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Traditional static functional connectivity analyses have shown distinct functional network alterations in patients with anti-N-methyl-D-
aspartate receptor encephalitis. Here, we use a dynamic functional connectivity approach that increases the temporal resolution of con-
nectivity analyses from minutes to seconds. We hereby explore the spatiotemporal variability of large-scale brain network activity in
anti-N-methyl-D-aspartate receptor encephalitis and assess the discriminatory power of functional brain states in a supervised classifi-
cation approach.We included resting-state functional magnetic resonance imaging data from 57 patients and 61 controls to extract four
discrete connectivity states and assess state-wise group differences in functional connectivity, dwell time, transition frequency, fraction
time and occurrence rate. Additionally, for each state, logistic regressionmodels with embedded feature selection were trained to predict
group status in a leave-one-out cross-validation scheme. Compared to controls, patients exhibited diverging dynamic functional con-
nectivity patterns in three out of four states mainly encompassing the default-mode network and frontal areas. This was accompanied
by a characteristic shift in the dwell time pattern and higher volatility of state transitions in patients. Moreover, dynamic functional
connectivity measures were associated with disease severity and positive and negative schizophrenia-like symptoms. Predictive power
was highest in dynamic functional connectivity models and outperformed static analyses, reaching up to 78.6% classification accuracy.
By applying time-resolved analyses, we disentangle state-specific functional connectivity impairments and characteristic changes in tem-
poral dynamics not detected in static analyses, offering new perspectives on the functional reorganization underlying anti-N-methyl-D-
aspartate receptor encephalitis. Finally, the correlation of dynamic functional connectivitymeasures with disease symptoms and severity
demonstrates a clinical relevance of spatiotemporal connectivity dynamics in anti-N-methyl-D-aspartate receptor encephalitis.
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HC = healthy controls; HPC = hippocampus; IFG = inferior frontal gyrus; LOOCV = leave-one-out cross-validation; mPFC =
medial prefrontal cortex; MPRAGE = Magnetization-Prepared RApid Gradient Echo; mRS = modified Rankin scale; OFG =
orbito-frontal gyrus; PC = principal component; PHG = parahippocampal gyrus; POS = parieto-occipital gyrus; prim.
Visual = primary visual cortex; rs-fMRI = resting-state functional MRI; SB = subcortical; SFG = superior frontal gyrus
SM = sensorimotor; SMA = supplementary motor area; STG = superior temporal gyrus; TE = echo time; TPOJ =
temporo-parieto-occipital junction; TR = repetition time

Graphical Abstract

Introduction
Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is
a severe autoimmune disorder of the CNS caused by anti-
bodies targeting the NR1 subunit of the NMDA receptor.1

The disease is characterized by a complex neuropsychiatric
syndrome with delusions, hallucinations, movement abnor-
malities, autonomic dysfunction, decreased levels of

consciousness and cognitive dysfunction, e.g. deficits of ex-
ecutive control and memory.1–6

Despite the severe disease course, routine clinical MRI re-
veals no abnormalities in 50–80% of patients.5,7 In contrast,
functional connectivity (FC) is disrupted in distinct function-
al networks, including medial-temporal, fronto-parietal and
visual networks.8 Specifically, hippocampal connectivity
with medial prefrontal regions of the default-mode network
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(DMN) is significantly impaired, and these alterations are
associated with the severity of memory impairment.
Moreover, disruption of fronto-parietal and ventral atten-
tion networks correlates with positive and negative
schizophrenia-like symptoms.3,8 These traditional resting-
state FC analyses have thus contributed to reveal the me-
chanisms underlying clinical symptoms in anti-NMDA re-
ceptor encephalitis by assessing the coherence of brain
activity between distinct regions. However, traditional FC
analyses are ‘static’ in the sense that blood-oxygen-level de-
pendent time series are averaged across a scan with duration
of several minutes.

Yet, the brain is a complex dynamic system in which the
strength and spatial organization of connectivity patterns
can change within seconds, resulting in multiple spatiotem-
poral organization patterns during one MRI scan.9–11

‘Dynamic’ FC approaches capture these changes of function-
al brain organization and allow for the investigation of tem-
poral properties, i.e. identification of distinct connectivity
states and analysis of transition trajectories between these
states—alterations of which may vary with the disease.9

Indeed, recent studies report intriguing evidence that dy-
namic FC analyses enable a better characterization of net-
work alterations in psychiatric and neurological diseases
compared to static FC approaches.10 Therefore, dynamic
FC measures are increasingly understood as meaningful
attributes to describe different disease phenotypes, e.g. in
schizophrenia, major depression, stroke and Alzheimer’s
disease.12–15

One common method to analyse dynamic FC applies a
clustering algorithm to obtain distinct functional brain
states, which are defined as time-varying, but recurrent pat-
terns of FC.16 This approach provides a specifically promis-
ing tool for disentangling the dynamic network changes
underlying the diverse neuropsychiatric symptoms in
anti-NMDA receptor encephalitis. Here, we used this ap-
proach to (i) investigate the spatiotemporal properties of
brain states in a large sample of patients with anti-NMDA
receptor encephalitis and healthy controls (HC); (ii) explore
the relationship between state dynamics, disease severity and
duration and psychiatric symptoms and (iii) evaluate the
potential of each brain state to discriminate between pa-
tients and controls using a supervised machine learning
approach.

