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 Abstract: Background: Obesity is considered a global epidemic. This 

disorder is associated with several health effects, such as metabolic 

disturbances that need both prevention and treatment actions. In this sense, 

bioactive secondary metabolites can be obtained from cheap sources such as 

agro-industrial waste, providing a sustainable alternative against obesity. 

Among these secondary metabolites, phenolic compounds present a 

common chemical structure core with different substitutions that provide 

them with biological properties such as antioxidant, inflammatory, and anti-

aging capacities. Objective: The aim of this review is to compile anti-obesity 

therapeutic targets for phenolic compounds from agro-industrial by-

products. Method: Scientific information has been obtained from different 

databases, such as Scopus, PubMed and Google Scholar, in order to select 

the available full-text studies conducted in the last few years. Results: This 

review shows that peel, seed, pomace and other by-products from agro-

industry have different effects inhibiting enzymes related to lipid or glucose 

metabolism and modulating biomarkers, genes and gut microbiota in animal 

models. Conclusion: Revalorizing actions of agro-industrial byproducts in 

the prevention or treatment of obesity or associated disorders can be 

considered to develop new high value products that act on lipid, glucose and 

energy metabolisms, oxidative stress, inflammation, adipose tissue or gut 
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microbiota. However, further human studies are needed in order to establish 

the optimal administration parameters.     
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1. INTRODUCTION 

 Overweight and obesity, defined as abnormal or 

excessive fat accumulation, are considered as a 

global epidemic of the developed world by the 

World Health Organization (WHO) [1]. In 2016, 

more than 1.9 billion adults were reported as 

overweight and around 650 million as obese [1]. 

The major risk involved in this multifactorial 

disease is the negative health effects due to the 

development of other related disorders such as 

hypertension, diabetes mellitus, coronary heart 

diseases, and some types of cancers, among others 

[2]. 

As obesity is a multifactorial disease, the causes 

that contribute to its development are different. 

Among the main factors that contribute to the 

development of obesity is energy imbalance in the 

first place, and the body's efforts to  store excess 

energy rather than limiting intake or increasing 

expenditure, which leads to net weight gain as the 

most common form of energy imbalance. 

Physiological and genetic factors are also 

considered to be responsible for the development 

of the disease, for example, hormonal imbalances, 

changes in the microbiota and expression of 

certain genes related to obesity. Finally, cultural 

and contextual factors such as socioeconomic 

status, geography, food preferences, physical and 

social environment, gender, age, cultural identity 

and family composition greatly contribute to the 

development of the pathology [3,4].  Among the 

main targets that have been considered, promising 

novel therapies are brown adipose tissue 

thermogenesis, the influence of the microbiome, 

miRNAs, genetics and epigenetics, nutrigenomics 

and nutri-epigenetics, brain function in relation to 

intake and food choices, biological control of 

physical activity, food and dietary components, 

and nutrition in early life [5]. Taking into account 

that obesity is influenced by genetic, behavioral 

and environmental factors, prevention and 

treatment actions need to be directed towards 

multifactorial actions. Among these, healthy 
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lifestyle habits, based on diet and physical activity, 

is one of the most important aspects. However, it 

is important to note that eating patterns differ not 

only across countries but also between socio-

economicstatuses. In this scenario, functional food 

and nutraceuticals are relevant since nutritional 

strategies are crucial for the management of  

obesity [6]. The link between diet and human 

health has been repeatedly mentioned since 

ancient years and proven by extensive scientific 

evidence, although it was not until the mid-1980s 

when the Japanese government supported research 

focused on the potential of some foods in 

physiological targets, giving rise to a term 

“functional food” [7]. In current times, many 

studies report immense interest in functional food 

and nutraceuticals to prevent various diseases 

related to obesity, such as hypertension [8]. In fact, 

these products have been considered at the 

interface between nutrition and pharma [7]. 

In chronic diseases, conventional medical 

treatments with effective results can also bear 

adverse side effects. For this reason, the 

identification of cost-effective approaches for 

obesity management is challenging. In this sense, 

dietary phenolic compounds, which are reported to 

possess anti-obesity potential, present as an 

innovative alternative for obesity prevention and 

treatment [6]. These secondary metabolites are the 

largest classes of bioactive phytochemicals, and 

are widely present in fruits and vegetables. Their 

common chemical structure core is characterized 

by one or more aromatic rings with hydroxyl 

groups, which provides them with 

pharmacological properties [2], such as anti-

obesity effects [9]. Figure 1 shows the chemical 

structures of most reported phenolic compounds. 

These bioactive compounds may increase energy 

expenditure but also inhibit lipolytic enzymes, 

reduce plasma glucose levels or activate 5’-AMP-

activated protein kinase (AMPK) [6]. For 

example, green tea epigallocatechins are 

responsible for anti-diabetic, anti-obesity and anti-

hypertensive effects [8]. 

 

 

- Insert Figure 1 – 

 

It is worth noting that the concentration of 

phenolic compounds is usually  higher in fruit and 

vegetable by-products, such as peels, seeds, 

pomace or leaves, compared to their edible parts 

[10]. This is a very important point since it is 

estimated that almost 50 % of the food produced is 

lost or wasted before and after reaching the 

consumer [11]. The high content of these valuable 

phytochemicals can be obtained from agri-food 

wastes. These by-products, rich in bioactive 

compounds, can be revalued into high-value 

products, such as cosmetics, food or 

pharmaceuticals, which can show anti-obesity 

properties but also may reduce waste and provide 

economic benefits. For this reason, several authors 

have previously discussed this subject.  Rodriguez-

Perez et al. encompassed in vitro and in animal 
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studies about the anti-obesity effect of polyphenols 

from natural sources [6]. Other authors have also 

reviewed the potential against obesity of these 

bioactive compounds from plants [9,12,13] or food 

[14-16]. However, regarding agro-industrial 

byproducts, the most studied sources to convert 

into value-added anti-obesity products are fruits, 

vegetables and cereals, above all, citrus and tropic 

fruits and olive byproducts [11,17-19].   

In this review, a comprehensive overview of anti-

obesity therapeutic targets for phenolic compounds 

from agro-industrial byproducts is presented. The 

data-bases used, Scopus, PubMed and Google 

Scholar, were searched for studies published 

between January 2016 and May 2021, and 

reporting on the anti-obesity effects of the major 

phenolic compounds contained into agro-industrial 

byproduct extracts. Moreover, for punctual 

statements we included other year references. 

Keywords included obesity, phenolic compound, 

food byproduct, (lipid, glucose and energy) 

metabolism, oxidative stress, inflammation, gut 

microbiota and adipose tissue, as well as the 

corresponding synonyms and associated terms for 

each word. Table 1 summarizes the main details of 

the scientific articles discussed in this review.  

