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Rapid advances in single-cell epigenomics technologies, 
including single-cell assay for transposase-accessible chro-
matin with high-throughput sequencing (scATAC-seq), have 

enabled the interrogation of gene regulation at an unprecedented 
resolution. scATAC profiles the accessibility of chromatin across the 
whole genome and is currently the most widely adapted protocol to 
identify candidates of regulatory regions of importance to the sys-
tem under investigation. The resulting datasets require specialized 
computational tools to cope with their characteristic high dimen-
sionality and sparsity and will rely on scalability for future datasets.

A key step in every scATAC-seq processing pipeline is dimen-
sionality reduction, which aims to represent the most salient trends 
in the data at lower dimensionality, such as groups of similar cells. 
The quality of this step is critical, as it precedes other analysis tasks, 
including cell-type characterization, identifying cell-type specific 
regulatory regions, motif analysis and so on. Several methods have 
been introduced for dimensionality reduction using scATAC-seq 
data, including scABC1, chromVAR2, Scasat3, latent Dirichlet allo-
cation (cisTopic)4, latent semantic indexing (LSI)5, iterative LSI6, 
SnapATAC7, SCALE8, scDEC9 and PeakVI10. A recent benchmark 
analysis showed that current computational tools work well for 
cell-type characterization for small or moderate dataset sizes, but may 
not scale to large dataset sizes and/or vary in performance across dif-
ferent datasets11. Apart from performing dimensionality reduction, 
the growing number of published datasets opens up new avenues for 
data integration of replicates or data obtained with different proto-
cols, such as combinatorial indexing or droplet-based approaches12.

To address the lack of dedicated scATAC-seq tool that enable simul-
taneous data integration (for example, batch correction) and dimen-
sionality reduction, we have developed BAVARIA, a batch-adversarial 
variational auto-encoder (VAE)13, which facilitates dimensional-
ity reduction and integration for scATAC-seq data. To this end, we 
extended the standard VAE framework in several ways. First, inspired 
by combining deep learning with specialized and suitable count noise 
models for processing single-cell RNA-seq data (for example, by 

using a zero-inflated negative binomial distribution14,15), we set out to 
find a suitable count model for scATAC-seq. We identified the nega-
tive multinomial-based reconstruction loss to outperform alternative 
reconstruction losses with respect to extracting useful information 
about the underlying cell types, including the binary cross-entropy 
or the multinomial-derived loss (Extended Data Fig. 1 and Methods). 
The multinomial part of the reconstruction loss describes the acces-
sibility profile across all regions as a whole, rather than considering 
the regions independently (for example as is assumed for the binary 
cross-entropy loss). This reduces the risk of obtaining a poor local 
minimum (for example, due to overfitting) and achieves invariance 
with respect to the read depth. The dispersion parameter, on the other 
hand, offers robustness against outliers during training. Second, fit-
ting neural networks is commonly based on stochastic optimiza-
tion, which may lead to variable latent feature quality across multiple 
training runs. Due to the optimizer getting stuck in a poor local opti-
mum, cell types may occasionally be poorly characterized. Here, an 
ensemble approach, whereby latent features of several independently 
trained models are concatenated, not only stabilizes the latent feature 
quality, but also appears to improve their feature quality compared 
to latent features from individual models (Extended Data Fig. 2 and 
Methods). Third, we adopted a domain-adversarial training strategy16 
that encourages the VAE to extract latent features uninformative of 
batch effects. Specifically, we use batch-discriminator networks not 
only at the final layer of the encoder as suggested in Ganin et al.16, 
but also at intermediate layers of the encoder (Fig. 1). This puts more 
emphasis on removing irrelevant batch-associated information in the 
initial layers of the network, which we find to enhance the batch cor-
rection capabilities (see comparison below and Methods). We refer to 
our approach as batch-adversarial VAE or BAVARIA (Fig. 1).

BAVARIA improves cell-type characterization
We systematically assessed the ability of BAVARIA-derived 
low-dimensional feature representations for cell-type charac-
terization on a range of real and synthetic datasets. To this end,  
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we expanded on a recently published benchmarking framework11 for 
comparision with current state-of-the-art solutions (cisTopic4, LSI5, 
SnapATAC7, ArchR6, scDEC9, SCALE8 and PeakVI10). Briefly, for 
each method, a low-dimensional feature representation is extracted 
and subjected to cell clustering. For BAVARIA, the low-dimensional 
representation is derived from the latent features of the encoder. 
Subsequently, a range of clustering evaluation scores are used to 
determine how well the cell clusters reflect cell identities based on 
known ground truth cell labels (if available) or by assessing the sep-
aration of known marker genes (Methods and ref. 11).