Materials and methods
Participants
For this study, 57 patients with anti-NMDA receptor en-
cephalitis (female: 50, median age: 25.00+ 14.50 years)
were recruited from the Department of Neurology at
Charité-Universitätsmedizin Berlin. The diagnosis was
based on clinical presentation and detection of IgG
NMDA receptor antibodies in the cerebrospinal fluid.
Patients were in the post-acute disease stage, with a median

of 2.43 years (+ 2.95) between disease onset and MRI data
acquisition. The median disease duration, i.e. days spent in
hospitalization, was 63 days (+ 56.50, N= 52). Disease se-
verity at the time of scan was assessed based on the modified
Rankin scale (mRS; median mRS: 1.00+ 1.00,N= 55). The
control group consisted of 61 age- and sex-matched healthy
participants (female: 54, median age: 26.00+ 11.00 years)
with no history of neurological or psychiatric disease.
Clinical and demographic characteristics are summarized
in Supplementary Table 1. All participants gave written in-
formed consent, and the study was approved by the local
ethics committee.

MRI data acquisition
Structural and functional MRI data were acquired at the
Berlin Center for Advanced Neuroimaging at
Charité-Universitätsmedizin Berlin using a 20-channel head
coil and a 3 T Trim Trio scanner (Siemens, Erlangen,
Germany). For resting-state functional MRI (rs-fMRI), we
employed an echoplanar imaging sequence [repetition
time (TR)= 2.25 s, echo time= 30 ms, 260 volumes, vox-
el size= 3.4 mm× 3.4 mm× 3.4 mm]. High-resolution
T1-weighted structural scans were collected using a
Magnetization-Prepared RApid Gradient Echo sequence
(MPRAGE; 1 mm× 1 mm× 1 mm).

MRI data analysis
Our processing pipeline followed the procedure of recent re-
lated work.16 Preprocessing of rs-fMRI scans included dis-
carding the first five volumes to account for equilibration
effects, slice time correction, realignment to the first volume,
spatial normalization to MNI space (voxel size 2 mm×
2 mm× 2 mm) and spatial smoothing with a 6-mm full
width at half maximum smoothing kernel using the
CONN Toolbox (https://web.conn-toolbox.org/).

Group-independent component
analysis
To perform group-independent component analysis and dy-
namic functional network analysis, we applied the
GroupICA fMRI toolbox (GIFT, http://mialab.mrn.org/
software/gift/index.html). For each participant, 255 time
points were first decomposed into 150 temporally indepen-
dent principle components (PCs) and subsequently into
100 independent PCs using the Infomax algorithm.17 This
procedure was repeated 20 times in ICASSO to estimate
the reliability and ensure the stability of the decompos-
ition.18 For back-reconstruction of individual time courses
and spatial maps, gig-ica (integrated in the GIFT Toolbox)
was applied to the data.19 The resulting 100 independent
components were individually rated as signal or noise by
three independent raters (N.v.S., J.H., C.F.). In total, 39
components were assigned to functional networks based
on the labels proposed by Thomas Yeo et al.20 For cerebellar
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(CB) and subcortical (SB) components, two distinct net-
works were added. This yielded a total of seven functional
resting-state networks including sensorimotor (SM), visual
(VIS), SB, CB, DMN, dorsal attention and fronto-parietal
network (FPN). Supplementary Fig. 1 shows all functional
networks and Supplementary Table 2 contains peak values
and coordinates for all components. Finally, we applied add-
itional processing steps including linear, quadratic and cubic
detrending, motion regression (12 motion parameters) to re-
duce motion-related artefacts, high-frequency cut-off at
15 Hz, despiking (identified as framewise displacement
. 0.5 mm) and interpolation of time courses using a
third-order spline fit.

Static functional network
connectivity analysis
To compare the dynamic FC results with conventional ‘sta-
tic’ FC, we calculated the average pairwise connectivity be-
tween all component pairs across the resting-state scan
using Pearson’s correlation coefficient r for each subject.
Subsequently, age, sex and motion parameters were re-
gressed out, and Fisher z-transformation was applied.