2. EFFECTS ON LIPID METABOLISM 

 Lipid metabolism disorders are one of the most 

common risk factors for chronic diseases that have 

a strong connection to obesity. Therefore, the 

therapeutic targets of lipid metabolism could be 

directly related to alleviate this disorder. In this 

sense, many drugs, such as statin or structural 

analogs of cholesterol precursors, have been 

shown to reduce blood lipid levels, although their 

long-term use can cause adverse effects [20]. 

Therefore, innovative alternatives with effects on 

lipid metabolism, such as bioactive compounds 

from natural sources, are being explored.  

The main targets of the anti-obesity effects on 

lipid metabolism of phenolic compounds are 

related to pancreatic lipase, lipid profile, such as 

cholesterols levels, fatty acids (FA) and expression 

of genes associated with this metabolism. 

Pancreatic lipase is a triacylglycerol acylhydrolase 

that plays a key role in the hydrolyzation and 

absorption of triglycerides. Inhibition of this 

enzyme can then reduce the absorption of dietary 

fat. Orlistat (IC50 = 0.064 mg/mL) is currently the 

only drug that inhibits this lipase, but its use is 

related to adverse effects. As a possible alternative 

to drugs, in recent years there have been numerous 

studies focused on phenolic compounds from 

vegetable sources [21]. For instance, Noorolahi et 

al. in 2020 reported on the effect of pistachio 

green hull extract on porcine pancreatic lipase 

activity [22]. The results showed the highest 

activity of the pistachio byproduct extract (IC50 = 

2.26 mg/mL) in the tannin fraction rich in 

polyphenols and flavonoids [22]. Moreover, others 

agro-industrial residues as potent pancreatic 

activity inhibitors have been described such as 

peanut skin (PS) and red (RGP), white (WGP) and 

mixed grape pomace (MGP) [23]. A 100 % 

inhibition was found for the PS extract at 10 

mg/mL, being 1.14, 1.44 and 1.92 times greater 

than that of RGP, WGP and MGP, respectively. In 
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addition, the highest value of total phenolic 

content, determined by Folin-Ciocalteu assays, 

was obtained for the PS extract, followed by RGP, 

WGP and MGP, respectively. These results may 

explain the structure-activity relationship in the 

inhibition of pancreatic lipase [23]. On the 

contrary, Fabroni et al. in 2016 studied the effect 

of different food extracts rich in phenolic 

compounds and anthocyanins on pancreatic lipase 

inhibition [24]. In this study, black rice husks and 

‘Moro’ and ‘Doppio sanguigno’ orange (flavedo) 

peels were tested. These matrices obtained lower 

IC50 values (11.04, 7.85 and 7.95 mg/mL, 

respectively) compared to orange and pomegranate 

juices (0.46 and 0.55 mg/mL, respectively), which 

contained the highest amount of anthocyanidins 

and phenolic compounds [24].  
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Table 1. Summary of therapeutic targets for phenolic compounds from agro-industrial byproducts against obesity 

Mechanism 

involved 
Source Byproducts 

Extract type or 

isolated 

compounds 

Effective 

dose 
Type of assay 

Effect/ Mechanism of 

action 
References 

 

 

 

 

 

 

 

 

 

 

 

 

Lipid 

metabolism 

 

Coffee 
Silverskin 

and husk 
Aqueous extract 

31– 500 

μg/mL 
In vitro 

Reduced lipid 

accumulation and 

increased mitochondrial 

activity in 3T3-L1 

adipocytes 

[25] 

Mandarin 

(Citrus 

reticulata) 

Peel 
70% methanol 

aqueous extract 
1 mg/mL In vitro 

Inhibition of 3T3-L1 cell 

differentiation into 

adipocytes 

[26] 

Carob 

(Ceratonia 

siliqua) 

Seed peel, 

germ and pod 
Flour 

0.5, 0.1, and 

0.05 mg/mL 
In vitro 

Reduction of the capacity 

of TGs  
[27] 

Walnut 

(Juglans 

regia) 

Septum 
50% acetone 

aqueous extract 

Different 

doses 
In vitro 

Inhibitory activity against 

lipase 
[28] 

Coffee (Coffea 

arabica) 
Pulp Aqueous extract 

In vitro: 200 

mg/ml 

In vivo:1000 

mg/kg per day 

for 12 weeks 

In vitro (Human 

colorectal 

adenocarcinoma 

(Caco-2) cells) 

and In vivo 

(Wistar rats) 

Inhibition of intestinal 

cholesterol absorption by 

down-regulating 

NPC1L1 mediated LXRα 

activation and interfering 

with micellar complex 

[29] 
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formation 

Rambutan 

(Nephelium 

lappaceum) 

Peel Aqueous extract 

30 mg/kg 

body weight 

once every 

two days for 

12 weeks 

In vivo (obesity 

rat model) 

Diminution of FABP4, 

PPAR-γ and ERK1-2 

expression 

[30] 

Satsuma 

(Citrus unshiu) 
Peel Pellet For 4 weeks 

In vivo 

(humans) 

Decreased levels of 

LDL-C, and TGs 

 

[31] 

Mandarin 

(Citrus 

reticulata) 

Peel Aqueous extract 
800 mg/daily 

for 8 weeks 

In vivo 

(humans, obese 

adolescents) 

Decreased body mass 

index, body fat 

percentage and waist 

circumference, as well as 

a better lipid profile 

criteria. In addition, a 

significant decrease in 

TC and TGs is observed 

 

[32] 

Grape (Vitis 

vinifera) 
Seed 

Proanthocyanidin 

extract 

25, 100 and 

200 

mg/kg/day for 

12 weeks 

In vivo (Wistar 

rats) 

Increase in the number of 

adipocytes and 

preventive decrease in 

the size of adipocytes 

through the positive 

[33] 
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regulation of PPAR-γ 

and Sirt1 

Cocoa 

(Theobroma 

cacao) 

Husk Pericarp flour 

25 mg of (-)-

epicatechin 

equivalents 

per day for 8 

weeks 

In vivo 

(humans) 

TGs, LDL-C, and the 

TGs/HDL ratio decreased 

 

[34] 

Dragon fruit 

(Hylocereus 

undatus) 

Peel Betacyanins 

50, 100 and 

200 mg/kg/ 

day for 14 

weeks 

In vivo 

(C57Bl/6 mice) 

Induction of fatty acid 

oxidation, decreased fatty 

acid biosynthesis and 

improved sensitivity to 

FGF21. Improvement of 

adipose tissue 

hypertrophy 

[35] 

Jaboticaba 

(Myrciaria 

jaboticaba) 

 

Peel Aqueous extract 

2% of extract 

for 6 and 12 

weeks 

 

In vivo (Wistar 

rats) 

Prevent weight gain and 

adiposity. 

Supplementation for 12 

weeks increased HDL-C. 

