technical LC–MS/MS replicates).
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benefited from transferring peptide identifications on the MS1 level,

as expected from extremely low sample amounts (Fig 2B). Protein

identifications at zero cells are most likely a result of minimal contri-

bution from previous runs since they map to the most abundant

proteins of the six-cell measurements in a rank plot (Fig EV1A and

B). Quantitative precision and accuracy were high when comparing

single cells, not much reduced from comparing six cells (Fig 2C and

D). A rank order abundance plot revealed that the measured single-

cell proteome preferentially mapped to the higher abundant part of

the six-cell proteome, indicating that proteome coverage depended

deterministically on overall LC-MS sensitivity (Fig 2E). Inspecting

shared peptides between the single-cell and six-cell experiment

showed that clearly interpretable precursor isotope patterns were

still present at high signal-to-noise levels even at single-cell level

following the cell count intensity ratio trend (Fig 2F).

Ten-fold sensitivity increase

As electrospray (ES) is concentration dependent, sensitivity

increases with decreasing flow rate; however, very low flow systems

are challenging to operate robustly and are consequently not widely

available (Emmett & Caprioli, 1994; Wilm & Mann, 1996; Gregu�s

et al, 2020). We recently described a chromatography system that

decouples sample loading and gradient formation from the LC-MS

run and operates at a standardized flow rate of 1 µl/min for high

reproducibility (Bache et al, 2018). This flow is fully controlled by a

single pump instead of the binary gradients produced by other

systems. We found that it worked robustly at flow rates down to

25 nl/min but standardized on 100 nl/min, which enabled stable

operation for the entire project with the same column-emitter setup

(Fig EV1B and C). ES sprayer diameter and gradient length were

optimized for turnover, minimizing carryover and stability.

MS-based T-SCP requires loss-less sample preparation by protein

isolation and solubilization, followed by tryptic protein digestion

and peptide purification ready for MS analysis (Budnik et al, 2018;

Li et al, 2018; Zhu et al, 2018; Gregu�s et al, 2020; Williams et al,

2020). We found that small volumes of weak organic solvents in

conical 384-well plates provided a versatile and automatable envi-

ronment for efficient cell lysis and protein digestion in minimal

volumes (Fig 3A). Briefly, single cells were sorted into wells

A

D E F

B C

Figure 2. A novel mass spectrometer allows the analysis of true single-cell proteomes.

A Raw signal increase from standard versus modified TIMS-qTOF instrument (left) and at the evidence level (quantified peptide features in MaxQuant) (right).
B Proteins quantified from one to six single HeLa cells, either with “matching between runs” (MBR) in MaxQuant (orange) or without matching between runs (blue).

The outlier in the three-cell measurement in grey (no MBR) or white (with MBR) is likely due to failure of FACS sorting as it identified a similar number of proteins as
blank runs (Horizontal lines within each respective cell count indicate median values).

C Quantitative reproducibility in a rank order plot of a six-cell replicate experiment.
D Same as C for two independent single cells.
E Rank order of protein signals in the six-cell experiment (blue) with proteins quantified in a single cell colored in orange.
F Raw MS1-level spectrum of one precursor isotope pattern of the indicated sequence and shared between the single-cell (top) and six-cell experiments (bottom).
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containing 1 µl lysis buffer, followed by a heating step and further

addition of buffer containing digestion enzymes to a total of 2 µl, all

in an enclosed space. Peptides were concentrated in a standard

EvoTip device, which resembles the functionality of a StageTip

(Rappsilber et al, 2007), into 20 nl nanopackages, from which they

were eluted in minimal volumes (Fig 3B). To benchmark the effect

of reduced flow rate and the concentrated peptide nanopackage

elution, we directly compared signal traces of the normal 1 µl/min

to the 100 nl/min setup. For 1 ng peptide material, this resulted in a

10-fold increase in signal (Fig 3C). To achieve high data complete-

ness between hundreds of single-cell measurements, we next

replaced ddaPASEF by diaPASEF, in which fragment-level matching

is further supported by ion mobility data (Meier et al, 2020a). We

found that combining subsequent diaPASEF scan repetitions further

improved protein identification numbers. Together, the very low

flow chromatography and this diaPASEF acquisition mode resulted

in the highly reproducible identification and quantification of more

than 3,900 HeLa proteins from only 1 ng (Fig 3D), a drastic increase

from the 550 identified in our initial setup from a similar amount.

Data completeness was at 92% and coefficient of variation (CV)

< 10% for the selected scan repetition mode (Fig EV1D). This

demonstrates that diaPASEF provides its advantages also at extre-

mely low sample amounts, prompting us to adopt this acquisition

mode for the single-cell workflow in the remainder of this work.

T-SCP dissects arrested cell cycle states

The cell cycle is an important and well-studied biological process

that has frequently been used as a test case in single-cell studies

(Aviner et al, 2015; Ly et al, 2017). To investigate if our proteo-

mics workflow could detect biological responses to drug perturba-

tion at the single-cell level, we treated HeLa cells with thymidine

and nocodazole to produce four cell populations enriched in speci-

fic cell cycle stages (231 cells; Fig 4A). We quantified up to 2,083

proteins per single cell and 2,501 overall using a HeLa dia spectral

library with about 4,000 protein groups. This number ranged from

a median of 1,018 in G1 to 1,932 in G1/S, 1,572 in G2, and 1,705

in G2/M (Fig 4B). The full data set, even though biologically

heterogeneous, showed a median coefficient of variation (CV) of

0.3 across all genes and a clear dependence of the CV on protein

intensity levels (Fig EV2A and B). To estimate the total protein

amount per cell, we summed all protein signals based on their

identifying peptides. Judged by protein amount, G2 cells were

approximately 1.8-fold larger than G1 cells; thus, T-SCP correctly

reflected the proliferation state, while highlighting a substantial

heterogeneity within each cell cycle stage that would have been

hidden in bulk sample analysis (Fig 4C). To be able to directly

compare single-cell proteomes and cancel out protein abundance

differences attributed to varying total protein amounts and

A B C

D

Figure 3. Miniaturized sample preparation coupled to very low-flow chromatography and diaPASEF.