Dynamic functional network
connectivity analysis
In order to obtain FC dynamics, FC between all component
pairs was calculated over consecutive windowed segments of
the time courses (i.e. sliding windows) using a window of
30TR length (≙ 67.5 s) that shifted in steps of 1TR
(≙ 2.25 s). After the correlation matrix was computed on
each window (i.e. 225 39× 39 matrices per participant),
Fisher z-transformation was applied and age, sex and mo-
tion parameters were regressed out as nuisance variables.
Subsequently, matrices of each participant were concate-
nated, and k-means clustering was applied with k= 4 ac-
cording to the elbow criterion (see Supplementary Fig. 2).
Thus, each window was assigned to one of the four clusters
representing discrete network FC states.16 Squared
Euclidean distance was applied for clustering, and the pro-
cess was repeated 100 times to avoid convergence on local
minima.

Statistical analysis for group
differences in static and dynamic
functional network connectivity
For a global characterization of the static and the state-wise
correlation matrices, modularity (as a measure of functional
network segregation) and absolute mean connectivity (re-
ferred to as ‘overall connectivity’) were calculated.21,22 In
the static FC analysis, both measures were calculated on
each subject’s connectivity matrix and subsequent group
comparison was performed using a non-parametric t-test
as applied in Glerean et al.23 In the dynamic FC analysis,

modularity and absolute mean connectivity were calculated
for all windows in each state and averaged for each subject.
Subsequently, a two-way ANOVA was conducted to esti-
mate group- and state-wise effects as well as their interac-
tion. For post hoc analysis, a Kruskal–Wallis test was
performed.

Next, we assessed group differences in FC between all
component pairs for the static and the dynamic functional
network analysis with respect to connectivity strength with
a non-parametric t-test. For the dynamic FC analysis, group
differences were evaluated for each state separately.

Statistical analysis for state dynamics
Besides the analysis of state-dependent connectivity pat-
terns, estimation of time-varying FC provides the opportu-
nity to capture dynamic metrics. Here, four commonly
used metrics were calculated: (i) dwell time (i.e. average
number of windows a participant spends in a particular
state), (ii) transition frequency (i.e. a participant’s number
of transitions between each pair of states), (iii) fraction
time (i.e. percentage of windows spent in a state) and (iv)
state occurrence rate (i.e. number of participants that en-
tered the state over the course of the scan).12,15 Group differ-
ences in occurrence rates were estimated using the z-test for
population proportions. For the other metrics, two-way
ANOVAs were conducted to estimate group- and state-wise
effects as well as their interaction. Post hoc comparisons
were evaluated with a non-parametric t-test or a Tukey’s test.

Between-group comparisons for the modularity and over-
all connectivity, static and dynamic functional network ana-
lysis, dwell time, fraction time and occurrence rates were
based only on participants who visited the respective state.

State-wise classification
Finally, group-wise analyses were complemented by a super-
vised binary classification approach to assess the potential of
the static FC markers and the four dynamic FC states to dis-
criminate between patients and controls. As previous work
has suggested visual, fronto-parietal and DMN areas to re-
present the biologically relevant discriminatory features in
anti-NMDA receptor encephalitis, these networks were con-
sidered as the set of input features.8 For the static design and
each state, logistic regression models were trained on the
z-scored FC indices to predict group status (anti-NMDA re-
ceptor encephalitis patients versus HC) in a leave-one-out
cross-validation (LOOCV) scheme. To facilitate model spar-
sity and counteract overfitting, embedded feature selection
was applied through L1 regularization. Hyperparameter op-
timization of the regularization strength λ was applied for
each state-input matrix (observations-by-connectivity fea-
tures) by searching a linearly spaced parameter grid that
was identical for all four states. Selection probability of
each feature was read out as the empirical rate of non-zeroed
feature weights over all predictions within a state. Prediction
performance was evaluated by standard confusion matrix
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measures (i.e. true and false positive and negative rates and
overall accuracy). Model training and prediction were im-
plemented in Matlab (The MathWorks, Inc., Natick, MA,
USA).

Data availability
The data that support the findings of this study are available
upon reasonable request from the corresponding author.
The code is available on GitHub (https://github.com/
nivons/statedynamicsNMDARE).

Results
Functional network analysis
Static functional network connectivity analysis
We observed pairwise (component-to-component) differ-
ences in static FC between anti-NMDA receptor encephalitis
patients and HC that clustered in the inter- and intra-
connectivity of the DMN (Fig. 1 and Table 1). In line with
previous studies,3,8 anti-NMDA receptor encephalitis pa-
tients showed decreased static connectivity between the
hippocampus (HPC) and the medial prefrontal cortex
(mPFC; PFDR, 0.05). In addition, anti-NMDA receptor en-
cephalitis patients exhibited significantly reduced DMNcon-
nectivity with the supplementary motor area, temporo-
parieto-occiptal junction (TPOJ), the parieto-occipital sulcus
(POS) and the superior frontal gyrus (SFG) and increased FC
with the orbito-frontal gyrus (OFG) (Puncorr, 0.001). There
was no significant difference between patients and controls
in modularity (mean+ SD: 0.35+ 0.09 versus 0.33+ 0.09;
t=−1.19, P= 0.12) and overall connectivity (0.30+ 0.05
versus 0.31+ 0.07; t= 0.63, P= 0.26).