Across three publicly available datasets, we observe variable per-
formance of LSI, cisTopic, SnapATAC, SCALE, ArchR and PeakVI. 
Compared to these methods, scDEC seems to perform less well 
on the datasets. No single method consistently outperformed the 
other methods across the datasets (Fig. 2c,d). On the other hand, 
we find that BAVARIA robustly achieves best or competitive per-
formance for uncovering cell identities across all real datasets  
(Fig. 2c,d). While PeakVI achieves a slightly better performance 
compared to BAVARIA on the Cusanovich 2018 subset when evalu-
ated with the adjusted Rand Index (ARI) score, we find BAVARIA 
to perform similarly well or slightly better on that dataset for the 
adjusted mutual information (AMI) and homogeneity score (Hom). 
The performance of BAVARIA is also exemplified by the separation 
of known cell types in the uniform manifold approximation and 
projection (UMAP) embedding (Fig. 2b) and the high similarity of 
network-imputed and original signal tracks within distinct known 
cell types (Fig. 2a).

Next, we assessed the performance of the methods at different 
read depths and noise levels using two synthetic datasets (a bone 
marrow and an erythropoiesis dataset). We generated larger sim-
ulated datasets relative to ref. 11, as we found previous sizes to be 
insufficiently small to reflect current realistic experiments and for 
fitting large neural networks (Methods). For the synthetic bone 
marrow datasets, LSI and BAVARIA both achieve similar high 
performance across all sparsity levels, while the performance of 
cisTopic, SnapATAC, SCALE, PeakVI and scDEC decrease sooner 
with decreasing read depth (see 250 and 500 fragments per cell; 
Extended Data Fig. 3a). All methods perform similarly well on 
higher noise levels for the bone marrow dataset, except for scDEC 
which exhibited a systematically lower performance than the other 
tools and PeakVI which exhibited a moderate performance decrease 

for 40% noise (Extended Data Fig. 3b). On a synthetic erythropoie-
sis dataset, all methods achieve similar results for the high read cov-
erage regime (see ‘5,000 fragments per cell’; Extended Data Fig. 3c).  
Yet, with decreasing read coverage, BAVARIA outperforms the 
other methods (see 1,000, 500 and 250 fragments per cell; Extended 
Data Fig. 3c). In addition, LSI and BAVARIA perform best for 0% 
and 20% additional noise, and BAVARIA outperforms all other 
methods for 40% additional noise using synthetic erythropoiesis 
data (Extended Data Fig. 3d).

Overall, in comparison to other methods we find that BAVARIA 
is robust and capable of extracting meaningful latent feature  
representations across a range of datasets.

Batch-adversarial training facilitates data integration
Having established the superior performance on benchmark 
tasks, we turned to BAVARIA’s signature feature of data integra-
tion. We analysed two adult mouse brain cell samples from dif-
ferent sources: 10X Genomics17 and Cusanovich et al.5 (Methods). 
To quantify the contribution of our new data integration strategy, 
we first disabled adversarial training with BAVARIA. Here, cells 
from the two datasets occupy non-overlapping territories in the 
cell embedding space, which underlines the severity of the batch 
effect (Fig. 3a). That is, cells largely cluster by batches. By con-
trast, with batch-adversarial training, BAVARIA achieves a mark-
edly better alignment between cells from different batches, while 
also largely maintaining a separation between previously annotated 
cell types (Fig. 3b). Compared to the originally proposed adversar-
ial strategy by Ganin et al.16 of using a single batch-discriminator 
network at the final layer of the encoder, we observe an improved 
cell-mixing performance when batch discriminators are placed not 
only on the final encoder layer, but also on the hidden encoder lay-
ers (Extended Data Fig. 4). In addition, we observe considerable 
batch effects when using a conditional VAE variant of BAVARIA in 
which one-hot encoded batch labels are used as additional inputs 
for the encoder (Extended Data Fig. 4)—similar to that proposed  
for scVI15.

We compared BAVARIA against several batch integration meth-
ods (scVI, trVAE, SAUCIE, Harmony, Seurat v3 CCA, Liger and 
PeakVI). With the exception of PeakVI, the other tools were not 
specifically designed for processing scATAC-seq data. This enabled 
us to assess whether a dedicated approach to the characteristics of 
single-cell open chromatin would surpass a naive strategy to use a 
tool tailored to a different modality. Indeed we find that BAVARIA 
and PeakVI appear to achieve a reasonable separation between cell 
clusters, compared to tools that were not specifically designed for 
processing scATAC-seq data (Fig. 3b). For instance, with SAUCIE 
and trVAE different cell-types largely remain connected in the 
embedding. Harmony appears to have merged some cell types 
(see the centre-top in the Harmony panel of Fig. 3b). The integra-
tion with Liger has lead to a substantial number misalignments of 
10X-derived cells with Cerebellar granule cells and a considerable 
amount of batch effects is still visible after the integration with 
Seurat (Fig. 3a,b). Not only does BAVARIA separate cell types rea-
sonably well, but our model also yields a markedly better mixing 
of cells between batches compared to all other tools as measured 
by the kBET score and as is evident from the UMAP embeddings  
(Fig. 3a). In particular, we find that batch-conditional VAE models 
(for example scVI, PeakVI and the conditional variant of BAVARIA), 
are prone to leaving residual batch effects after the integration  
(Fig. 3a and Extended Data Fig. 4).

