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Abstract

Information transfer and integration in the brain occurs at chemical synapses and is mediated by the fusion of
synaptic vesicles filled with neurotransmitter. Synaptic vesicle dynamic spatial organization regulates synaptic
transmission as well as synaptic plasticity. Because of their small size, synaptic vesicles require electron mi-
croscopy (EM) for their imaging, and their analysis is conducted manually. The manual annotation and seg-
mentation of the hundreds to thousands of synaptic vesicles, is highly time consuming and limits the
throughput of data collection. To overcome this limitation, we built an algorithm, mainly relying on convolution-
al neural networks (CNNs), capable of automatically detecting and localizing synaptic vesicles in electron mi-
crographs. The algorithm was trained on murine synapses but we show that it works well on synapses from
different species, ranging from zebrafish to human, and from different preparations. As output, we provide the
vesicle count and coordinates, the nearest neighbor distance (nnd) and the estimate of the vesicles area. We
also provide a graphical user interface (GUI) to guide users through image analysis, result visualization, and
manual proof-reading. The application of our algorithm is especially recommended for images produced by
transmission EM. Since this type of imaging is used routinely to investigate presynaptic terminals, our solution
will likely be of interest for numerous research groups.

Key words: automated detection; convolutional neural networks; image analysis; machine learning; synaptic
vesicle

Significance Statement

The analysis of synaptic vesicles provides important insights toward the understanding of synaptic trans-
mission and plasticity mechanisms. However, up to date, this analysis is still a very time-consuming manual
process. In the present study we present a user-friendly algorithm, mainly based on convolutional neural
networks (CNNs), for automating the detection of synaptic vesicles in electron micrographs. This approach
allows faster and more standardized analyses.

Introduction
In the presynaptic terminal, synaptic vesicle abundance

(Patzke et al., 2019), clustering (Milovanovic et al., 2018;
Pechstein et al., 2020), recycling (Kononenko and Haucke,
2015; Tagliatti et al., 2016; Ackermann et al., 2019), and turn-

over (Vijayan and Verstreken, 2017) are pivotal indicators of
synaptic function and are altered in aging (Maglione et al.,
2019) and in neurologic diseases such as Parkinson’s dis-
ease (Diao et al., 2013) or Alzheimer’s disease (Marsh and
Alifragis, 2018). Synaptic vesicles are held in the proximity of
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release sites by scaffolds and molecular bridges and the dis-
tance between synaptic vesicles and the active zone is an im-
portant parameter that regulates neurotransmitter release
(Imig et al., 2014; Chang et al., 2018; Quade et al., 2019). The
distribution of vesicles is controlled by activity (Chi et al.,
2001; Pechstein and Shupliakov, 2010) and is thought to sus-
tain short (Vandael et al., 2020) and long-term plasticity (Rey
et al., 2020; Orlando et al., 2021).
To visualize synaptic vesicle release and trafficking, flu-

orescence microscopy techniques are available (Kavalali
and Jorgensen, 2014). Nevertheless, since synaptic
vesicles are very small organelles, having a diameter of
30–40nm, electron microscopy (EM) is the state-of-the-
art method for the analysis of their number, area, and dis-
tribution in synapses.
The study of synaptic vesicles localization is of major

scientific interest in the field of neurobiology. However, the
manual identification of vesicles is a tedious task, that be-
comes particularly time-consuming for scientists that investi-
gate giant synapses such as calyx of held synapses (Qiu et
al., 2015), cerebellar mossy fibers (Falck et al., 2020) or hippo-
campal mossy fibers boutons (hMFBs; Rollenhagen and
Lübke, 2010) where thousands of vesicles can be found.
Moreover, morphologic manual analysis can differ depending
on the researcher performing it, because of individual subjec-
tive biases.
Automated methods for the detection of synaptic

vesicles are therefore needed to increase the analytical
throughput, to reduce manual labor and to improve
standardization.
In the last years, we experienced a rapid advancement in