Following previous studies that found a correlation be-
tween the mPFC-hippocampal connection and disease sever-
ity variables,3,8 we conducted a post hoc correlation analysis
(using Pearson’s correlation coefficient) between these regions
and disease severity at the time of scan (mRS). Higher mRS
scores were associated with a reduced connectivity between
the parahippocampal gyrus (PHG) and the mPFC (r=
−0.28, P= 0.040), as well as with lower connectivity be-
tween the hippocampus and the mPFC (r=−0.27, P= 0.05).

Dynamic functional network connectivity analysis
K-means clustering identified four connectivity states for HC
and anti-NMDA receptor encephalitis patients (Fig. 2).
Group-wise mean connectivity andmodularity for each state
are shown in Fig. 3. Multiple regression models for modular-
ity and overall connectivity yielded a significant effect for the
state (modularity, P, 0.001; overall connectivity, P,

0.001), but not for group or interaction. The dominant
State 1 closely resembled the static FC pattern (r= 0.94,
Supplementary Table 14) with low overall connectivity
and moderate modularity. States 2 and 3 were both charac-
terized by high overall connectivity, while only State 2 had a

highly segregated structure (i.e. high modularity). In con-
trast to State 3, State 4 exhibited high modularity and low
overall connectivity (Fig. 3, see Supplementary Tables 3−8
for detailed test statistics).

Anti-NMDA receptor encephalitis patients showed dis-
tinct FC alterations across the four connectivity states in
comparison to controls (Fig. 2 and Table 2). As in the static
FC group analysis, group differences comprised the DMN,
VIS and FPN, but in a state-dependent fashion: in the static
FC-resembling State 1, patients with anti-NMDA receptor
encephalitis displayed decreased connectivity between the
mPFC and the hippocampus, i.e. results very similar to the
findings in the static FC analysis. The highly modular State
2 showed impaired connectivity between the mPFC and
the angular gyrus (AG) as well as the parieto-occipital sulcus
in patients. Furthermore, the inferior frontal gyrus (IFG)
exhibited connectivity alterations with the putamen (bil.)
and the visual cortex. Similarly, the densely connected/high-
ly integrative State 3 was characterized by decreased con-
nectivity from the IFG to the putamen. Additionally,
connectivity between the TPOJ and the superior frontal
gyrus was reduced in anti-NMDA receptor encephalitis
patients compared to HC. For State 4, no significant altera-
tions were observed after false discovery rate (FDR)
correction.

Next, we obtained the correlation coefficient between all
significant component pairs and disease severity (mRS at the
time of scan) as well as disease duration (days in hospitaliza-
tion): in the strongly segregated State 2, higher disease sever-
ity was significantly associated with a decrease in FC
between mPFC and angular gyrus (r=−0.37, P= 0.019),
while in the densely connected/highly integrative State 3,
higher disease severity was significantly related to a decrease
in connectivity between TPOJ and dorsolateral superior
frontal gyrus (r=−0.39, P= 0.046). Due to the exploratory
nature of the study, post hoc correlation analyses were not
corrected for multiple comparisons.

State dynamics
In addition to state-wise connectivity patterns, we assessed
state and group differences in dwell time, transition fre-
quency, fraction time and occurrence rate using two-way
ANOVAs. We found a significant state effect in dwell times
(P= 0.00021): dwell times were higher for patients and con-
trols in State 1 compared to States 2 (T=−3.77, P=
0.0010) and 3 (T=−3.61, P= 0.0019). Importantly, a sig-
nificant group effect (P= 0.010) revealed a shift in dwell
times between patients and controls: while patients showed
lower dwell times in the dominant static FC-resembling State
1 (P= 0.020), they had higher dwell times in the strongly
segregated State 2 compared to controls (P= 0.032;
Fig. 4). Similarly, the model for transition frequencies
yielded a significant effect for the group (P= 0.044) and
state (P, 0.001). Post hoc group comparisons exhibited
higher transition frequencies in patients between states
with high and low overall connectivity, i.e. States 1 and 2
(P= 0.043), and between states with high and low across-
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network connectivity, i.e. States 3 and 4 (P= 0.0063; Fig. 4),
in comparison to controls. Furthermore, transitions from/to
State 1 were significantly more frequent than transitions
from States 2/3 to State 4 or vice versa. Fraction time dif-
fered across states (P= 0.0023), but not between groups
(P= 0.56). A post hoc test revealed higher percentages of
windows in State 1 compared to State 2 (T=−3.23, P=
0.0077) and 3 (T=−3.02, P= 0.014). Occurrence rates of
dynamic FC states were similar in anti-NMDA receptor en-
cephalitis patients and HC: the static FC-resembling State 1
showed the highest occurrence, followed by States 2 and 4;
the lowest occurrence rates were observed for the densely
connected/highly integrative State 3. Despite similar general
occurrences, state-wise between-group proportion tests re-
vealed that a higher number of patients visited the highly
segregated State 2 compared to controls (P= 0.019), while
the proportions were equal for both groups in States 1, 3
and 4. Detailed test statistics can be found in Table 3 and
Supplementary Tables 9–13.