Long-term 

supplementation 

prevented hepatic 

steatosis 

[36] 
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Mung bean 

(Vigna 

radiata) 

Hulls 
Xylitol 

 

100 and 200 

g/kg per day 

for 21 days 

In vivo 

(Sprague 

Dawley rats) 

Cholesterol and TGs 

levels were decreased 

depending on xylitol 

intake level 

[37] 

 

Roselle 

(Hibiscus 

sabdariffa) 

Calyces Aqueous extract 

10.1 g /100 g 

diet for 18 

weeks 

In vivo (Wistar 

rats) 

Reduction in body 

weight gain, adipocytes 

hypertrophy and hepatic 

steatosis 

[38] 

Onion (Allium 

cepa) 
Peel 

60% aqueous 

ethanol extract 

170 mg (50 

mg of 

quercetin) two 

times a day 

for 12 weeks 

In vivo 

(humans) 

Weight reduction and 

body fat percentage 

[39] 

 

Coffee (Coffea 

arabica) and 

(Coffea 

canephora) 

Silverskin 

 
Aqueous extract 

25, 50 and 

100 µg/ml 

In vivo 

(Caenorhabditis 

elegans) 

Prevention of body fat 

accumulation 
[40] 

Kiwifruit 

(Actinidia 

chinensis) 

Seed oil n- hexane extract 

1 or 3 mL/ kg 

per day for 8 

weeks 

In vivo 

(C57Bl/6 J 

mice) 

Reduction in body 

weight gain, inguinal fat 

tissue weight and blood 

glucose. Increase in 

HDL-C levels and 

decrease in TGs and 

LDL-C levels  

[41] 
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Jaboticaba 

(Myrciaria 

jaboticaba) 

 

Ripe fruit Aqueous extract 

50 and 100 

mg/kg/day for 

28 weeks 

In vivo 

(C57Bl/6 J 

mice) 

Decrease in adipocyte 

hyperplasia, reduction in 

FBG. In addition, 

decreased plasma levels 

of TC and LDL-C, liver 

levels of TC and TGs 

 

[42] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Walnut 

(Juglans 

regia) 

Septum 
50% acetone 

aqueous extract 

Different 

doses 
In vitro 

Inhibitory activity against 

α-glucosidase 
[28] 

Onion (Allium 

cepa) 
Peel 

60% aqueous 

ethanol extract 

170 mg (50 

mg of 

quercetin) two 

times a day 

for 12 weeks 

In vivo 

(humans) 

Increased FBS level and 

decreased blood leptin 

level 

[39] 

 

Dragon fruit 

(Hylocereus 

undatus) 

Peel Betacyanins 

50, 100 and 

200 mg/kg/ 

day for 14 

weeks 

In vivo 

(C57Bl/6 mice) 

Improvement of glucose 

intolerance and insulin 

resistance 

[35] 

Jaboticaba 

(Myrciaria 

jaboticaba) 

Peel Aqueous extract 

2% of extract 

for 6 and 12 

weeks 

In vivo (Wistar 

rats) 

supplementation for 6 

weeks increased insulin 

sensitivity 

[36] 
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Glucose and 

energy 

metabolism 

  

Mung bean 

(Vigna 

radiata) 

Hulls 
Xylitol 

 

100 and 200 

g/kg per day 

for 21 days 

In vivo 

(Sprague 

Dawley rats) 

Serum glucose decreased 

depending on xylitol 

intake level 

[37] 

 

Roselle 

(Hibiscus 

sabdariffa) 

Calyces Aqueous extract 

10.1 g /100 g 

diet for 18 

weeks 

In vivo (Wistar 

rats) 

Reduction in insulin 

resistance 
[38] 

Watermelon 

(Citrullus 

lanatus) 

Rind, skin 

and pulp 

Dried 

watermelon 

products 

8% pulp and 

2.25% rind 

and skin of 

the energy 

consumed in 

the diet 

In vivo 

(C57Bl/6 J 

mice) 

Improved FBG, 

circulating serum insulin 

concentrations, and 

changes in hepatic 

metabolite accumulation 

[43] 

Mango 

(Mangifera 

indica) 

Pulp Flour 

5, 10 and 15 

g/ 100 g of 

fed for 30 

days 

In vivo (Wistar 

rats) 

Decreased blood glucose 

levels and increased 

serum insulin levels 

[44] 

Pomegranate 

(Punica 

granatum) 

Flower, peel 

and seed oil 

Flower and peel 

methanol extract; 

Seed oil Soxhlet 

extract 

Flower and 

peel extracts: 

250 

mg/kg/day for 

4 weeks; Seed 

oil: 2 

In vivo 

(C57Bl/6 mice) 

Improves insulin 

sensitivity 
[45] 
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ml/kg/day for 

4 weeks 

 

Kiwifruit 

(Actinidia 

chinensis) 

Seed oil n- hexane extract 

1 or 3 mL/ kg 

per day for 8 

weeks 

In vivo 

(C57Bl/6 J 

mice) 

Reduction in blood 

glucose and improves 

thermogenesis (PPAR-γ, 

UCP1, PGC1-α and 

PRDM16) 

[41] 

Jaboticaba 

(Myrciaria 

jaboticaba) 

 

Ripe fruit Aqueous extract 

50 and 100 

mg/kg/day for 

28 weeks 

In vivo 

(C57Bl/6 J 

mice) 

Decrease in glucose 

intolerance, insulinemia 

and insulin resistance and 

modulation of the 

Akt/mTOR pathway in 

liver, skeletal muscle and 

white adipose tissue, as 

well as increased 

expression of GLUT4 in 

skeletal muscle  

 

[42] 

 

Bacupari 

(Garcinia 

brasiliensis) 

Peel Ethanol extract 
42 mg/kg/day 

for 8 weeks 

In vivo (Wistar 

rats) 

Antioxidant and anti-

inflammatory effect, 

increased expression of 

PPARу and IL-10, 

decreased expression of 

[46] 
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LPL and FAS and 

reduced TNF-α, blood 

levels of glucose, alanine 

aminotransferase, and 

adipocyte hypertrophy 

 

 

 

Oxidative 

stress and 

inflammation 

Carob 

(Ceratonia 

siliqua) 

Seed peel, 

germ and pod 
Flour 

0.5, 0.1, and 

0.05 mg/mL 
In vitro High antioxidant capacity [27] 

Walnut 

(Juglans 

regia) 

Septum 
50% acetone 

aqueous extract 

Different 

doses 
In vitro 

Antioxidant and anti-

inflammatory activity 

(reduction of IL-6, IL-8, 

IL-1β) 

[28] 

Jaboticaba 

(Myrciaria 

jaboticaba) 

 

Peel 
Aqueous and 

methanol extract 

25 mL/ day 

during 6 and 

12 weeks 

In vitro and in 

vivo (Wistar 

rats) 

High antioxidant 

potential in vitro and in 

vivo 

[47] 

Grape (Vitis 

aestivalis) 
Pomace 

80% ethanol 

aqueous extract 

250 mg/kg per 

day for 12 

weeks 

In vivo 

(C57Bl/6 J 

mice) 

Reduction of CRP levels, 

revealing a possible anti-

inflammatory effect 

 

[48] 

Pomegranate 

(Punica 

granatum) 