Next, we clustered the cells based on the joint latent features and 
inspected pseudo-bulk accessibility profiles stratified by the batches 
around several marker genes. For clusters with relatively even rep-
resentation of cells from both batches, highly concordant accessibil-
ity profiles across clusters can be observed (for example, Scl17a7, 
Caln1, Gad2, Tmem119, Aldh1l1, Mbp and Abca4; Extended Data 
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Fig. 1 | Schematic representation of BAVARIA. A variational auto-encoder 
utilizing a negative multinomial reconstruction loss and a batch-adversarial 
training strategy for data integration (BAVARIA). Latent features of the 
encoder network module serve as low-dimensional representation of the 
high-dimensional original accessibility profile.
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Fig. 5a,b,d,e). This suggests that the latent features derived from 
BAVARIA are suitable for cell label transfer, as cells appear to cluster 
together based on their underlying cell type. On the other hand, as 
a sign for successful integration of data taken from similar but not 
identical sources, we also find cell clusters that are primarily pres-
ent in one of the samples. For instance, cluster 0 and 18 consist of 
mostly Cusanovich 2018 cells which exhibit accessibility at Mmp24 
and Itga11, whereas cluster 16 consists of mostly 10X Genomics cells 
which exhibit cluster-specific accessibility around Sh3bp4. While 
label transfer from an annotated reference onto a dataset without 
cell-type annotation is possible in a supervised manner (for exam-
ple, by classifying cell types based on their accessibility profile), 
unsupervised data integration (for example, via BAVARIA) offers 
the possibility to correct and account for imperfections of the origi-
nal cell annotations (for example, reference dataset). For instance, 
we observe several sub-populations of cells that have previously 
been annotated as inhibitory neurons (for example, clusters 4 and 
14; Extended Data Fig. 5a). We do not find a separation of these 
cell clusters when using the other integration methods. Similarly, 
a cell population previously annotated as unknown (cluster 22; 

Extended Data Fig. 5c) likely represents doublet events between 
cerebellar granular cells and oligodendrocytes, as these cells exhibit 
specific accessibility for both cell types (compare clusters 0, 2 and 
22; Extended Data Fig. 5c).

Computational requirements
We compared VAE-based models (SCALE, scVI, PeakVI and 
BAVARIA) and cisTopic in terms of runtime and memory require-
ments on a synthetic bone marrow dataset consisting of 12,000 
cells and 80,000 peaks and a coverage of 5,000 reads per cell (based 
on the synthetic data from the benchmarking framework). The 
comparison was performed on a Linux server using an Intel Xeon 
Platinum 8168 CPU @ 2.70GHz processor with 3 TB RAM and an 
NVIDIA Tesla P40 GPU. The VAE-based models utilized a GPU for 
model fitting. All models were fitted for 100 epochs with otherwise 
default settings. For BAVARIA, a single VAE was fitted. A cisTopic 
model was fitted with 10 topics using CPUs.

The runtime for cisTopic is markedly higher than the deep 
learning-based methods, as the latter set of methods benefit  
from GPU-accelerated processing (Supplementary Table 1).  
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of the individual models (excluding outlier models; Methods). The concatenated latent features were used as input to the UMAP algorithm. c, Cell clustering 
based on the derived low-dimensional feature representations were evaluated by comparing clusters against known ground truth cell labels on hematopoiesis 
data (Buenrostro 2018 and Buenrostro 2018 bulkpeaks19) and mouse tissue cells (Cusanovich 2018 and Cusanovich 2018 subset5) using the AMI, ARI and 
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the mean score (dot) and error bars that denote the ±s.e.m. d, Clustering performance evaluated on 10X Genomics 5k PBMCs24 using the residual average 
Gini index (RAGI). which is based on marker gene separation11. Results for LSI, cisTopic and SnapATAC were obtained from the benchmark assessment11. An 
ensemble of BAVARIA was run three times. The performances are summarized by the mean score (bar) and error bars that denote the ±s.e.m.
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Fitting a single VAE within BAVARIA requires similar or slightly 
lower runtime compared to the other VAE-based methods 
(Supplementary Table 1).

All methods handle data in the form of sparse matrices, which 
is critical for scATAC-seq processing and in general leads to similar 
memory footprints. For BAVARIA, we make use of tensorflow data 
pipelines18 to optimize mini-batch processing during training and 
evaluation. This, however, introduces a higher memory overhead 
compared with the other methods (Supplementary Table 1).