To identify a relationship between disease severity vari-
ables (i.e. acute days in hospitalization and mRS score at
the time of scan) and dynamic metrics (i.e. dwell time and
transition frequency), we conducted Pearson’s correlation
analyses between these variables. We found that increased
transition frequency between States 1 and 2 was associated
with disease severity at the time of scan (r= 0.34, P=
0.012). We further compared dwell time and transition fre-
quency from patients with positive and negative
schizophrenia-like psychiatric symptoms to those without

respective psychiatric symptoms. Here, patients with posi-
tive symptoms exhibited higher dwell times (z= 2.07, P=
0.038) in the highly segregated State 4 compared to those
without positive symptoms. In contrast, patients with
negative symptoms showed higher dwell times (z= 2.02,
P= 0.043) in the densely connected/highly integrative
State 3 compared to those without negative symptoms.

Classification analyses
Binary classification (anti-NMDA receptor encephalitis pa-
tients versus HC) based on static connectivity features
yielded an overall prediction accuracy of 72%, with ba-
lanced feature distribution across the networks (see
Supplementary Fig. 3). When dynamic connectivity features
were considered, discriminatory power differed in a state-
wise fashion. Prediction performance was lowest for the
dominant, static FC-resembling State 1 (overall accuracy
of 61.5%), intermediate and similar to model performance
with static feature input for the modular-structured States
2 (72.6%) and 4 (70.8%), and highest for the least frequent
and densely connected/highly integrative State 3 (78.6%; see
Supplementary Fig. 4 for the state-wise confusion matrices).
Besides model evaluation outcomes, the feature selection fre-
quencies over individual predictions in the LOOCV scheme
also varied across states (Fig. 5). While States 1 and 3 yielded
balanced selection rates over both across- and within-
network connectivity features, States 2 and 4 showed fewer
discriminatory features, and these were primarily across-
network connections (FPN to VIS and DMN for State 2

Figure 1Mean static functional connectivitymatrix across brain regions of anti-NMDA receptor encephalitis patients and HC.
Darker red/blue colours indicate higher positive/negative correlation values between component pairs. Green circles mark lower correlation
values in anti-NMDA receptor encephalitis compared to controls, and yellow circles indicate higher correlation values in anti-NMDA receptor
encephalitis compared to controls. Small black rectangle indicates significant difference of FC between the hippocampus (Region 59) and the
mPFC (Region 36) between patients and controls after FDR-correction (PFDR, 0.05), while no rectangle indicates differences between groups
for Puncorr, 0.001. Highlighted regions are displayed with anatomical labels. A key for the region numbers is provided in Supplementary Table 2.
Big diagonal rectangles indicate functional networks, e.g. the sensorimotor network that comprises regions 6, 15, 23, 44 and 78. NMDARE,
anti-NMDA receptor encephalitis.
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and DMN to VIS for State 4). Importantly, although some
connectivity features were discriminatory across several
states (e.g. component pairs 12–90 showed high selection
frequency for States 1–3), the constellation of predictive fea-
tures changed dynamically over connectivity states, empha-
sizing the uniqueness of each state.

Discussion
In this study, we applied dynamic FC analyses to character-
ize distinct connectivity patterns and temporal dynamics of
network interactions in anti-NMDA receptor encephalitis.
Investigating state-specific FC alterations, we found a
marked impairment of FC between the hippocampus and
the mPFC in the most visited, i.e. dominant state. This con-
nectivity pattern closely mirrored observations in the static
FC analysis and corroborated previous findings.3,8 Three
additionally identified states showed connectivity alterations
within the DMN and between frontal, visual and SB areas—
findings that remained undetected in the static FC analysis.
Investigation of state dynamics showed a systematic shift
in dwell time from the dominant state to a strongly segre-
gated state in patients. Likewise, negative and positive
schizophrenia-like symptoms were associated with distinct
patterns of state preference. In addition, an increased volati-
lity of transitions between states with high and low overall
connectivity and states with high and low segregation was
observed in patients. These state dynamics were associated
with disease severity. Finally, classification analyses revealed
that discriminatory network features and predictive power
varied dynamically across states, exceeding the discrimin-
atory power of static FC analyses and yielding the highest
prediction in a highly connected/highly integrated state.
Our observations demonstrate the potential of time-resolved
FC analysis for a better characterization of disease mechan-
isms involved in anti-NMDA receptor encephalitis.