Peel 
60% ethanol 

aqueous extract 

150 and 300 

mg/kg/ day 

for 12 weeks 

In vivo (rats) 

Decreased elevated 

circulating pro-

inflammatory cytokines, 

[49] 
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colonic tissue damage, 

and depressed colonic 

tight junction protein 

expression level 

Pomegranate 

(Punica 

granatum) 

Flower, peel 

and seed oil 

Flower and peel 

methanol extract; 

Seed oil Soxhlet 

extract 

Flower and 

peel extracts: 

250 

mg/kg/day for 

4 weeks; Seed 

oil: 2 

ml/kg/day for 

4 weeks 

 

In vivo 

(C57Bl/6 mice) 

Reduction of plasma 

levels of the pro-

inflammatory cytokines: 

TNF-α and IL-6 and 

improves insulin 

sensitivity 

[45] 

Kiwifruit 

(Actinidia 

chinensis) 

Seed oil n- hexane extract 

1 or 3 mL/ kg 

per day for 8 

weeks 

In vivo 

(C57Bl/6 J 

mice) 

Decrease in inflammation 

(TNF-α, IL-6, IL-1β, 

COX-2 and iNOS)  

[41] 

White/brown 

adipose tissues 

Onion (Allium 

cepa) 
Peel 

60% aqueous 

ethanol extract 

In vitro: 50, 

100 and 150 

μg/ml 

In vivo: 0.5% 

of the diet for 

8 weeks 

In vitro (3T3-

L1 cells) and In 

vivo (C57Bl/6 

mice) 

Change the 

characteristics of white 

adipocytes to those of 

brown-like adipocytes in 

the white 

[50] 

Pomegranate 

(Punica 
Peel 

Aqueous ethanol 

extract 

50 mg/kg per 

day for 14 

In vivo 

(C57Bl/6 J 

Activation of complex IV 

activity and preservation 
[51] 
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granatum) weeks mice) of mitochondrial ridge 

structure in brown 

adipose tissue 

Grape (Vitis 

vinifera) 
Seed 

Proanthocyanidin 

extract  

5, 25 or 50 

mg/kg body 

weight per 

day for 21 

days 

In vivo (Wistar 

rats) 

Modulation of the 

functionality of the 

brown adipose tissue 

[52] 

Lotus 

(Nelumbo 

nucifera) 

Seedpod 
Procyanidin 

extract 

150 mg/kg 

body weight 

per day for 12 

weeks 

In vivo (ICR 

mice) 

Improved heat generation 

in brown adipose tissue 
[53] 

NPC1L1: Niemann–Pick C1-Like 1; LXRα: liver X receptor alpha; FABP4: fatty acid binding protein, ERK1/2: extracellular signal-related kinase; 

Sirt1: sirtuin 1; FGF21: fibroblast growth factor 21; UPC1: uncoupling protein 1, PRDM16: PRdomain-containing 16 
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Regarding the lipid profile, natural bioactive 

compounds have been shown to be effective 

against fat deposition, increase fat metabolism and 

improve the lipid profile in plasma by increasing 

levels of high-density lipoprotein cholesterol 

(HDL-C) and low-density protein (LDL) oxidation 

[54]. Total cholesterol (TC), triglycerides (TGs), 

HDL-C, LDL-C, triacylglycerol (TAG), non-

esterified fatty acid (NEFA) and long-chain FA 

(LCFA) are the serum parameters commonly 

determined in supplementation studies with 

phenolic compounds. In one study, Sprauge 

Dawely rats with diet-induced obesity were treated 

with 800 mg/kg body weight/day of Moringa 

olifera seed oil extract by intragastric 

administration for the last 8 weeks [55]. The 

results showed that the intake of the extract 

produced a decrease in TC, TGs, LDL-C, VLDL-

C, NEFA and an increase in HDL-C [55]. On the 

other hand, jaboticaba peel extract, a great source 

of fibers and phenolic compounds, such as 

anthocyanins and ellagic acid, did not show any 

anti-obesity effects on TC and HDL-C in Wistar 

rats, although the authors reported that prolonged 

intake could have a protective effect due to a 

decrease in LDL-C [36]. Recently, Abdulmalek et 

al. have reported the effective amelioration of the 

lipid profile in rats, with a high-fat diet, using 

Lepidium sativum L. seed aqueous/ethanolic 

extracts [56]. In this study, treatment with two 

doses of ethanolic extract (200 and 400 mg/kg 

BW) and one dose of aqueous extract (200 mg/kg 

BW) caused a significant reduction in serum TC, 

TG, LDL-C, and total lipids with a considerable 

increase in HDL-C levels compared to the high-fat 

diet group. Interestingly, at the same concentration 

level, the best results were obtained with the 

ethanolic extract, which contains a higher content 

of phenolics and flavonoids [56]. Moreover, the 

effects of a guava leaf hydroalcoholic 

(ethanol:water, 80:20) have also been studied. This 

extract at 5 mg/kg was provided to obese male 

mice (C57BL/6J), which resulted in a significant 

reduction of TGs, TC, LDL-C and HDL-C [57]. 

On the other hand, aqueous extracts have also 

shown positive effects on the lipid profile. For 

instance, tomato and broccoli aqueous extracts 

were administrated to male albino rats at doses of 

200 and 400 mg/kg [58]. The groups that ingested 

the extracts showed lower values of TC, TGs and 

LDL-C, and higher HDL-C values than those of 

the high-fat diet group. Between both extracts, the 

aqueous tomato extracts were the most active 

probably due to their lycopene content [58]. It is 

worth noting that supplementation with 

microencapsulated pomegranate peel extract  

prevents increased TC with better results than non-

microencapsulated extract in obese male 

C57BL/6J mice [51]. 

Human epidemiological studies have also reported 

the benefits of some byproducts rich in bioactive 

compounds [6]. In this regard, the aqueous phase 

obtained in the industrial production of olive oil 

industry is considered an important waste that has 

to be managed due to the large quantities 

produced. However, this byproduct has been 

characterized by containing more phenolic 

compounds than the oil itself because this retains 
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only a small amount of polar compounds due to its 