In general, the memory and runtime requirements of BAVARIA 
depend linearly on the number of cells and the number of peaks. 
Additionally, the runtime depends linearly on the number of train-
ing epochs and the ensemble size. For large datasets, a trade-off 
between speed and accuracy can be achieved by (1) adjusting the 
ensemble size, (2) by subsetting the cells for model fitting and/or (3) 
by subsetting the available features (for example, peaks).

Conclusion
In summary, we have developed a VAE for integrating sparse and 
high-dimensional scATAC-seq data (BAVARIA). We demonstrated 
that several unique aspects, regarding robust training and noise 
modelling for scATAC count data, allow the model to match and 
exceed the performance of current state-of-the-art solutions for 
cell type characterization across (1) different dataset sizes, (2) dif-
ferent read depths and (3) different noise levels. Importantly, its 
batch-adversarial training strategy makes BAVARIA the first tool 
to facilitate data integration and accurate batch correction across 
different scATAC protocols.

Methods
Benchmark analysis. Data for the benchmark analysis was obtained by following 
and adapting a recently published scATAC-seq benchmarking framework11. 
We obtained (1) a haematopoietic differentiation dataset (n = 2,034 cells; 
Buenrostro 201819), (2) a single-nucleus combinatorial indexing ATAC-seq mouse 
tissue dataset (n = 81,173 cells; Cusanovich 20185) and (3) a peripheral blood 
mononuclear cell dataset (n = 5,335 cells; 10X peripheral blood mononuclear cells 
(PBMC) 5k). The former two datasets also include ground truth cell labels from 

fluorescence-activated cell sorting (FACS) sorted cells or by using the tissue of 
origin as label. The benchmark also includes a 15% subset of cells from the mouse 
tissue dataset (n = 12,178 cells; Cusanovich 2018 subset5).

The haematopoietic dataset was independently processed twice with two 
different sets of peaks. Namely, peaks determined on the scATAC-seq by Chen 
et al.11 (Buenrostro 2018) and the original peak set reported by Buenrostro et al.19 
(Buenrostro 2018 bulkpeaks).

Preprocessing includes feature counting in the pre-defined peak regions, 
binarization of the count matrix, filtering for a minimum read coverage per 
peak (at least 1% of cells need to be covered at the region), and removing sex 
chromosomes. This led to 98,738, 132,110, 378,894, 141,388 and 67,427 peaks for 
the Buenrostro 2018, Buenrostro 2018 bulkpeaks, Cusanovich 2018, Cusanovich 
2018 subset and 10X datasets, respectively.

We followed the procedure of ref. 11 to generate several synthetic datasets  
based on FACS-sorted bulk-ATAC-seq samples from bone marrow20 and 
erythropoiesis 21, as described previously11. As the originally published 
benchmarking assessment consists of too few cells for fitting large neural networks, 
we increased the numbers of cells. Specifically, for bone marrow, 2,000 cells per 
population were generated with different fragment sizes per cell (5,000, 2,500, 
1,000, 500 and 250 fragments) as well as for different noise levels (0%, 20%  
and 40% additional noisy reads). Likewise, for erythropoiesis, 1,000 cells per 
population were generated with different fragment sizes per cell (5,000, 2,500, 
1,000, 500 and 250 fragments) as well as for different noise levels (0%, 20% 
and 40% noise). Note also that the downsampling experiment based on the 
erythropoiesis data was not part of the original benchmarking assessment11. 
Finally, for all synthetic datasets, the 80,000 most covered regions were retained  
for the benchmark analysis.

Mouse brain cell integration. We downloaded fresh adult mouse brain cell 
data from the 10X Genomics web site (https://support.10xgenomics.com/
single-cell-atac/datasets/1.2.0/atac_v1_adult_brain_fresh_5k) as well as 
scATAC-seq data from several mouse tissues5 from https://atlas.gs.washington.edu/
mouse-atac/data/.

We used the peaks provided by 10X Genomics as reference peaks17. The 
master peaks from Cusanovich et al.5 were lifted over from mm9 to mm10 and 
mapped onto the reference peaks using bedtools intersect22. Likewise, the original 
count matrix was mapped onto the new reference peak set and only cells from 
the WholeBrain and PreFrontalCortex tissues were retained for the analysis5. 
The count matrices from the 10X Genomics and Cusanovich 2018 datasets were 
concatenated, binarized and filtered to ensure that each region was covered in at 
least 1% of the cells. Regions on the sex chromosomes were removed. The final 
count matrix contained 18,605 cells (3,880 from 10X and 14,725 from Cusanovich 
et al.5) and a peak set of size 136,528.
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Negative multinomial variational auto-encoder. We define the accessibility 
profile of a given single cell across a set of regions as x = [x1, ..., xN] where xi > 0 
reflects accessibility of region i. xi = 0 indicates inaccessibility. In the context of this 
work, we use binarized accessibility profiles (for example, xi = 0 or xi = 1), although 
the model is in general also applicable to non-negative integer vectors (for example, 
sites with multiple reads per cell).