Static functional network
connectivity analysis
In line with previous studies, conventional static FC analyses
showed impaired connectivity between the mPFC and the

hippocampus as well as altered connectivity patterns in
frontal parts of the DMN.3,8 Indeed, the CA1 subregion of
the hippocampus and the prefrontal cortex contains the
highest density of NMDA receptors.24 Converging observa-
tions of disrupted hippocampal–prefrontal connectivity are
thus biologically plausible and point to a robust disease bio-
marker and potential treatment target in anti-NMDA recep-
tor encephalitis. Furthermore, both brain regions are main
components of the DMN and are involved in memory and
executive functions25,26—the two cognitive domains most
frequently impaired in patients with anti-NMDA receptor
encephalitis.4,6,27,28

Dynamic functional network
connectivity analysis
However, these findings are inherently limited to a static
account of connectivity changes. Time-varying FC, in
contrast, captures moment-to-moment changes in connectiv-
ity, reflecting a more physiologically plausible model of brain
activity. One line of thought hypothesizes that the temporal
variability of FC networks enables a systematic exploration
of network configurations, which allows brain regions to dy-
namically (dis-)engage, and modulate changes in cognition
and behaviour.29 Dynamic state analysis as employed in
this study represents a powerful tool to describe these dynam-
ics and potential instabilities of this process.16

Indeed, state-wise group comparisons revealed connectiv-
ity differences between patients and controls in three out of
four states. These differences were most pronounced in
within- and across-network connectivity of the DMN and
almost exclusively manifested as reduced connectivity
strength in anti-NMDA receptor encephalitis.

State 1 represented the dominant state, i.e. the most vis-
ited state, the state in which participants remained longest
and that was involved in most transitions. The connectivity
pattern of State 1 was characterized by low overall connect-
ivity and low segregation. Anti-NMDA receptor encephal-
itis patients showed a significantly impaired hippocampal–
prefrontal connectivity in comparison to controls that
closely resembled the pattern observed in current and pre-
vious static FC analyses.3,8 Thus, the connectivity pattern

Table 1. Test results of static functional network connectivity analysis

Regions Network Component # Puncorr PFDR T d

mPFC—hippocampus DMN—DMN 36–59 ,0.0001* 0.00024* 4.36 0.62
mPFC—SMA DMN—SM 36–23 0.00092 0.15 3.30 0.44
mPFC—TPOJ DMN—VIS 33–38 0.00084 0.15 3.26 0.54
mPFC—TPOJ DMN—VIS 36–38 0.00061 0.15 3.40 0.45
mPFC—PHG DMN—DMN 36–14 0.00016 0.12 3.85 0.55
SFG—POS DMN—dATT 24–80 0.00072 0.15 3.29 0.52
mPFC—OFG DMN—FPN 33–29 0.00043 0.15 −3.48 −0.37
mPFC—SFG DMN—DMN 36–61 0.00087 0.15 3.27 0.40
STG—SFG DMN—FPN 40–89 0.00057 0.15 3.24 0.49

Table includes component name, network assignment, number (#), t-value, P-value and effect size (d) of component pairs that are highlighted in Fig. 1.
*Significant after FDR-correction.
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Figure 2 Dynamic functional network connectivity states for anti-NMDA receptor encephalitis patients and healthy controls.
Darker red/blue colours indicate higher positive/negative correlation values between component pairs. Green circles mark lower correlation
values in anti-NMDA receptor encephalitis compared to controls and yellow circles indicate higher correlation values in anti-NMDA receptor
encephalitis compared to controls. Small black rectangles indicate significant differences of FC between patients and controls after
FDR-correction (PFDR, 0.05). Highlighted regions are displayed with anatomical labels. A key for the region numbers is provided in
Supplementary Table 2. Big diagonal black rectangles indicate functional networks, e.g. the sensorimotor network that comprises regions 6, 15, 23,
44 and 78. NMDARE, anti-NMDA receptor encephalitis.
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in the dominant State 1 seems to drive findings of altered
connectivity in conventional static FC analyses. In contrast,
States 2–4 showed strikingly different features. FC altera-
tions in States 2 and 3 went beyond the aggregated findings
of the static analysis and revealed impaired connectivity
between the mPFC and parieto-occipital areas, and between
the IFG and the putamen (State 2). The latter is also pre-
sent in State 3 along with impaired frontal-parietal
connectivity.

Importantly, correlation analyses revealed that these dy-
namic FC alterations were associated with disease severity
and disease duration, primarily involving mPFC connectiv-
ity and highlighting the clinical relevance of these findings.
Together, these results disentangle state-specific connectivity
patterns observed in conventional FC analyses and indicate
the potential differential contribution of state-wise FC al-
terations to clinical symptoms and disease stages.