A Single cells are sorted in a 384-well format into 1 µl lysis buffer by FACS with outer wells serving as qualitative and quantitative controls. Single cells are lysed and
proteins are solubilized at 72°C in 20% acetonitrile, and digested at 37°C. Peptides are concentrated into 20 nl nanopackages in StageTips in a 96-well format.

B These tips are automatically picked and peptide nanopackages are eluted in a sub-100-nl volume. After valve switching, the peptide nanopackage is pushed on the
analytical column and separated, fully controlled by the single high-pressure pump at 100 nl/min.

C Base–peak chromatogram of the standardized nanoflow (100 nl/min, orange) and microflow (1 µl/min, blue) gradients with 1 ng of HeLa digest on the StageTip.
Asterices indicate polyethylene glycole contaminants in both runs.

D Nanoflow (100 nl/min) and short-gradient diaPASEF method combined. Summation of one to five diaPASEF scan repetitions was used to find the optimum for high-
sensitivity measurements at 1 ng of HeLa digest.
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identifications of each cell, we normalized our data using the

retention time-dependent normalization module offered by the

search engine DIA-NN across cells (Demichev et al, 2020;

Fig EV2C). Furthermore, we stringently filtered our data set for at

least 600 protein identifications per cell and more than 15%

observations for each protein across remaining single cells (See

Material and Methods). The proteomes of the different cell cycle

states grouped together in a principal component analysis (PCA)

A

D

G H

E F

B C

Figure 4.
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plot (Fig 4D). In addition to these drug-perturbed cells, we

measured more than 200 untreated ones from two independent

cell culture batches. The proteomes of these asynchronous cells

distributed well across the cell cycle states, while different passage

batches were enriched in the G1 and G2 phase (Fig EV2D). This

highlights that biological variation dominates remaining technical

variation. The T-SCP data set covered proteins assigned to many

cellular compartments, membranes, and biological processes

involved in biological regulation, metabolism, transport, and

signal transduction at high quantitative precision despite severe

systematic perturbation introducing stark biological variation and

proteome remodeling (Fig EV2E, Dataset EV1).

Next, we asked whether single-cell proteome measurements can

be used to assign cellular states, similar to how single-cell RNA

sequencing (scRNA-seq) measurements have frequently been

applied to cell type and state discovery, highlighted by cellular atlas

projects (Regev et al, 2017). In previous proteomics studies, cell

populations had been enriched for cell cycle states and sets of regu-

lated proteins had been extracted (Aviner et al, 2015; Ly et al,

2017). We here selected cell cycle stage marker proteins as the top

60 most differentially expressed in the G2/M-, G1-, or S-phase

protein set from Geiger and coworkers (Aviner et al, 2015), as it

used similar drug treatment on bulk populations and investigated

how likely cells from different cell cycle stages could be distin-

guished (Dataset EV2). We used these marker proteins to set up cell

cycle stage-specific scores indicating the likelihood to belong to the

respective phase previously used for scRNA-seq cell cycle stage

predictions. This model clearly distinguished cells from G2/M and

G1/S and also other comparisons (Figs 4E and EV2F; Wolf et al,

2018).

Next, we investigated the differentially expressed proteins

between the drug-arrested cell cycle stage transition G2/M and G1/

S. Among the significantly regulated proteins was a large number of

known cell cycle regulators, some of which are highlighted (Dataset

EV3; Fig 4F). Quantitative MS data at the fragment ion level were

highly significant for these as illustrated by the cell cycle regulator

CDKN2A, STMN1, and further examples (FDR < 10�15, Figs 4G and

H, and EV3). Our single-cell data set also highlighted proteins not

previously associated with the cell cycle and the G2/M transition.

For instance, NACA was clearly identified and regulated

(FDR < 10�15, Fig EV3).

SC proteomes compared to transcriptomes

Given our set of more than 430 single-cell proteomes, we compared

the T-SCP measurements after filtering with similar single-cell RNA

sequencing data (scRNA-seq) (Hu et al, 2019; Schwabe et al, 2020).

To achieve technology-independent insights, we selected assays

from two widespread scRNA-seq technologies, Drop-seq (Macosko

et al, 2015) and the lower-throughput SMART-Seq2 (Picelli et al,

2014), on the same cellular system. The Drop-seq assay is based on

unique molecular identifiers (UMIs) to control for amplification

biases in library preparation, whereas the SMART-Seq2 assay is not

UMI controlled. Note that MS-based proteomics inherently does not

involve any amplification and is not subject to associated artifacts.

Despite subtle differences, HeLa cell culture should reflect a char-

acteristic global distribution of gene and protein expression states

(Liu et al, 2019). This assumption would allow us to assess self-

consistency of the measurement technologies. First, we computed

the distribution over all pairwise correlation coefficients of cells

within a technology (Svensson, 2020). We found that in the

proteome measurement, cells have higher correlation on average

than in the droplet-based and the SMART-Seq2 method (Fig EV4A).

This is true when analyzing all available genes within each particular

data set and also when analyzing all shared genes (Fig EV4A).