In this section, we first introduce the adaptation of the standard VAE 
model13 without integrated batch-correction and turn to batch-adversarial 
training strategy in the next section. Briefly, following Kingma and Welling13, the 
encoder determines the L-dimensional mean μ and variance σ parameters of the 
approximate Gaussian posterior distribution of the latent feature representation 
given an accessibility profile x. From the approximate posterior distribution, 
samples, z, are drawn, which are in turn used as input for the decoder to 
reconstruct the N dimensional accessibility profile13. We shall use the mean vector, 
μ, as the low-dimensional feature representation used for the downstream analysis.

We assume that the accessibility profile, x, follows a negative multinomial 
distribution defined by

P(x) := Γ

(

r +
N∑

i=1
xi

)
pr0

Γ (r)

N∏

i=1

pxii
xi!

where p = [p0, …, pN] represent the non-negative parameters which sum to one 
and r denotes the positive real-valued dispersion parameter. pi for i > 0 reflects the 
accessibility profile, while p0 is associated with the dispersion.

We construct a decoder that determines the respective parameters p and r. In 
particular, for i > 0 the decoder computes

pi =
exp(ai(z))

1 +
N∑

j=1
exp(aj(z))

where ai represents the decoder’s output activity at region i for a given latent feature 
sample z. The remaining probability mass is reserved for the dispersion and is  
given by

p0 =
1

1 +
N∑

j=1
exp(aj(z))

.

Here we assume that the dispersion parameter is scalar and does not depend on the 
accessibility profile x, that is, it is adjusted like a bias term in the network.

Consequently, the reconstruction loss is given by

lossrecon := −logΓ (r +
N∑

i=1
xi) − rlog p0(z) + logΓ (r) −

N∑

i=1
xilog pi(z).

As described previously13, Kullback–Leibler divergence is utilized as a 
regularization loss, denoted as lossKL, which encourages that the latent feature 
representation is distributed according to N (0, I). The total loss is given by 
summing the reconstruction loss and the regularization loss, which is subject to 
minimization by adapting the model parameters during the model fitting.

Batch-adversarial training. To facilitate data integration and batch correction, 
we took inspiration from ref. 16 and adapted the variational auto-encoder 
framework described above to enable batch-adversarial training. The goal of this 
approach is to establish a latent feature representation that captures biologically 
relevant information about the accessibility profiles (for example, to describe cell 
types), while at the same time conveying as little information as possible about 
experimental batch labels.

To facilitate batch-adversarial training, the standard VAE architecture is 
augmented by batch-discriminator network modules. These sub-networks are 
stacked on top of the final layer of the encoder for the purpose of predicting the 
batch label from the latent feature representation. We use batch-discriminator 
networks with softmax output activation to predict categorical batch labels. 
Multiple independent batch labels can be used simultaneously with separate 
softmax output units for each batch. In addition to the batch-discriminator 
network at the final layer of the encoder (similar to ref. 16), we also add batch 
discriminators on top of the hidden layers of the encoder (after the first hidden 
layer and after each residual network block). The batch-discriminator network 
modules at the initial and intermediate layer allow to put more emphasis on 
removing batch related information early on in the network, and is intended to 
simplify disentangling batch-related information from the biologically relevant 
signal throughout the entire encoder network.

Apart from the additional batch-discriminator networks, we modified the 
decoder to take as input the latent feature encoding z as well as the one-hot 
encoded batch labels. This enables the decoder to recombine the batch information 
with the (ideally) batch-corrected latent feature representation to compute the 
reconstruction of the accessibility profiles. This is important, as batch-related 
information is still used in this way to compute the reconstruction loss.

Finally, we adjust the training objective of the standard VAE as follows: We 
measure how well batch-labels can be predicted from the latent features of the 
encoder (for example, derived from the hidden or final layer) using the categorical 
cross-entropy loss

lossbatch := −

∑

i
yilog ŷi

where y and ŷ denote the true and predicted batch label. While the parameters of 
the batch-discriminator associated parameters are adapted to minimize lossbatch, 
the parameters associated with the encoder module are adapted according to 
lossBAVARIA = lossrecon + lossKL − lossbatch That is, the encoder seeks to find a latent 
feature representation that is uninformative for the batch-label classification.