lipophilic character [59]. Peroulis et al. in 2019 

conducted a study with thirty-five healthy 

participants from a rural area of Greece to explore 

the properties of a meat product with the 

microencapsulated polyphenol-rich water extract 

of olives [60]. All volunteers followed a 

Mediterranean-style free diet for four weeks and 

the microparticle dose was 0.5714 mg of total 

polyphenols per kg of body weight per day. In 

normolipidemic participants, the intervention did 

not modify lipid profiles, while in a sub-group (18 

individuals) with two or more parameters related 

to cardio-metabolic risk, the meat product under 

study significantly reduced TC, TGs and LDL 

levels. Furthermore, oxidized LDL, which is 

related to oxidative damage and is involved in the 

formation of atheroma plaque and atherosclerosis, 

was also significantly reduced by the consumption 

of microparticles [60]. The citrus industry also 

generates a large amount of waste such as flavedo, 

seeds, peels, with a high economic and 

environmental impact [17]. In this scenario, a 

dietary intervention study was conducted on 80 

obese adolescent to examine the properties of a 

Citrus reticulate peel extract rich in flavonoids, 

mainly hesperidin, quercetagetin, naringenin, 

acacetin, rutin and quercetin. In this study, the 

volunteers were divided into two groups: one 

group received 20 mL of the extract every day 30 

min before breakfast or dinner and the other group 

20 mL of placebo under the same conditions. Both 

groups followed these conditions with a low 

calorie balanced diet for 8 weeks [32]. The 

supplementation with this extract significantly 

decreased TC and TG levels, thus providing an 

economical alternative for the management of 

obesity [32]. In contrast, when overweight instead 

of obese overweight consumed onion peel extract 

at 100 mg per day for 12 weeks, no 

[CM1]significant change in TC, TGs, LDL-C and 

HDL-C was observed [61][CM2]. From these 

results, we can infer that the experimental 

conditions are of utmost importance in the 

development of new therapeutic alternatives from 

agro-industrial byproducts. 

On the other hand, modifications in the lipid 

metabolism related-gene expressions[CM3] have 

also been found as therapeutic targets for phenolic 

compounds from food byproducts [35,62-64]. A 

recent study has revealed that the byproducts 

obtained from roasted cocoa beans of the 

Forastero variety, which contain colored 

compounds and melanoidins, act as potent 

inhibitors of protein phosphatase (PTP1B) [62]. 

This protein is an activator of hepatic lipogenesis 

and its inhibition has shown a decrease in the 

hepatic expressions of genes involved in the 

synthesis of lipids and cholesterol, such as sterol 

regulatory element-binding proteins (SREBPs), 

fatty acid synthase (FAS), acetyl-CoA carboxylase 

(ACC) and 3-hydroxy-3-methylglutaryl-coenzyme 

A synthase 1 (HMGCS1) [62]. In the case of kiwi 

seed oil, both the protein and the mRNA 

expression levels of peroxisome proliferator-

activated receptor α (PPAR-α) and carnitine 

palmitoyltransferase 1a (CPT1a) were 
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significantly suppressed in liver tissues of the 

group of mice that ingested a high-fat diet. This 

CPT1 is characterized as the rate-limiting enzyme 

for fatty acid β-oxidation. However, compared to 

the high-fat diet group, CPT1b protein expression 

was significantly up-regulated. Furthermore, 

protein expression of FAS and PPAR-γ was also 

investigated to find out whether kiwi seed oil 

supplement could inhibit lipid synthesis. The 

results showed that the expression levels of these 

proteins decreased significantly in a dose-

dependent manner in the mice group that ingested 

the extract for 12 weeks compared to the group on 

a high-fat diet. A similar trend was also detected in 

the mRNA expression of FAS, however, no 

significant difference were detected for the mRNA 

expression of PPAR-γ [63]. Hylocereus peel, 

which possesses a high content of betacyanins, 

similarly decreased the expression levels of 

AdipoR2 and PPAR-γ (lipid metabolisms-related 

genes) and Insig1 and Insig2 (cholesterol 

biosynthesis-related genes) [35]. Moreover, a 

reduction in the expression of FAS and lipoprotein 

lipase (LPL) genes was also detected in mice on a 

high-fat diet supplemented with 10 and 20 % red 

potato peels. LPL is defined as the main enzyme 

that hydrolyzes circulating TGs into free fatty 

acids and facilitates their entry into adipocytes 

[64]. These results suggest that the breakdown of 

TGs into FA was also lower, since there was a 

reduction in LPL transcription. In a similar way to 

that described previously in the cacao study, 

SREBP-1c and PPAR-α were also detected 

transcriptionally downregulated by the red potato 

peel, rich in glycoalkaloids and phenolic 

compounds, such as caffeic and chlorogenic acids. 

In contrast, the expression of the liver acyl-CoA 

oxidase gene (ACOX1) increased for the two peel 

supplements. This result of the ACOX1 induction 

was quite interesting since its regulator PPAR-α 

showed the opposite expression pattern, appearing 

to be independently regulated in this case[64].  

Considering all these results, numerous therapeutic 

targets (enzymatic level, lipid profile or related 

gene expression levels) have shown great potential 

to be useful for the prevention or treatment of 

obesity serve to prevent or treat obesity using 

phenolic compounds from agro-industrial 

byproducts.   

3. EFFECTS ON GLUCOSE AND ENERGY

METABOLISMS

 Obesity is characterized by producing changes 

in lipid metabolism, but also in glucose and energy 

metabolism, mainly characterized by some 

digestive enzymes, high levels of glucose and 

insulin, that can result in other chronic pathologies 

such as cardiovascular disease or diabetes, or 

faulty gene expression [9]. Therefore, it is of great 

interest to find and exploit substances (e.g. 

phenolic compounds from agro-industrial by-

products) that improve these metabolic parameters 

without producing side effects. 

In this regard, α-amylase and α-glucosidase are 

key digestive enzymes involved in carbohydrate 

metabolism. The first one breaks down starch and 

complex carbohydrates into disaccharides, which 

are hydrolyzed by α-glucosidases into free glucose 
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that can then be absorbed [65]. Moreover, α-

glucosidase is ultimately involved in the control of 

glucose release from polysaccharides in the gut 

[66]. Since some drug treatments, such as 

metformin, cause adverse gut effects at high doses, 

a combination of low-dose drugs and the intake of 

bioactive compounds from natural sources has 

been proposed as an alternative. In this context, 

several studies have reported evidence of the 

properties of phenolic compounds from vegetables 

for the inhibition of these obesity-related enzymes 

[65,67]. For example, Nowicka et al. in 2018 

analyzed the inhibitory effect of α-amylase and α-

glucosidase of aqueous extracts of peach kernel 

from 20 different cultivars in Poland with acarbose 

as a positive control. In this study, the IC50 values 

for amylase ranged from 28.26 (Madison with a 

high content of phenolic acids) to 141.39 mg/ml. 

Regarding glucosidase, the IC50 values ranged 

from 25.20 (Harrow Beauty with a high content of 

polymeric procyanidin) to 214.40 mg/ml [68]. 

Since Peruvian corn represents an important 

source of bioactive compounds, dried kernels of 

22 different corns (12 of germplasm and 10 

collected in situ) were tested [69]. The results 

showed that the samples of the Kculli race (purple 

grains) showed higher enzyme inhibitory activities 

than the other corn races. This higher activity was 

correlated with a higher content of total phenolic 

compounds and total anthocyanidins [69]. 