Comparing all three data sets for gene or protein expression

completeness (on average in 49% of the 2,480 proteins observed by

MS-based proteomics), protein expression completeness per cell

followed a normal distribution (Fig 5A). For SMART-Seq2, this was

only 27 and 8% in the droplet-based protocol. Furthermore, when

comparing the gene or protein expression completeness on shared

gene level, the saturation sequencing effect in the SMARTseq2 data

set becomes pronounced. In the Drop-seq data set, this is controlled

for using UMI-based protocols (Islam et al, 2014; Svensson, 2020;

Fig EV4B). Both single-cell RNA-sequencing technology data sets

followed a bimodal gene completeness frequency distribution, while

single-cell proteomes do not (Fig EV4C).

Next, we investigated whether there were systemic limitations of

the detection in the protein measurements. Such effects are

discussed for scRNA-seq measurements as “drop-out events” or

“zero-inflation,” although they are now much reduced in UMI-based

protocols (Islam et al, 2014; Svensson, 2020). We identified signs of

such detection limits as bimodality in the lower abundance range of

◀ Figure 4. T-SCP correctly quantifies cell cycle states.

A Arresting single cells by drug perturbation.
B Numbers of protein identifications across 231 cells in the indicated cell cycle stages as enriched by the drug treatments in A (Dashed lines indicate the median

number of identifications for each respective cell cycle stage).
C Boxplot of total protein signals of the single cells in B after filtering for at least 600 protein identifications per cell and 15% data completeness per protein across cells

(G1: n = 84; G1-S: n = 41; G2: n = 52; and G2-M: n = 45); (Box and Whiskers; The middle represents the median, the top and the bottom of the box represent the
upper and lower quartile values of the data, and the whiskers represent the 1.5× IQR).

D PCA of single-cell proteomes of B.
E Receiver operator curves (ROC) for the distinction between G2-M cells and G1-S cells based on sets of marker proteins for G1, S, and G2-M phase, respectively, with

the indicated area under the curve (AUC) scores. G1-S cells were used as positive targets for the G1 and S score, G2-M for the G2-M score.
F Volcano plot of quantitative protein differences in the two drug-arrested states. Arrows point toward colored significantly regulated key proteins of interest

(Benjamini–Hochberg corrected multiple-sample t-test; FDR = 0.05; S = 0.2).
G Quantitative fragment ion-level data of CDKN2A-associated peptides (FDR < 10�15; Benjamini–Hochberg corrected multiple-sample t-test (Box and Whiskers; The

middle represents the median, the top and the bottom of the box represent the upper and lower quartile values of the data, and the whiskers represent the 1.5× IQR).
H Quantitative fragment ion-level data of STMN1-associated peptides (FDR < 10�15; Benjamini–Hochberg corrected multiple-sample t-test (Box and Whiskers; The

middle represents the median, the top and the bottom of the box represent the upper and lower quartile values of the data, and the whiskers represent the 1.5× IQR).
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the protein measurements (Fig EV4C–E). This suggests that—apart

from increased sensitivity—our single-cell protein analysis could

benefit from imputation or tailored likelihood-based parameter esti-

mation methods (Risso et al, 2018; L€ahnemann et al, 2020).

For bulk measurements, transcript levels generally correlate

moderately with the corresponding protein levels, however, this

correlation strongly depends on the biological situation (Buccitelli &

Selbach, 2020). At the single-cell level, this effect is further convo-

luted by dissimilar measurement technologies and possibly by

fundamental biological differences between the transcriptome and

proteome. We asked to what degree scRNA-seq measurements

could be used as a proxy for protein measurements in our data but

found that protein measurements separate strongly from RNA in a

principal component analysis (Fig 5B). While single-cell transcript

expression levels correlate well between the scRNA-seq technolo-

gies, they diverge from single-cell protein measurements (Fig 5C).

As the transcriptome is measured as count data and the

proteome as signal intensity levels, we further investigated the

correlation between the transcriptome and proteome by correlating

the coefficients of variation for shared genes between all data sets

(Fig EV5A). This analysis reflects the quantitative variation of each

gene at the single-cell transcriptome and single-cell proteome level

across the cell cycle. Indeed, we found that the quantitative varia-

tion for the single-cell transcriptomes was high and correlation was

consistent between both data sets (Fig EV5B).

In stark contrast, gene-level variation of both technologies did

not correlate well with the single-cell proteome, highlighting again

that both biological information levels are regulated fundamentally

different at the single-cell level (Fig EV5C). This suggests that

single-cell protein and RNA levels are very different, re-emphasizing

that protein measurements yield complementary information to

RNA measurements and do not simply re-iterate similar gene

expression states. This implies distinct RNA and protein abundance

regulation mechanisms on both modalities, dissection of which

would not be possible with RNA measurements alone.

T-SCP reveals a stable core proteome

Prompted by the divergent correlation values between the proteome

and transcript levels, we next investigated the variability of gene

expression as a function of abundance. For protein expression

measurements, coefficients of variation were very small across

covered abundances (Figs 5E and EV5A). This is consistent with a

model in which the covered proteome is stable and probed

deterministically across its full dynamic range. In contrast, the same

analysis for UMI-controlled and not UMI-controlled scRNAseq data

revealed a much higher overall transcriptome variability, as

measured by the coefficient of variation of single-cell RNA-seq

compared to protein measurements (Figs 5D and EV6A). Remark-

ably, this difference is already very apparent with the current sensi-

tivity of MS-based proteomics, which will surely increase in the

future. Comparing single-cell proteome measurements with six-cell

proteomes (Fig 2C) suggests that a moderate increase in MS sensi-

tivity would reveal a large part of the proteome to be quantitatively

stably expressed.

We also observed that the single-cell transcriptome is dominated

by shot noise, which has a Poisson distribution, because many of

the transcripts are expressed at lower than one copy per cell on

average (Fig EV6A). This means that a given single cell can have

zero, one, or two transcripts of many of its expressed genes, leading

to a Poisson distribution when summing up many single-cell

measurements. For genes with higher expression values, there will

always be transcripts present in each single cell and then the expres-

sion distribution of those genes is not shot noise dominated. For

proteins, in contrast, the CVs depend only on the measurement

sensitivity, as there are always sufficient copies in each cell to

ensure that their expression levels are not biologically shot noise

limited (Fig EV6A and 2A).