Model and training hyper-parameters. We use the following model architecture 
for all experiments: for the encoder, we use a feed-forward layer with 512 nodes 
and rectified linear units (ReLU) activation, followed by 20 consecutive residual 
neural network blocks with 512 nodes, which feed into two layers representing the 
means and variances of the latent features (dimensions listed in Supplementary 
Table 2). Each residual block is composed of a feed-forward layer with ReLU and a 
feed-forward layer whose output is added to the block’s input before applying ReLU 
activation. For the decoder, we use a single feed-forward layer consisting of 16 and 
25 neurons in the benchmarking analysis and the data integration  
use case, respectively.

For the batch-adversarial training, batch discriminator network modules are 
stacked on top of the intermediate layers of the encoder (after the first layer and 
after each residual block) as well as on top of the final layer of the encoder. Each 
discriminator network consists of two layers with 128 neurons and ReLU activation 
and an output layer with softmax activation.

The models were fitted using 85% of the cells using AMSgrad23. The remaining 
15% cells were used for validation. Additional dataset-specific hyper-parameters 
are listed in Supplementary Table 2.

Ensemble of models and feature extraction. We fitted a BAVARIA model M 
times, each time starting from random initial weights. Afterwards, we concatenated 
the mean vectors of the approximate posterior distribution of the latent features 
μ either across all M individual models or by using a subset of these models, 
dependent on the use case. In the latter case, we sought to remove potentially poor 
quality models whose average loss across the dataset exceeded an outlier criterion. 
Specifically, we removed models if their average loss after training exceeded 
Q75%(loss) + 1.5 × IQR(loss), where Q75% denotes the 75% quantile of the loss 
distribution across the M individual models and IQR represents its interquartile 
range. The latent features of the remaining models were concatenated and 
considered for the downstream cell clustering analysis.

Benchmark analysis. We adapted a recently published scATAC-seq benchmarking 
framework11. For all real datasets, we obtained the results of three top-performing 
tools: cisTopic4, LSI5 and SnapATAC7, as previously reported11. The results of the 
remaining tools from the original benchmarking assessment are omitted here. In 
addition, we ran LSI on the full Cusanovich 2018 dataset in the same way it was 
previously run for the Cusanovich 2018 subset11. We fitted BAVARIA models on 
the filtered count matrices using the hyper-parameters described in Supplementary 
Table 2. After training each individual model, an ensemble model was created by 
concatenating individual models by excluding outlier models. Latent features of 
the ensemble were used for the downstream clustering using the benchmarking 
framework. We ran SCALE8 with default parameters using the input count matrices 
described above (for example, the same matrices which were used for BAVARIA) 
and extracted the latent features for the downstream clustering analysis. We created 
arrow files using ArchR6 for each dataset based on the bam-files (merged across 
cells) that are part of the benchmarking framework without additional filtering. 
For each dataset iterative LSI was performed as demonstrated in the online tutorial 
https://www.archrproject.com/articles/Articles/tutorial.html. Subsequently, the 
reduced dimensionality was evaluated using the benchmarking framework11. We 
applied PeakVI10 on each dataset (with the same filtering criteria as were used 
for applying BAVARIA) by following the online tutorial https://docs.scvi-tools.
org/en/stable/user_guide/notebooks/PeakVI.html. Similarly, we applied scDEC9 
by following the online documentation https://github.com/kimmo1019/scDEC. 
For the parameter –K we used 8, 10, 10, 13 and 13 clusters for the 10X PBMC, 
Buenrostro 2018, Buenrostro 2018 (bulkpeaks), Cusanovich 2018 (subset) and 
Cusanovich 2018 (full), respectively. Moreover, we used 15 latent features for all 
cases, except for Cusanovich 2018 full where we used 30 latent features.

For the synthetic datasets, we ran cisTopic, LSI and SnapATAC with the same 
parameters as in the published benchmark analysis, but using larger numbers of 
cells. We applied SCALE with parameters ’–min_cells 0 –min_peaks 0.0’ to ensure 
that the simulated count matrix is not further subjected to filtering. We applied 
PeakVI as described above. We used scDEC with 15 latent features and 8 clusters as 
described above. BAVARIA ensembles were fitted for each synthetic dataset using 
hyper-parameters listed in Supplementary Table 2.

Following ref. 11, the latent features extracted for each method were subjected 
to k-means clustering, hierarchical clustering (with ward linkage), and Louvain 
clustering. For all datasets with available ground truth labels, the ARI, AMI and 
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Hom were used to score the agreement of the clustering results with the known 
cell labels11. For the 10X dataset (without ground truth)24, the residual average Gini 
index (RAGI) was computed based on a previously reported set of marker and 
house-keeping genes11.

Subsequently, the maximum clustering score across the clustering algorithms 
(k-means clustering, hierarchical clustering or Louvain clustering) was reported for 
each dataset and score (ARI, AMI, Hom).