State dynamics
In addition to these alterations in large-scale connectivity
patterns in different states, anti-NMDA receptor encephal-
itis patients showed distinct temporal properties with re-
spect to connectivity states, i.e. different transition
frequencies and dwell times in comparison to controls.

This involved a systematic shift in dwell time from the dom-
inant State 1 to the segregated State 2, with patients nearly
doubling their dwell time in State 2. Interestingly, recent evi-
dence shows that successful working memory performance
relies on increased network integration.30 Prolonged dwell-
ing in the segregated, less-integrated State 2 might thus be re-
lated to the frequently observed working memory deficits in
anti-NMDA receptor encephalitis.4 Remarkably, patients
who experienced positive schizophrenia-like symptoms
spent more time in the highly segregated State 4, while those
with negative symptoms increased their dwell time in the
highly integrative State 3. These observations are consistent
with recent studies in schizophrenia showing an increased
modular network structure in patients.31

Additionally, patients showed an increase in transition
frequencies between States 1 and 2 as well as between
States 3 and 4. These transition frequency alterations were
significantly correlated with disease severity, indicating
that severe anti-NMDA receptor encephalitis disease courses
are associated with more volatile transition dynamics, while
state preference (i.e. dwell time) is not affected. The dynamic
interplay between brain regions—in the sense of the flexible
(dis-)engagement of functional links and state transitions—
is critical to efficiently process internal and external stimuli
and flexibly adapt behaviour. While state transitions are

Figure 3 State-wise comparison of overall connectivity and modularity. In general, States 1 and 4 exhibited weak overall state
connectivity compared to States 2 and 3. Segregation of functional networks, as measured with modularity, was highest in States 2 and 4, followed
by State 1 and weakest in State 3. Black dots and vertical lines represent mean and standard deviation **P, 0.001 (Bonferroni-corrected). *P,
0.01 (Bonferroni-corrected). Detailed test statistics can be found in Supplementary Tables 3–8.

Table 2. Test results of dynamic functional network connectivity analysis

Regions Network Component # PFDR T d

State 1 mPFC—hippocampus DMN—DMN 36–59 0.0016 4.01 0.60
State 2 prim. Visual—IFG VIS—FPN 11–71 0.016 −3.80 −0.57

Putamen—IFG SC—FPN 5–71 0.016 4.09 0.56
mPFC—angular gyrus DMN—DMN 36–84 0.016 3.83 0.54
mPFC—POS DMN—dATT 36–10 0.016 4.06 0.79

State 3 TPOJ—SFG VIS—FPN 38–89 0.00021 4.33 0.78
Putamen—IFG SC—FPN 5–71 0.041 3.99 0.69

Table includes component name, network assignment, number (#), t-value, P-value and effect size (d) of component pairs that are highlighted in Fig. 2.
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thought to be generally important to explore different brain
states in order to facilitate and enhance cognitive flexibility,
overly unstable transition dynamics may be linked to defi-
ciencies in the integration and stable representation of infor-
mation.29,32 The imbalance of stability and volatility may,
therefore, lead to impaired memory, perception or executive
functions.33,34 These suggestive links between state dynam-
ics and impaired cognitive performance in anti-NMDA re-
ceptor encephalitis require further detailed investigations
in combined task-based and resting-state fMRI studies.35

Relation to other brain disorders
Previous studies have applied dynamic FC analyses to brain
disorders such as major depression, Alzheimer’s disease or
schizophrenia.12,13,15,36,37 In these studies—and those with

HC only16—the most visited state resembled the weakly
connected dominant State 1 in the present study suggesting
the brain’s preference for a cost-efficient, energy-saving ‘de-
fault’ state.38,39 Moreover, patient groups showed charac-
teristic changes in state dynamics, such as altered state
occurrences, transition frequency or dwell times.12,13,36,37

In patients with major depression, decreased variability in
FC is the most prominent finding along with prolonged
dwell times in the weakly connected dominant state.13,40–
42 Changes in dynamic metrics were associated with sadness
and disease severity and may mirror main symptoms includ-
ing negative, slow and ruminative thinking.13,40

A different pattern was found for patients with
Alzheimer’s disease. Similar to patients with anti-NMDA re-
ceptor encephalitis, state transitions are more volatile and
patients tend to spent more time in less frequent,

A B

Figure 4 Group differences in state dynamics. (A) Group differences in average dwell time (in windows). Solid lines point to significant
differences in post hoc testing between groups (non-parametric t-test, uncorrected). (B) Group differences in transition frequencies between
states (P-values). For transition frequencies, the direction of transition was ignored. Post hoc group comparisons were calculated using a
non-parametric t-test (uncorrected). *P, 0.05; **P, 0.01. NMDARE, anti-NMDA receptor encephalitis.

Table 3. Group differences in dwell time (average number of windows), transition frequencies between states
(absolute numbers) and fraction time (percentage).