Based on these observations, we defined a “core-proteome”

subset in the MS-based proteomics data by selecting the top 200

proteins with the lowest CVs of the proteins shared between at least

70% of the more than 430 single cells, including the drug perturba-

tions (Dataset EV4). Interestingly, these proteins were distributed

well across the covered dynamic range of the proteome (Fig 5D).

Strikingly, we found the corresponding transcripts of the core

proteome to be distributed across the full range of CVs in single-cell

transcriptome data (Figs 5E and EV6B and C). The core proteome

highlighted proteins frequently used for normalization such as

HSP90, providing a positive control (Fig 5F). The CV rank plot of

the core proteome also reveals a diverse set of proteins, including

representatives of translation initiation and elongation, folding

machineries, and nucleic acid helicases. Interestingly, we also iden-

tify TPD52L2 as one of the most stable proteins, which in turn is

described as one of the most abundant proteins in HeLa cells (Hein

et al, 2015) and SUMO2, which is known for its involvement in a

plethora of essential regulatory cellular processes, suggesting a

stable cellular SUMO2 pool even during stark proteome remodeling

(Gareau & Lima, 2010).

◀ Figure 5. Single cells have a stable-core proteome but not transcriptome.

A Gene or protein expression completeness per cell for T-SCP (Cells × Proteins: 424 × 2,480), SMARTseq2 (Cells × Genes: 720 × 24,990), or Drop-seq (Cells × Genes:
5,022 × 41,161) shown as violin plot; middle points represent the data set median.

B Principal component analysis of single-cell gene and protein expression measurements (1,672 shared genes).
C Heat map of cell–cell correlations across individual cells measured by proteomics and by both transcriptome technologies (1,672 shared genes).
D Coefficient of variation of single-cell protein expression levels in LC-MS based proteomics as a function of mean expression levels with the “core proteome” colored in

orange.
E Boxplot of coefficient of variation of protein and transcript expression levels in LC-MS based proteomics, SMARTseq2, and Drop-seq technologies with a separate “core

proteome” colored in orange (Box and Whiskers; The middle represents the median, the top and the bottom of the box represent the upper and lower quartile values
of the data, and the whiskers represent the 1.5× IQR).

F Rank order abundance plot for the core proteome with color-coded protein classes (Red: SUMO2 and TDP52L2 proteins; Turquoise: Chaperonin and folding
machinery-associated proteins. Orange: Translation initiation and elongation; Yellow: Structural proteins; Blue: DEAD box helicase family members).
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Discussion

The T-SCP pipeline combines miniaturized sample preparation

coupled to very low-flow liquid chromatography and a novel mass

spectrometer resulting in at least one order of magnitude sensitivity

gain at highest robustness for the analysis of single cells. We quan-

tify cellular heterogeneity following targeted perturbation, which

enables the direct analyses of drug responses in single-cell hierar-

chies on the proteome level. Furthermore, the comparison of single-

cell RNA and proteome level revealed that the proteome is stable

while the transcriptome is more stochastic, highlighting substantial

regulation of translation and setting the stage for its elucidation at

the single-cell level.

Although mainly demonstrated here for single-cell total proteome

measurements, the sensitivity gain achieved in our workflow will be

advantageous in any situation that is sample limited. This includes

investigation of other compound classes such as metabolites or

drugs, post-translational modifications from small numbers of cells

or from in vivo material, and measurements directly from paraffin-

embedded formalin-fixed (FFPE) pathology specimens, which we

are already pursuing (preprint: Bhatia et al, 2021; preprint: Mund

et al, 2021).

Our ion mobility-enhanced workflow is also compatible with

chemical multiplexing with the advantage that the booster chan-

nel causing reporter ion distortions could be omitted or reduced

(Ogata & Ishihama, 2020) and also benefit alternative multiplex-

ing strategies like complementary TMT or EASI-Tag (W€uhr et al,

2012; Winter et al, 2018). Furthermore, there are many opportu-

nities for increasing overall sensitivity, including even brighter

ion sources, improved chromatography, and better data analysis

and modeling tools, similar to the rapid recent advances in the

scRNAseq field.

Material and Methods

Reagents and Tools table

Chemicals, enzymes and other reagents

Formic acid Sigma Aldrich/Merck Cat # 64-18-6

Acetonitrile Sigma Aldrich/Merck Cat # 75-05-8

Trifluoroacetic acid Sigma Aldrich/Merck Cat # 76-05-1

Water, OptimaTM LC/MS Grade Fisher Chemical Cat # W64

Lysyl-Endopeptidase Wako Chemicals Cat # 129-02541

Trypsin Sigma Aldrich/Merck Cat # T6576

Software

MaxQuant (1.6.7.0) https://maxquant.org/ N/A

Perseus (1.6.7.0) https://maxquant.org/perseus/ N/A

Jupyter Notebook https://jupyter.org/ N/A

Other

384-Well Plates Eppendorf Cat # 0030129547

Adhesive PCR Sealing Foil Sheets Thermo Scientific Cat # AB-0626

Empore SPE SDB-RPS disk Sigma Aldrich/Merck Cat # 66886-U

iST’ sample preparation kit PreOmics GmbH Cat # P.O. 00001

ThermoMixer® Eppendorf Cat # 460-0223

NanoDropTM One/OneC Microvolume UV-Vis Spectrophotometer Thermo Fisher Cat # ND-ONEC-W