Comparison of alternative reconstruction losses. We compared several 
reconstruction loss implementations on Buenrostro 2018 data using the 
benchmarking framework described above11. Specifically, we used the 
same variational auto-encoder architecture parameters, with exception 
of the final layer of the decoder. Assuming the accessibility profiles 
are derived from a Bernoulli distribution, we used a sigmoid output 
activation for the decoder in conjunction with a binary cross-entropy loss, 
lossBin = −

∑
i (xilog (pi(x)) + (1 − xi)log (1 − pi(x))). Alternatively, assuming 

multinomially distributed accessibility profiles, we used a softmax output 
activation in conjunction with a negative log-likelihood of the multinomial 
distribution, lossMul = −

∑
ixilog pi(x).

Data integration of mouse brain cells. We used BAVARIA with a 15-dimensional 
latent feature representation and 25 neurons for the hidden layer of the decoder. 
We trained an ensemble of 10 individual models for 200 epochs using a batch size 
of 64 (Supplementary Table 2). In addition, each individual model was fitted on a 
random 50% subset of the original peak set, which enabled training time speedup 
while maintaining similar clustering qualities (data not shown).

We compared BAVARIA to several tools that facilitate batch correction. We 
fitted scVI15 with default parameters. We trained trVAE25 by following the tutorial 
code (https://nbviewer.jupyter.org/github/theislab/trVAE/blob/master/examples/
trVAE_Haber.ipynb) using the unnormalized count matrix (136,528 regions by 
18,605 cells). We fitted SAUCIE26 with default parameters. We fitted PeakVI10 with 
default parameters. We used read depth normalized (with a target of 10,000 reads 
per cell) and log(x + 1) transformed signals, determined 50 principal components 
and integrated the datasets with Harmony27 using the scanpy interface28. 
Integration with Liger29 was performed by following the tutorial code https://
github.com/welch-lab/liger/blob/master/vignettes/Integrating_multi_scRNA_data.
html. Integration with Seurat v3 based on canonical correlation analysis (CCA)30 
was performed by following the tutorial code https://satijalab.org/seurat/articles/
integration_introduction.html using all available features.

As baseline, we ran simplified versions of the BAVARIA architecture: (1) we 
adjusted BAVARIA to a conditional VAE model, which receives the batch labels as 
input at the encoder (along with the raw read profile), rather than predicting the 
batch labels from the latent features and hidden layers; (2) we adjusted BAVARIA 
to use only a single batch-discriminator network module at the final layer of the 
encoder (along the lines of Ganin et al. 201616). These networks were trained with 
the same network parameters and hyper-parameters as BAVARIA.

The UMAP embedding was computed based on the latent features from 
each method using scanpy28. For the UMAP visualization, cells previously 
annotated as astrocytes, cerebellar granule cells, encothelial II cells, Ex. neurons 
CPN, Ex. neurons CThPN, Ex. neurons SCPN, inhibitory neurons, microglia, 
oligodendrocytes, Purkinje cells, SOM+ interneurons and unknown cells in 
Cusanvovich et al. 2018 and all 10X Genomics cells17 were illustrated.

We determined kBET scores using the parameters k0 = 10 and n_repeat = 500 
using the kBET R package31 to measure the mixing of cells across batches.

Clustering and differential accessibility analysis of mouse brain data. Using the 
BAVARIA-derived latent features, we performed Louvain clustering using scanpy28. 
Cluster-specific accessibility was determined by using a generalized linear model 
and a binomial distribution:

log prcb = αr + βcb + δrc + frb

where αr denotes the region-specific offset for region r, βcb denotes the cluster 
and batch-specific offset for cluster c and batch b, δrc denotes the cluster-specific 
accessibility for region r and cluster c and frb denotes the batch-specific accessibility 
for region r and batch b.

After fitting the linear models, we identified the 100 top-most accessible 
regions per cluster by ranking δrc and visualized the associated raw accessibility 
profiles in a heatmap using scanpy28.

For the pseudo-bulk visualization, we re-mapped reads from Cusanovich 
et al.5 WholeBrain and PreFrontalCortex tissues to mm10 using bowtie232 using 
the parameters ’–very-sensitive –X 2000 –3 1’. Cluster-specific pseudobulk bam 
files were constructed by dividing the reads by barcodes associated with the 
clusters. These bam files were converted to bigwig tracks using ’bamCoverage 
–normalizeUsing CPM’ from deeptools33. Finally, pyGenomeTracks34 was used to 
visualize the cluster-specific accessibility tracks.

Data availability
All datasets to perform the benchmark analysis were obtained from the 
computational scATAC-benchmarking framework at https://github.com/

pinellolab/scATAC-benchmarking. This includes the publicly available 
scATAC-seq 10X PBMC 5k dataset24, the haematopoiesis dataset19 and the 
adult mouse dataset5, as well as the bone marrow20 and erythropoiesis datasets21 
from which the simulated scATAC-seq datasets were derived. For the brain 
data integration, we additionally obtained mouse brain cells from Cusanovich 
et al.5 https://atlas.gs.washington.edu/mouse-atac/data/ and the 10X Genomics 
website https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/
atac_v1_adult_brain_fresh_5k.