Pomegranate peel extracts have also been 

investigated as a vegetable source with a 

promising potential. For instance, the ability of its 

phenolic compounds to modulate glucose 

metabolism by inhibiting the activity of α-

glucosidase and α-amylase has been studied in a 

simulated in vitro gastrointestinal digestion system 

[70]. A greater effect was determined for α-

glucosidase due to the content of ellagitannins, 

gallic acid, ellagic acid and their derivatives in the 

duodenum. In this sense, 0.007 mg of phenolic 

compounds in the duodenum extract were 

calculated to inhibit the activity of 1 U of α-

glucosidase by 84%, while 0.036 mg for the 

activity of 1 U of α-amylase by 72% [70]. 

However, these compounds have been suggested 

as an effective strategy to decrease the availability 

of the polysaccharide substrates for glucose 

release in the gut [66].  

De Carmargo et al. optimized the extraction 

method of phenolic compounds from winemaking 

by-products (cv. Tempranillo) to obtain the extract 

with the greatest potential for the inhibition of α-

glucosidase. They used Pronase and Viscozyme 

(enzyme treatments) to increase the solubility of 

the phenolics present in the sample [71]. These 

treatments increased inhibition of α-glucosidase 

compared to the control. Between both enzyme 

treatments, an inhibition of α-glucosidase by 7.35 

± 3.1 % and 7.79 ± 0.6 %, was determined for the 

phenolic compounds extracted with Pronase and 

Viscozyme, respectively. However, two treatments 

only improved the amount of soluble phenolic 

compounds but decreased the content of insoluble-

bound phenolics [71]. Therefore, both Pronase and 

Viscozyme could be applied for the development 
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of high added-value products against obesity based 

on soluble phenolic compounds.  

The oral glucose tolerance test (GTT) is defined as 

the gold standard for the diagnosis of impaired 

glucose tolerance, a well-established risk factor 

related to obesity [72]. For this reason, several 

studies have used this method to determine the 

effect produced by bioactive compounds. For 

example, GTT was performed to study the effect 

of watermelon byproduct skin extract in a male 

C57BL/6J mouse model fed a high-fat diet [43]. A 

reduction in fasting blood glucose (FBG) 

concentrations was observed in the group 

supplemented with watermelon skin extract, to a 

level statistically equivalent to the low-fat diet 

group [43]. This result and the reduction in serum 

insulin concentrations, could be closely related to 

the phytochemicals present in the watermelon skin 

[43]. FBG was also determined in a diet-induced 

obese male mouse model (C57BL/6 J) treated with 

a phenolic extract obtained from jaboticaba [42]. 

This extract, rich mainly in proanthocyanidins and 

ellagitannins, provided a faster reduction in plasma 

glucose concentrations than the high-fat diet group 

[42]. In addition, obese animals presented the 

highest plasma insulin concentration, indicating 

elevated insulin release during oral GTT, and as 

result of this test, the supplemented group showed 

lower blood glucose levels [42]. Similarly, extracts 

of pomegranate peel [45], bacupari peel [46], 

aqueous jaboticaba peel [36], kiwifruit seed oil 

[41], chenpi [73] and Roselle byproducts [38] have 

also shown a positive effect in animal models. On 

the other hand, FBG has been measured in dietary 

intervention studies conducted in human models. 

For example, a human trial was conducted to 

measure the direct effect of the olive water extract 

on FBG and insulin levels at dietary 

concentrations. The results showed a reduction in 

elevated glucose and insulin levels after 

administration of the extract in a food matrix [60]. 

The same behavior in glucose levels was revealed 

with an onion peel extract, rich in quercetin, in a 

randomized, double-blind, placebo-controlled 

study [39]. 

Taking into account other targets involved in 

glucose and energy metabolisms, resistin has been 

identified as a secreted adipocyte hormone with 

action in regulating glucose homeostasis, 

increasing blood glucose levels as well as the 

production of hepatic glucose [74]. Likewise, high 

levels of resistin can cause insulin resistance 

which has been linked to obesity. As an example 

of a study evaluating this parameter, Aborehab et 

al. in 2016 demonstrated that aqueous extracts of 

tomato and broccoli significantly reduced FBG 

and resistin levels in obese rats compared to those 

on a high-fat diet. [58]. On other hand, the 

PI3K/AKT pathway is an intracellular signaling 

pathway important in regulating cell proliferation, 

differentiation, metabolism, and cytoskeletal 

reorganization. This pathway has been associated 

with obesity since insulin from food is capable of 

activating it, increasing glucose utilization and 

reducing gluconeogenesis in the liver and muscle 

under physiological conditions [75]. Nevertheless, 

the mammalian target of rapamycin (mTOR) has 

been described as the master regulator of the cell’s 
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growth and metabolic state in response to 

nutrients, and its dysregulation also contributes to 

obesity [76]. In this sense, the concentrations of 

Akt and mTOR have shown in some studies to be 

able to be modified by phenolic extracts from food 

byproducts, such as the Brazilian berry jaboticaba, 

rich in ellagic acid derivatives and anthocyanins 

[42]. In this particular study, the hepatic Akt levels 

were found statistically elevated in the group of 

mice that consumed the extract with the highest 

gallic acid content. In contrast, the extract with a 

lower content of this compound showed higher 

levels of Akt in white adipose tissue and muscle. 

Regarding mTOR, both groups supplemented with 

different concentrations of gallic acid showed 

lower concentrations in the liver, and higher in the 

white adipose tissue, compared to the control 

group on a high-fat diet group. In contrast, in 

muscle, the mTOR values were only statistically 

lower in the mice group that ingested the extract 

with the highest content of gallic acid. [42]. Akt 

activation is responsible for initiating the 

translocation movement of the glucose transporter 

GLUT4, which is encoded by solute carrier family 

4 anion exchanger member 2 (SLC4A2), from the 

cytoplasmatic vesicles to the cell membrane in 

adipocytes and myocytes. In fact, GLUT4 

activation enhances glucose uptake and increases 

the amount of intracellular glucose available for 

metabolic conversion, promoting greater cell 

proliferation [77]. In the previous study of 

jacoticaba extracts, GLUT4 levels in muscle were 

also increased in the same way as Akt [42]. In 

another study, phenolic compounds from aqueous 

coffee silverskin and husk extracts were also able 

to stimulate GLUT4 translocation in vitro [25]. 5’-

Adenosine monophosphate-activated protein 

kinase (AMPK) is another important therapeutic 

target in obesity. AMPK promotes GLUT4 

translocation and glucose uptake, suggesting that 

its activation may play a role in the regulation of 

energy homeostasis [78]. In a similar way to the 

other therapeutic targets, extracts rich in phenolic 

compounds have shown effects on the activation 

of AMPK. For example, a chenpi extract activated 

the AMPK signaling pathway by increasing levels 

of phosphorylated AMPK in adipose tissue [73]. 

Fermented persimmon extracts also activated 

AMPK in a dose-dependent manner [79]. Phenolic 

extracts of lotus seed and pear pomace water 

incremented the phosphorylated AMPK [73]. In 

these studies it has been revealed that the 

modulation of AMPK is linked to the chemical 

structure of phenolic compounds [82]. For this 

reason, bioactive extracts from agro-industrial 

waste, rich in these compounds, have great 

potential to be a cheap but powerful alternative for 

obesity relief.  