Concentrator plus Eppendorf Cat # F-45-48-11

Mastercycler X50h Eppendorf Cat # 63160000

EASY-nLCTM 1200 System Thermo Fisher Cat # LC140

EvoSep One EvoSep Cat # EV-1000

EvoTip EvoSep Cat # EV-2001

15 cm, 75 µm ID, 1.9 µm ID beads with 120A surface EvoSep Cat # EV-1112

ZDV Emitter Sprayer 10 µm ID Bruker Daltonik GmbH Cat # 1865691

timsTOF Pro Bruker Daltonik GmbH N/A

timsTOF SCP Bruker Daltonik GmbH N/A

Column oven Sonation lab solutions Cat # PRSO-V2
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Methods and Protocols

Sample preparation for bulk dilution experiments
For all benchmark experiments, purified peptides from bulk HeLa

cells were used. HeLa was cultured in Dulbecco’s modified Eagle’s

medium at 10% fetal bovine serum, 20 mM glutamine, and 1%

penicillin–streptomycin. Cells were collected by centrifugation,

washed with phosphate-buffered saline (PBS), flash frozen in liquid

nitrogen, and stored at �80°C. Cells were resuspended in PreOmics

lysis buffer (PreOmics GmbH) and boiled for 20 min at 95°C,

1,500 rpm to denature, reduce, and alkylate cysteins, followed by

sonication in a Branson, cooled down to room temperature, and

diluted 1:1 with 100 mM Tris–HCl pH 8.5. Protein concentration was

estimated by nanodrop measurement and 500 µg were further

processed for overnight digestion by adding lysC and trypsin in a

1:50 ratio (µg of enzyme to µg of protein) at 37°C and 1,500 rpm.

Peptides were acidified by adding 1% trifluoroacetic acid (TFA) and

99% isopropanol (IprOH) in a 1:1 ratio, vortexed, and subjected to

StageTip (Rappsilber et al, 2007) clean-up via styrenedivinylbenzene

reverse-phase sulfonate (SDB-RPS). Twenty microgram of peptides

were loaded on two 14-gauge StageTip plugs. Peptides were washed

two times with 200 µl 1% TFA and 99% IprOH followed by 200 µl

1% TFA and 99% IprOH in an in-house-made StageTip centrifuge at

2,000 g and elution with 100 µl of 1% Ammonia, 80% acetonitrile

(ACN), 19% ddH2O into PCR tubes, and finally dried at 60°C in a

SpeedVac centrifuge (Eppendorf, Concentrator plus). Peptides were

resuspended in 0.1% TFA, 2% ACN, and 97.9% ddH2O.

Sample preparation for single-cell experiments (Protocol style)
1 HeLa cells were cultured following a standard protocol as

described above.

2 Supernatant was removed, cells were detached with trypsin

treatment, followed by strong pipetting for cell aggregate

dissociation.

3 Cells were washed three times with 500 µl ice-cold phosphate-

buffered saline (PBS), pelleted by centrifugation, and the super-

natant was removed.

4 For fluorescent-activated cell sorting (FACS), 5 µl DAPI was

added to the 5 ml single-cell solution and sorting performed on

the DAPI-negative live cell population.

5 Single cells were sorted into 384-well TwinTec Eppendorf plates

containing 1 µl of 20% acetonitrile (ACN), 100 mM Tris–HCl pH

8.5, centrifuged briefly, sealed with aluminum foil and frozen at

�80°C until further use (we cannot exclude that FACS sorting

could lead to subtle changes in the proteome).

6 Single-cell containing 384-well plates were incubated for 30 min

at 72°C in a PCR cycler, followed by 5 min sonication (Elma-

sonic P) at 37 kHz and room temperature.

7 Protein digestion was performed overnight at 37°C in a PCR

cycler after adding 1 µl of 20% ACN, 100 mM Tris–HCl, pH

8.5, and 1 ng trypsin/lysC mix. (For the peptide bulk and cell

count dilution experiments, peptides were resuspended in 4 µl

of 2% ACN, 0.1% TFA, and 97.9% ddH2O, and injected

directly via NanoLC.)

8 Samples were dried in a SpeedVac at 30°C for 45 min

9 Single-cell-derived peptides were resuspended in 5 µl pure

formic acid and incubated for 10 min on a thermo shaker at

25°C and 800 rpm.

10 EvoTips were activated following the standard EvoSep protocol

(Sample loading protocol for Evotips). Then, 50 µl buffer A

was added to each EvoTip followed by centrifugation at 200 g

for 1 min (This leaves approximately 30 µl of buffer A on top

of the SPE material.)

11 15 µl of buffer A (99.9% ddH2O, 0.1% FA) were added to each

single-cell well containing the dissolved single-cell peptides in

5 µl FA, followed by a 5-min shaking phase on a thermoshaker

at 800 rpm, RT.

12 The single-cell peptides (20 µl total now) were transferred into

the activated EvoTip, followed by centrifugation at 600 g for

1 min and two centrifugation steps after adding 50 µl buffer A.

Last, 150 µl buffer A was added to each EvoTip and spun for

30 s at 300 g.

Cell cycle experiments
The drug-perturbed cell cycle arrest experiment was designed to

enrich cells in four cell cycle stages—G1, the G1/S transition, G2,

and the G2/M transition. HeLa cells were grown to approximately

30% confluence as described above, washed and treated for 24 h

with 5 mM thymidine, released for 4.5 h, and treated again with

5 mM thymidine or 0.1 µg/ml nocodazole for 13 h. Cells of the G1/

S phase (thymidine block) or G2/M phase (nocodazole block) were

washed in PBS, trypsinated, subjected to strong pipetting to dissoci-

ate cell aggregates, and ice-cold PBS washes before DAPI-negative

single live cell FACS sorting. A second set of G1/S phase and G2/M

phase blocked cells was washed and cultured for 7 h or 2.5 h to

enrich early G2 and G1 phase HeLa cells. These were washed with

PBS, trypsinated, and subjected to DAPI-negative single live cell

FACS sorting into 384-well plates pre-loaded with 1 µl 20% acetoni-

trile, 100 mM Tris–HCl, pH 8.5 lysis buffer. Furthermore, we

prepared presumable unsynchronized cells sets from two indepen-

dent cell cultures and subjected them to sample preparation as

described below.