Code availability
BAVARIA is available via GitHub under a GPL-v3 licence at https://github.com/
BIMSBbioinfo/bavaria35.
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Extended Data Fig. 1 | Comparison of reconstruction loss measures. The suitability of different reconstruction loss measures was assessed by fitting 
thirty individual models on the Buenrostro et al. 2018 dataset. The total loss across the dataset was determined for each model and models with poor 
outlier losses were excluded (for example due to poor local minima; see Methods), leading to 28, 29 and 29 models for binary, multinomial and negative 
multinomial loss for the visualization, respectively. The x-axis represents different reconstruction losses: binary cross-entropy loss (Binary), negative 
log-likelihood for the multinomial distribution (Multinomial), and negative log-likelihood of the negative multinomial (Neg. multinomial) distribution. 
Otherwise, the model architecture remained the same. Latent features were subjected to clustering using k-means, hierarchical clustering and Louvain 
clustering and clustering performances were computed based on adjusted mutual information (AMI), adjusted Rand index (ARI) and Homogeneity 
(Hom) against ground truth cell labels. The best score across the clustering algorithms was considered. Boxes represent quartiles Q1 (25% quantile), Q2 
(median) and Q3 (75% quantile); whiskers comprise data points that are within 1.5 x IQR (inter-quartile region) of the boxes.
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Extended Data Fig. 2 | Combining latent features of separately trained models. Three ensembles consisting of ten VAE models were fitted on the 
Buenrostro et al. 2018 dataset. The total loss across the dataset was determined for each model and models with poor outlier losses were excluded 
from the ensemble (for example, due to poor local minima; see Methods). Individual models (BAVARIA - individual) were combined to ensembles 
by concatenating the latent features (BAVARIA - ensemble). Latent features were subjected to clustering using several algorithms and clustering 
performances were computed based on adjusted mutual information (AMI), adjusted Rand index (ARI) and Homogeneity (Hom). The best score across 
the clustering algorithms are considered.
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Extended Data Fig. 3 | Cell type characterization assessment using synthetic data. A) Bone marrow data using 5000, 2500 1000, 500 and 250 
fragments per cell. B) Bone marrow data using 0%, 20% and 40% additional noise. C) Erythropoiesis data using 5000, 2500 1000, 500 and 250 
fragments per cell. D) Erythropoiesis data using 0%, 20% and 40% additional noise. Low-dimensional feature representations were obtained using 
cisTopic, LSI, SnapATAC, SCALE and BAVARIA and subjected to clustering using different algorithms (k-means, hierarchical clustering, Louvain clustering). 
Clustering performances were evaluated using adjusted mutual information (AMI), adjusted Rand index (ARI) and Homogeneity (Hom) compared against 
ground truth cell labels (see Methods). The best score across clustering algorithms is shown. cisTopic, LSI, SnapATAC and SCALE were run once per case, 
while N = 3 ensembles of NM-VAE were trained from scratch to assess the variability of the performance. The dot represents the mean performance and 
the error bars indicate the +/- SEM according to the repetitions.
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Extended Data Fig. 4 | Batch correction - Comparison of architectures. A) UMAP embedding illustrating cells from 10X Genomics and Cusanovich 
et al. 2018 after applying a BAVARIA variant with a single batch-discriminator network module at the final encoder layer (BAVARIA - final layer only) 
and a conditional variational auto-encoder variant of BAVARIA which receives the batch labels as input for the encoder’s initial layer (batch conditional). 
The kBET scores indicate the cell mixing across batches. Lower kBET scores correspond to better mixing. B) UMAP embedding illustrating previously 
characterized cell types (Astrocytes, Cerebellar granule cells, Encothelial II cells, Ex. neurons CPN, Ex. neurons CThPN, Ex. neurons SCPN, Inhibitory 
neurons, Microglia, Oligodendrocytes, Purkinje cells, SOM+ interneurons and unknown cells; Cusanovich et al. 2018). 10X Genomics cells are 
 labelled ’Unknown’.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ArticlesNATurE MAChinE InTElligEnCE ArticlesNATurE MAChinE InTElligEnCE

Extended Data Fig. 5 | Clustering and cluster-associated regions. A) Clustering of the integrated 10x and Cusanovich et al. 2018 datasets. B) Number 
of cells per cluster and batch. C) Illustration of cluster-associated accessibility using the 100 top accessible regions per cluster. D) Depth normalized 
accessibility tracks per cluster for the 10X dataset for several marker regions. E) Depth normalized accessibility tracks per cluster for the Cusanovich et al. 
2018 dataset for several marker regions.
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