State NMDARE patients (mean+++++SD) Healthy controls (mean+++++SD) Puncorr d

Dwell time 1 46.6+ 53.8 75.7+ 85.6 0.020* 0.43
2 34.9+ 49.9 17.6+ 30.6 0.032* −0.42
3 14.2+ 22.8 16.2+ 28.0 0.21 0.22
4 24.3+ 45.0 30.3+ 58.8 0.12 0.31

Transition frequency 1–2 1.3+ 1.5 0.8+ 1.37 0.043* −0.34
1–3 0.8+ 1.4 0.8+ 1.42 0.85 0.03
1–4 1.3+ 1.9 1.1+ 1.95 0.55 −0.11
2–3 0.5+ 1.3 0.7+ 1.31 0.44 0.14
2–4 0.3+ 0.8 0.3+ 0.95 0.92 0.01
3–4 0.3+ 0.9 0.0+ 0.13 0.0063* −0.50

Fraction time 1 51.0+ 33.1 54.7+ 38.0 0.30 0.11
2 31.5+ 29.0 31.5+ 25.8 0.48 0.01
3 27.4+ 27.7 32.3+ 29.2 0.27 0.17
4 32.8+ 31.7 39.1+ 33.9 0.22 0.20

Group differences were calculated using a two-sided non-parametric t-test. P-values and effect sizes (d) are shown. NMDARE, anti-NMDA receptor encephalitis.
*P, 0.05 (uncorrected).
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functionally segregated states as compared to HC.36,37

Interestingly, however, opposite results have also been re-
ported,43 potentially because dynamic connectivity pattern
alterations change progressively across disease stages.

Furthermore, our results show a notable convergence
with recent studies in patients with schizophrenia reporting
a similarly marked shift in state preference12 as well as in-
creased overall transition frequencies,44 and altered modular
network structure.31 Given the considerable overlap in psy-
chiatric symptoms in patients with schizophrenia and
anti-NMDA receptor encephalitis45,46 and the glutamate

hypothesis positing NMDA receptor dysfunction as the
pathophysiological basis for cognitive and psychiatric symp-
toms in schizophrenia,47,48 our findings raise the interesting
possibility that the transdiagnostic psychopathological pro-
file of both diseases49 could be paralleled by a common set of
dynamic network alterations.

Classification analyses
While our findings support the role of the hippocampus, the
anterior DMN and frontal areas as potential connectivity

Figure 5 Feature selection matrices for state-wise predictions of group status (anti-NMDA receptor encephalitis patients
versus healthy controls). The feature selection exceeding a minimum threshold at 10% of individuals within state predictions are displayed.
Bigger and brighter circles indicate a higher selection rate. A key for the region numbers is provided in Supplementary Table 2. NMDARE,
anti-NMDA receptor encephalitis.
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biomarkers in anti-NMDA receptor encephalitis, group-
level analyses are not suited to estimate the discriminatory
power of connectivity alterations or their value to predict
disease severity.50 To this end, we applied classification ana-
lyses based on logistic regression models to these data.
Prediction performance and the set of selected network fea-
tures were variable across the different connectivity states,
indicating that discriminatory network constellations differ
between states. Interestingly, the best performance (78.6%
accuracy) was achieved in State 3, which showed the lowest
overall occurrences but a highly integrative connectivity pat-
tern. In contrast, static FC distinguished patients from con-
trols with 72% accuracy. These results show that dynamic
FC models can outperform static models and indicate the
potential of spatiotemporal FC dynamics as prognostic bio-
markers in anti-NMDA receptor encephalitis. However, fur-
ther prospective studies are needed to identify biomarkers
that can be used on the individual participant level and in
clinical settings.

Limitations
Some limitations of the present study deserve mentioning.
First, window-based approaches require the specification
of windowing parameters and the optimal choices in this re-
gard are an active area of research and debate.51 Second, a
given window size may only capture a part of the dynamic
nature of the human brain, as networks may reconfigure
over different time scales even within the possible temporal
spectrum of MRI signals.51 Lastly, for classification ana-
lyses, it is generally sensible to include large amounts of
data.50 While our study is based on a large study population
in the light of the incidence of the disease, the sample sizes
per state varied as not all participants visited all states.

Conclusions
Our analyses identified distinct brain states with characteris-
tic patterns of FC alterations and shifted temporal dynamics
in patients with anti-NMDA receptor encephalitis that re-
mained undetected in conventional static analyses.
Critically, dynamic FC measures correlated with disease se-
verity and psychiatric symptoms, suggesting that altered
resting-state dynamics carry meaningful clinical information
about anti-NMDA receptor encephalitis. Given converging
findings in other neuropsychiatric diseases, time-resolved
FC analysis holds promise for an improved characterization
and understanding of brain functioning in these disorders.
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