High-pH reversed-phase fractionation
To generate a deep library of HeLa precursors for all data-dependent

benchmark experiments, peptides were fractionated at pH 10 with

the spider fractionator (Kulak et al, 2017). Fifty micrograms of puri-

fied peptides were separated on a 30 cm C18 column in 96 min and

concatenated into 24 fractions with 2 min exit valve switches.

Peptide fractions were dried in a SpeedVac and reconstituted in 2%

ACN, 0.1% TFA, and 97.9% ddH2O for LC–MS analysis.

Liquid chromatography
For the initial benchmark experiments with HeLa bulk dilution

and the cell count dilution, liquid chromatography analysis was

performed with an EASY nanoLC 1200 (Thermo Fisher Scientific).

Peptides were loaded on a 45 cm in-house packed HPLC column

(75 µm inner diameter packed with 1.9 µm ReproSil-Pur C18-AQ

silica beads, Dr. Maisch GmbH, Germany). Sample analytes were

separated using a linear 60 min gradient from 5 to 30% B in

47.5 min followed by an increase to 60% for 2.5 min, by a 5 min

wash at 95% buffer B at 300 nl/min, and re-equilibration for

5 min at 5% buffer B (buffer A: 0.1% formic acid (FA) and

99.9% ddH2O; buffer B: 0.1% FA, 80% ACN, and 19.9% ddH2O).

The column temperature was kept at 60°C by an in-house manu-

factured oven.
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For all other proteome analyses, we used an EvoSep One liquid

chromatography system (Bache et al, 2018) and analyzed the single-

cell proteomes with a novel 35 min stepped pre-formed beta gradi-

ent eluting the peptides at 100 nl/min flow rate. We used a

15 cm × 75 lm ID column with 1.9 lm C18 beads (EvoSep) and a

10 µm ID zero dead volume electrospray emitter (Bruker Daltonik).

Mobile phases A and B were 0.1% FA in water and 0.1% FA in

ACN, respectively.

Both LC systems were coupled online to a modified trapped ion

mobility spectrometry quadrupole time-of-flight mass spectrometer

(timsTOF Pro, Bruker Daltonik GmbH, Germany) via a nanoelectro-

spray ion source (Captive spray, Bruker Daltonik GmbH).

Construction of a novel mass spectrometer with higher sensitivity
We updated our ion source to draw more ions into the vacuum

system of the instrument. This is accomplished by modifying the

glass capillary that conducts gas and ions between the ionization

region at atmospheric pressure and the first pumping region. The

added gas is eliminated by an additional pumping stage and associ-

ated prototype ion optics. These ion optics—a high pressure ion

funnel and a RF multipole—confine the ions while the added gas is

removed and moves them to the next vacuum region where TIMS

analysis occurs. Importantly, the glass capillary is oriented orthogo-

nal to the high-pressure funnel (as in prior designs) so that neutral

contaminants and solvent droplets are directed by the gas flow away

from the funnel. Furthermore, the high-pressure funnel and RF

multipole are oriented orthogonal to the TIMS. This has the dual

advantage of maintaining the gas dynamics of our original design,

which is crucial for TIMS performance, and also that all remaining

neutral contaminants are moved away from the TIMS entrance. This

dual orthogonal design provides robustness against contamination

in that neutrals, particles, and droplets are, in two places, driven

past the ion optics, into the pumping ports. In studies of this proto-

type source, we estimate an improvement of a factor of 4.7 in ion

transmission, and therefore overall increased signal intensity.

To accommodate the increased ion current, the TIMS analyzer has

been updated to a new stacked ring (SRIG) design. This design uses a

higher-order RF field in the ion accumulation region to create a larger

effective ion storage volume than the low-order fields of previous

designs. However, a low-order, quadrupolar field is maintained in the

analyzer region to compress the ions toward the analyzer axis during

elution to maintain high mobility resolution. In addition, the transi-

tion between the high-order and low-order portions of the device has

been optimized relative to prior designs to further improve perfor-

mance such as peak shape and resolution under practical conditions.

This results in about a factor of 3 gain in ion (charge) capacity and

therefore about a factor of 3 in the instrument’s dynamic range.

Schematic representation of Bruker timsTOF SCP, which is a

high-performance, ultra-high sensitivity benchtop mass spectrome-

ter that combines a dual-TIMS analyzer coupled to a quadrupole, a

collision cell that features fast collision energy ramping and a TOF

mass analyzer.