4. EFFECTS ON OXIDATIVE STRESS AND 

INFLAMMATION  

During obesity, several oxidative stress and 

inflammation factors are highly produced, 

including reactive oxygen and nitrogen species, 

free radicals and proinflammatory intermediates. 

In addition to these, antioxidants in plasma, 

cellular response or protein inhibition, are 

considered therapeutic targets that could be 
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modulated by a by-product rich in phenolic 

compounds [9]. In fact, it is well known that 

organisms have developed mechanisms to reduce 

oxidative stress, such as non-enzymatic and 

enzymatic antioxidant endogenous defenses. 

However, after a period of overstimulation, these 

enzymes are depleted and cannot cope with 

increased oxidative stress, thus other exogenous 

defenses provided by the diet are needed [83]. 

Long-term consumption of a high-fat diet provides 

increased lipid peroxidation and decreased 

endogenous antioxidant mechanisms, including 

superoxide dismutase (SOD), reduced glutathione 

(GSH), glutathione-s-transferase (GST), 

glutathione peroxidase (GPx) or catalase (CAT).   

Several biomarkers have been studied to assess 

oxidative stress caused by obesity, such as 

malondialdehyde (MDA), which are most 

measured by thiobarbituric acid reactive 

substances (TBARS) for lipid peroxidation, nitric 

oxide (NO) and xanthine oxidase (XO), among 

others [84]. In this sense, animals on a high-fat 

diet present high MDA levels, and some extracts 

rich in phenolic compounds, such as jacoticaba 

peel extract, have shown the ability to reverse this 

oxidative state. [47]. In addition, these bioactive 

extracts have also shown the ability to 

significantly increase the plasma levels of GSH 

and CAT, which are important enzymes in  

antioxidant defense [47]. In another study, 

supplementation with L. sativum seed extracts at 

200 and 400 mg/kg body weight, decreased 

hepatic oxidative indicators, such as TBARS, NO 

and XO [56]. Furthermore, the activity of CAT, 

SOD, GST, GSH and GPx was maintained at 

normal levels in the group of supplemented rats, in 

contrast to the lower values detected in the group 

of obese control rats. Interestingly, GSH levels 

were also higher after the intake of both ethanol 

and water seed extracts [56]. In general, the 

ethanol seed extract from L. sativum in low doses 

was the most potent against oxidative stress in the 

rat liver [56]. These extracts were also tested to 

ameliorate the inflammatory status in obese rats, 

showing an increase in adiponectin levels and a 

decrease in leptin levels [56]. Since the 

leptin/adiponectin ratio has been described as a 

biomarker of inflammation, supplementation with 

bioactive extracts of L. sativum showed a decrease 

in this biomarker [56]. Besides that, the ethanolic 

seed extract at 200 mg showed the greatest 

potential to decrease hepatic inflammatory 

cytokines, such as tumor necrosis factor alpha 

(TNF-α), interleukins (IL): IL-1β, IL-6, inducible 

nitric oxide synthase (iNOS) levels, and down-

regulated mRNA level of TNF-α, monocyte 

chemoattractant protein-1 (MCP-1) and IL-23 

[56].  The effects of cocoa by-product extracts on 

oxidative stress and inflammation have also been 

studied. For example, one of these extracts, rich in 

products of the Maillard Reaction, was able to 

reduce the TBARS concentration in kidney tissue. 

Another cocoa extract rich in flavan-3-ol 

monomers showed the lowest values for the 

GSH:GSSG (oxidized glutathione) ratio in liver 

tissue, showing separate mechanisms of action 

[62]. In relation to the antioxidant enzymes ratios, 
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the SOD/CAT and SOD/GPx ratios are related to 

the cellular detoxification capacity, determining 

the degree of removal of hydrogen peroxides 

produced by SOD. Therefore, a higher 

detoxification capacity would be associated with 

lower SOD/CAT and/or SOD/GPx ratios. In this 

sense, several studies have evaluated these 

parameters in relation to the intake of phenolic 

compounds or bioactive extracts. For example, the 

supplementation with an anthocyanin-depleted 

cherry extract produced higher ratios compared to 

the control group of obese mice. These results 

suggested that the levels of oxidative stress in 

supplemented mice were relatively low, probably 

due to the antioxidant and scavenging radical 

capacities of phenolic compounds [85]. In another 

example, the administration of a methanolic 

extract of Moringa oleifera leaf to rats on a high-

fat diet showed dose-dependent effects in reducing 

TBARS to normal state and improving GPx, CAT 

and SOD activity in the heart [86]. These 

parameters were also positively modified by a 

green pea hull extract in obese rats. In this 

particular study, the result were related to the 

presence of 10 phenolic compounds and 49 

bioavailable metabolites in the plasma and urine 

samples [87]. A tart cherry extract rich in 

anthocyanidin also produced a significant increase 

in SOD activity and a reduction in leptin and IL-6 

levels [88]. Another example also related to 

anthocyanins was based on the supplementation 

with a cranberry extract in mice with diet-induced 

obesity. That extract produced an increase in SOD 

and a decrease in TNF-α plasma levels [89]. 

Raspberry and cranberry extracts have also been 

studied, which increased SOD, CAT and GPx 

activities [90], or enhanced CAT levels in liver 

and adipose tissues, respectively [91]. Regarding 

the olive leaf potential, Zhang et al. reported the 

high antioxidant effects of Chinese olive leaf tea 

by enhancing SOD and GPx activities and 

reducing MDA levels [92]. Furthermore, the 

intake of extracts rich in oleuropein- or 

hydroxytyrosol significantly increased the 

antioxidant capacity and reduced the lipid 

peroxidation of the liver tissue of rats fed a high-

fat diet towards normal values. Between both 

extracts, the extract rich in hydroxytyrosol showed 

better results against the hepatic oxidative state 

[93].  

C-reactive protein (CRP) level has been used as an 

important medical biomarker of inflammation in 

obese population. In this sense, the effect of 

phenolic compounds on the level of thiss 

biomarker has also been explored, as in the case of 

a grape pomace extract. This extract, rich in 

catechin and epicatechin as the main phenolic 

compounds in addition to quercetin, resveratrol 

and gallic acid, was able to restore the normal 

levels of this biomarker in mice fed a high-fat diet 

[48]. Moreover, other parameters related to 

oxidative stress and inflammation have also been 

described, such as arachidonic acid derivatives 

(12- and 15-hydroxyeicosatetraenoic acids) or the 

relative concentrations of stearoylcarnitine and 

palmitoylcarnitine. These metabolite indicators  

have been shown to decrease after 
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supplementation with different watermelon diets 

compared to a high-fat diet group [43]. 