Mass spectrometry
Mass spectrometric analysis was performed either in a data-

dependent (dda) or data-independent (dia) PASEF mode. For

ddaPASEF, 1 MS1 survey TIMS-MS and 10 PASEF MS/MS scans

were acquired as per acquisition cycle. Ion accumulation and ramp

time in the dual TIMS analyzer was set to 50/100/200 ms each and

we analyzed the ion mobility range from 1/K0 = 1.6 Vs cm�2 to

0.6 Vs cm�2. Precursor ions for MS/MS analysis were isolated with

a 2 Th window for m/z < 700 and 3 Th for m/z > 700 in a total m/

z range 100–1,700 by synchronizing quadrupole switching events

with the precursor elution profile from the TIMS device. The colli-

sion energy was lowered linearly as a function of increasing mobil-

ity starting from 59 eV at 1/K0 = 1.6 VS cm�2 to 20 eV at 1/

K0 = 0.6 Vs cm�2. Singly charged precursor ions were excluded

with a polygon filter (otof control, Bruker Daltonik GmbH). Precur-

sors for MS/MS were picked at an intensity threshold of 1,500 arbi-

trary units (a.u.) and re-sequenced until reaching a “target value” of

20,000 a.u. considering a dynamic exclusion of 40 s elution. For

DIA analysis, we made use of the correlation of ion mobility (IM)

with m/z and synchronized the elution of precursors from each IM

scan with the quadrupole isolation window. We used the described
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100 ms ddaPASEF method for the acquisition of a HeLa bulk single-

shot library for the single-cell experiments and the short-gradient

diaPASEF method as described in Meier et al (2020a), but performed

up to five consecutive diaPASEF cycles before the next MS1 scan

(see main text). The collision energy was ramped linearly as a func-

tion of the IM from 59 eV at 1/K0 = 1.6 Vs cm�2 to 20 eV at 1/

K0 = 0.6 Vs cm�2.

Raw data analysis
ddaPASEF data for tryptic HeLa digest dilution series and the cell

count experiment were analyzed in the MaxQuant environment

(version 1.6.7) and searched against the human Uniprot databases

(UP000005640_9606.fa, UP000005640_9606_additional.fa), which

extracts features from four-dimensional isotope patterns and associ-

ated MS/MS spectra (Cox & Mann, 2008; Prianichnikov et al, 2020).

False-discovery rates were controlled at 1% both on peptide spectral

match (PSM) and protein levels. Peptides with a minimum length of

seven amino acids were considered for the search, including N-

terminal acetylation and methionine oxidation as variable modifi-

cations and cysteine carbamidomethylation as fixed modification,

while limiting the maximum peptide mass to 4,600 Da. Enzyme

specificity was set to trypsin cleaving C terminal to arginine and

lysine. A maximum of two missed cleavages were allowed. Maxi-

mum precursor and fragment ion mass tolerance were searched as

default for TIMS-DDA data. Peptide identifications by MS/MS were

transferred by matching four-dimensional isotope patterns between

the runs (MBR) with a 0.7-min retention time match window and a

0.05 1/K0 ion mobility window in case of the single-cell count dilu-

tion experiment into a deep ddaPASEF library consisting of 24 frac-

tionations of tryptic HeLa digest. These data were also searched

without matching between runs to access the MBR-mediated identi-

fication increase. Either intensity-based absolute quantification

(IBAQ) or label-free quantification was performed with the MaxLFQ

algorithm and a minimum ratio count of 1 (Cox et al, 2014).

For all other single-cell experiments, we used a small library

consisting of 25,376 peptides and 4,144 protein groups, which was

acquired with the 100 ms ddaPASEF method described above and

generated with the MSFRAGGER version 16 using default settings

with the exception that cysteine carbamidomethylation was

removed from fixed modification (Kong et al, 2017; preprint: Demi-

chev et al, 2021). All single-cell measurements were searched

against the human UniProt reference proteome (UP000005640_

9606.fa and UP000005640_9606_additional.fa) of canonical and

isoform sequences.

Due to recent software improvement driven by the implementation

of the next generation of Spectronaut 15, followed by DIA-NN 1.8

(Bruderer et al, 2015; preprint: Demichev et al, 2021) for the analysis

of diaPASEF raw files, which utilize the complex diaPASEF TIMS-TOF

data much better by improved machine learning algorithms, we initi-

ally evaluated both software solutions for the analysis of our single-

cell data set. It turned out that DIA-NN 1.8 using spectral libraries

generated with MSFRAGGER, at that time, outperformed the library-

based and directDIA analysis pipeline in Spectronaut 15 in our hands.

This is consistent with the reports of DIA-NN being used for sample-

limited analyses and very short gradients (Messner et al, 2020, 2021;

preprint: Demichev et al, 2021; Fig EV7).

According to the DIA-NN authors, this benefit results from the

advanced use of deep learning algorithms for signal deconvolution

and for diaPASEF data specifically from the additional ion mobility

resolution that makes full use of the correlation between ion mobil-

ity and m/z on MS2 level for fragment signal pattern identification

and its matching to the precursor level. That said, our main focus in

the current manuscript was not to present computational advances

and a benchmarking of DIA-NN versus Spectronaut, but to highlight

our scalable and robust MS-based single-cell proteomics workflow.

Furthermore, because of its somewhat better performance and to

present a unified analysis, we consistently analyzed all data with

DIA-NN.

Raw files were analyzed with DIA-NN (version 1.8; Demichev

et al, 2020) using default settings (e.g., 1% precursor and protein

FDR), except changing the covered peptide length range to 7–50,

precursor charge range to 2–4, enabling MBR, turning of protein

inference to use the inference from the library generated by

MSFRAGGER, quantification strategy to robust LC (high precision),

and library generation to IDs, RT, and IM profiling.

Visualization and FDR estimates of fragment ion intensities
Quantitative fragment ion profiles were generated from the DIA-NN

output table. Only fragment ions used for quantification in DIA-NN

were included. To cancel out cell size-dependent abundance

changes, one normalization factor was estimated per cell, using

fold-change-based normalization of the whole data set, as described

in the MS-EmpiRe method, which we also used for FDR control

(Ammar et al, 2019). The intensities were log2 transformed and

subsequently visualized.

Proteomics downstream data analysis
Proteomics data analysis was performed in the Perseus environ-

ment (version 1.6.7, 1.5.5) (Tyanova et al, 2016), Graph-

padPrism (version 8.2.1), and Python (version 3.8.2). MaxQuant

output tables were filtered for “Reverse,” “Only identified by site

modification,” and “Potential contaminants” before further

processing. Ontologies for the biological process and cellular

compartment assignment for proteins were performed with the

mainAnnot.homo_sapiens.txt.gz, followed by categorical counting

across all proteins for each of the ontologies, and counts were

exemplary visualized as frequency plot. For single-cell analysis,

if not otherwise specified, the DIA-NN protein group data output

was filtered first for at least 600 protein observations per cell

and at least 15% quantification events across rows and log

(x + 1) transformed resulting in the following cell numbers and

protein quantifications (Fig EV8).

For correlation analysis of two protein expression vectors, trans-

formed gene or protein quantification events of two cells were plot-

ted against each other replacing missing values by zeros. For

principal component analysis (PCA), missing values were imputed

from a normal distribution with a width of 0.3 standard deviations

that was downshifted by 1.8 standard deviations. Differential

expression analysis by two-sided unpaired t-test was performed on

two groups filtered for at least 50% row-wise quantification events

within one group. False discovery rate control due to multiple

hypothesis testing was performed by a permutation-based model

and SAM statistic with an S0 parameter of 0.3. For cell size estima-

tion based on raw MS signal, intensity outputs within cell cycle

resolved single-cell proteomics results were summed up and visual-

ized as boxplots. The core proteome was calculated by filtering the
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whole single-cell proteomics data set for at least 70% quantification

events for each protein followed by selection of the top 200 proteins

with the smallest coefficient of variation across the data set.

Single-cell protein and RNA comparison and dropout statistics
The SMART-Seq2 (Hu et al, 2019) data set measured 720 HeLa cells

in three different batches with a total of 24,990 expressed genes. The

Drop-seq (Schwabe et al, 2020) data set contained three batches with

a total of 5,665 cells and 41,161 expressed genes. We performed the

single-cell analysis with scanpy v1.6.0 (Wolf et al, 2018). If not

stated otherwise, we used standardized filtering across all data sets,

removed cells with less than 600 genes expressed, and removed

genes detected in < 15% of the remaining cells, resulting in 10,557

transcripts in 720 cells in the SMART-Seq2 data set and 5,022 tran-

scripts and 6,701 cells measured with Drop-seq technology. Ratios of

non-zero entries in the scRNAseq data sets and the number of identi-

fied proteins in our data are summarized as violin plots. To investi-

gate data completeness across covered dynamic range, we computed

the data completeness as a function of the mean log(x + 1)-

transformed protein abundance of all non-zero/-NaN entries. We

included the expected data completeness based on the assumption

that missing values are purely due to shot-(Poisson)-noise as 1-exp(-

x). For correlation analysis, the RNA abundance entries were line-

arly scaled to sum to the mean cell size of the respective data set per

cell (231,281.56 for SMART-Seq2 and 7,808.12 for Drop-Seq)

followed by log(x + 1) transformation of all abundance entries.

Correlation values between the expressions of two cells were

computed as the Pearson correlation on the 1,672 genes that were

shared in all three data sets. Entries of missing protein abundance

values were excluded from the specific computation. For the PCA

plot of technological comparisons, the gene coverage intersection of

all technologies (1,672) was isolated, NaNs were replaced by zeros,

and expression values were linearly scaled to 1E6 followed by log

(1 + x) transformation. In coefficient of variation (CV) versus CV

plots comparing different technologies as well as the mean versus

CV analysis (including the core proteome analysis) and the CV distri-

bution boxplots, RNA expression vectors were scaled to the mean

cell size of that measurement technology and mean and CV values

were computed per gene under the assumption that single-cell RNA-

sequencing data are not zero inflated (Svensson, 2020) while NaNs

were excluded for the proteomics data. CV (Proteomics) versus CV

(RNA-seq) plots show the comparison of CV values of proteins/ge-

nes that were shared between all data sets.

Cell cycle state prediction
Cell cycle predictions were performed using the scanpy method score_-

genes (Wolf et al, 2018) based on three sets of proteins that are specifi-

cally expressed in the G1 (MARCKS, KRT1, HIST1H1E, KRT18,

HNRNPA1, CHCHD3, CD44, NASP, TARDBP, PODXL, SUMO2,

STMN1, TRIM28, and SPTAN1), S (NOLC1, ATP2A2, CANX, TMX1,

CKB, SLC25A3, SLC16A1, MT-CO2, SRPRB, CYB5R3, LETM1, and

ANP32B), or G2/M phase (TOP2A, HMGB1, EIF5B, TMSB10, EIF3D,

ANP32A, RCC2, FASN, LUC7L2, AARS, KPNA2, and CKAP5), respec-

tively. The cell phase-specific protein sets were selected based on the

z-scored fold-change ratios provided in Geiger and coworkers (Aviner

et al, 2015). The top 60 highest differentially expressed genes were

selected and filtered for quantification in at least 70% of our cells. This

scoring method yields the average expression on the provided set of

genes minus the average expression on a reference set of genes for

each cell. The reference set is chosen to mirror the average expression

of the target gene set. For this analysis, cells were filtered, log(x + 1)

transformed, and missing values replaced by zeros. Plotted are the

ROC curves for the three scores corresponding to the three sets of char-

acteristic proteins (G1, S, and G2 M) used individually to discriminate

between the cells of two cell cycle stages.

Data availability

All mass spectrometry raw data, libraries, and outputs from each

particular search engine analyzed in this study have been deposited

to the ProteomeXchange Consortium via the PRIDEpartner reposi-

tory. Project accession: PXD024043 (www.ebi.ac.uk/pride/archive?

keyword=PXD024043).

The code used for data analysis can be found as a Jupyter Note-

book at: https://github.com/theislab/singlecell_proteomics.

Expanded View for this article is available online.
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