Diet supplementation with Chardonnay grape seed 

flour has been reported to have an effect on 

different hepatic gene expression profiles in high-

fat mice [94]. For example, among the genes 

related to oxidative stress and inflammation, iNOS 

trafficker, NOS2, otopetrin 1 (OTOP1), 

lipopolysaccharide binding protein (LPB), toll like 

receptor 4 (TLR4), TLR4 interactor with leucine-

rich repeats (TRIL), TNF-α, TNFAIP3 interacting 

protein 3 (TNIP3) and IL 7 receptor (IL7R) were 

detected down-regulated [94]. Moreover, an up-

regulation of the expression levels of different 

genes, such as peroxisome proliferative activated 

receptor ɣ coactivator 1 α (PPARGC1 α), flavin-

containing monooxygenase 3 and 5 (FMO3 and 

FMO5), GPx3, GSTα4, GSTm6, and lipocalin 2 

(LCN2), was also detected caused by the grape 

supplement  [94]. 

In summary, phenolic compounds from agro-

industrial by-products have been shown to 

modulate the oxidative and inflammatory 

conditions associated with obesity, although 

further human clinical trials are needed to gain a 

deeper understanding of these effects. 

5. EFFECTS ON BROWN/WHITE ADIPOSE 

TISSUES AND GUT MICROBIOTA 

The excessive expansion of white adipose by 

increasing the number or size of adipocytes has 

been associated with obesity, thus being a 

therapeutic target for phenolic compounds. 

Likewise, adipocyte hypertrophy promotes cell 

death and inflammation, which are considered the 

main mechanisms related to obesity. On the other 

hand, alterations in the gut microbiota have also 

been shown to play an important role in obesity 

[13]. For these reasons, studies have been 

conducted to explore the effect of supplements 

rich in phenolic compounds on the gut microbiota 

and white adipose tissues. For instance, dietary 

supplementation with citrus peel extracts, at low 

and high doses of polymethoxyflavones and 

hydroxyl polymethoxiflavones (CPL and CPH, 

respectively), has been studied for this purpose 

[95]. Interestingly, both CPL and CPH extracts 

were able to decrease body fat by reducing 

perigonadal and retroperitoneal adipose tissue 

weight. Between them, CPH showed a greater 

capacity to decrease lipid accumulation, probably 

due to the large amount of flavones [95]. In 

contrast, the effects on the gut microbiota were 

different for these two extracts. At the phylum and 

genus levels, the CPH and CPL extracts showed a 

greater similarity in the microbiota composition 

with the normal diet and obese mice groups, 

respectively. [95]. In general, high levels of 

Lactobacillus were detected in both CHP and CPL 

groups but the highest levels were related to the 

CPH extract. In this CPH group, Allobaculum and 

Prevotella were found in the highest 

concentration, and rc4-4, SMB53, Turicibacter, 

Akkermansia, and Ruminococcus in the lowest in 

comparison with the CPL and high-fat diet groups 

[95]. Therefore, these results confirm the phenolic 

compound but also their concentration level play a 

fundamental role to exert a positive effect. 
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Similarly, another study evaluated the effect on 

adipose tissue of the following three peel onion 

extracts: an ethanolic (60 %) extract (OPE), an 

ethyl acetate fraction (OPEA) and a water fraction 

(OPW) [50]. The phenolic content of these three 

extract was based mainly on quercetin and 

isoquercetin in the following order: OPEA > OPE 

> OPW [50]. Adipocytes in the untreated control 

group showed the typical appearance of lipid 

droplets, similar to all differentiated 3TT-L1 cells. 

However, a higher concentration of OPE 

contracted the lipid droplet into multiple droplets, 

thereby reducing the overall lipid accumulation in 

adipocytes. The OPW and OPEA extracts 

exhibited the same browning effect on 3T3-L1 

adipocytes [50]. At the gene expression level, mice 

on a high-fat diet treated with OPE, OPEA and 

quercetin showed the same behavior in the 

expression of several brown adipose tissue-

specific genes, such as PRDM16, UCP1, FGF21, 

PGC1-α and cell death-inducing DFFA-like 

effector (CIDEA) in retroperitoneal and 

subcutaneous white adipose tissues, promoting the 

change of white adipocytes to brown-like ones by 

inducing gene expressions[50]. Polyphenols-rich 

purple maize pericarp water extracts at 200 and 

500 mg/kg have also been studied in mice on a 

high-fat diet [96]. Both extracts showed a 

reduction in total visceral adipose tissue in terms 

of weight. In addition, the diameter of adipocytes 

was also significantly reduced with both extracts, 

especially with the 500 mg/kg one. These results 

suggested that purple maize pericarp extracts may 

act as a good alternative against obesity by 

inducing a white-fat browning phenotype and a 

subsequent thermogenic state [96]. Regarding the 

gut microbiota, a study was carried out with 

extracts rich in phenolic compounds of the 

pomegranate peel, which were supplemented to 

rats on a high-fat diet at two doses (150 and 300 

mg/kg) [49]. The changes in the gut microbiota 

indicated that, at the phylum level, Firmicutes, 

Bacteroidetes, Proteobacteria, Tenericutes and 

Actinobacteria were the five largest in fecal 

microbiota. The Firmicutes/Bacteroidetes ratio, 

which plays an important role in metabolic 

disorders, was significantly reduced by the low- 

dose extract compared to the high-fat diet group 

[49]. At the genus level, 50 genera were found. 

Among them, two genera of the Prevotellaceae 

family were detected in high abundance with both 

extracts in the same way as in the control group, 

although the best results were associated with the 

lowest dose [49]. The overall results suggested 

that this treatment restored the general 

composition of the gut microbiota community in 

rats on a high-fat diet similar to that of the control 

group [49]. 

Therefore, the adipose modification and the 

modulation of the gut microbiota by phenolic 

compounds from food waste could become an 

alternative therapeutic strategy to prevent obesity 

and its associated complications. 

CONCLUSION 

 Low cost and easy availability of agro-

industrial byproducts, which are considered waste, 

are the main reasons for considering them as a 
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potential source of bioactive ingredients. 

Numerous studies have reported that phenolic 

compounds have positive effects against obesity 

by modulating different parameters involved in 

lipid, glucose and energy metabolism, oxidative 

stress, inflammation, white adipose tissue / brown 

and the gut microbiota. Although the number of 

these studies has been increasing exponentially in 

recent years, most of these studies have been based 

on exploring these beneficial properties in extracts 

rich in phenolic compounds, and there are still 

mechanisms of action that remain unclear. For 

example, most studies do not exactly explore 

which compounds or derived metabolites are 

responsible for the beneficial properties or whether 

there is a synergistic effect between them. On the 

other hand, most studies have also been carried out 

using animal models. For these reasons, more 

studies, including human intervention trials, are 

still needed to help understand the bioavailability 

as well as metabolization mechanisms of the 

phenolic compounds. All these studies will 

provide a deeper understanding of the mechanisms 

of action, allowing monitoring of the applications 

for the release of these compounds in a controlled 

manner through encapsulation strategies. In 

addition, agro-industries will have more 

information on the properties of their by-products 

rich in phenolic compounds, allowing the 

development of potential applications of value-

added products. 
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