the automated analysis of natural images thanks to success
of deep convolutional neural networks (CNNs; Krizhevsky et
al., 2012). In fact, CNNs architectures have already been pro-
posed in the late 1980s, but only recently, with the availability
of large amount of labeled data and the development in com-
puting power, they gainedmomentum and have started to be
used in a great variety of applications, including object detec-
tion tasks (Rawat andWang, 2017).
In the field of neuroanatomy, CNNs have been proven to

be an effective method for automating the segmentation of
neuronal structures (Arganda-Carreras et al., 2015).
Several studies in the field of connectomics have suc-

cessfully employed CNNs to compute large-scale 3D re-
constructions of neuronal circuits (Cireşan et al., 2012;

Ronneberger et al., 2015; Januszewski et al., 2018). A first
successful attempt to identify synaptic vesicles in presyn-
aptic terminals required tomographic 3D reconstructions
(Kaltdorf et al., 2017). EM tomograms, while providing de-
tailed 3D information on single vesicles, are nevertheless
lengthy to acquire.
In the present study, we exploited the power of CNNs

and built a model capable of recognizing synaptic vesicles
in electron micrographs. Our CNN model, combined with
a connected-component labeling and clustering-based
segmentation algorithm, efficiently detects and localizes
vesicles from images of presynaptic terminals. Our algo-
rithm performed well on transmission EM images of syn-
apses of different species, with different resolution (tested
pixel size ranging from ;0.7 to ;5nm) and prepared with
different techniques. The results were optimal when
vesicles were sharp and their lumen and membrane were
visible.
Since the algorithm worked well across these differ-

ent images, and since the shape and dimension of syn-
aptic vesicles varies only minimally, across species,
brain areas, and different fixation protocols, we are
confident that our model can be directly applied with-
out the need to be retrained.
Furthermore, to offer a simple and flexible tool to re-

searchers, we developed a graphical user interface (GUI)
that offers a step-by-step guidance for analyzing, display-
ing and proof-reading the results. This GUI allows the
analysis of multiple images at once (as long as they
have the same resolution) and provides the results au-
tomatically in an excel file. Furthermore, it offers the
possibility to easily visualize and correct the results
(both by adding missed vesicles or deleting errone-
ously predicted vesicles).
We are confident that our tool can significantly increase

the efficiency of synaptic vesicle analysis and reduce the
workload of research groups focusing on the study of pre-
synaptic structure and function.

Materials and Methods
Preparation of acute brain slices for EM imaging
All animal experiments were approved by the animal

welfare committee of the Charité Universitätsmedizin
Berlin and the Landesamt für Gesundheit und Soziales
Berlin, Germany (permit #T0100/03). Three postnatal day
(P)27–P29 male WT C57BL/6N mice were anesthetized
with isoflurane, decapitated for a project on structural
plasticity (Orlando et al., 2021). Brains were quickly re-
moved and placed in ice-cold sucrose-artificial CSF (s-
ACSF) containing the following: 50 mM NaCl, 25 mM

NaHCO3, 10 mM glucose, 150 mM sucrose, 2.5 mM KCl, 1
mM NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2. All solu-
tions were saturated with 95% O2/5% CO2 (v/v), pH 7.4.
Sagittal slices 350 mm thick were cut with a VT1200S vi-
bratome (Leica) in ice cold s-ACSF solution and stored
submerged in s-ACSF for 30min at 35°C and subse-
quently stored at room temperature in ACSF containing
the following: 119 mM NaCl, 26 mM NaHCO3, 10 mM glu-
cose, 2.5 mM KCl, 1 mM NaH2PO4, 2.5 mM CaCl2, and 1.3
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mM MgCl2 saturated with 95% O2/5% CO2 (v/v), pH 7.4.
No more than 6 h after the preparation, acute slices were
immersed in a solution containing 1.2% glutaraldehyde in
66 mM Na cacodylate buffer for 1 h at room temperature.
After washes in 0.1 M Na cacodylate buffer slices were
then postfixed in 2% OsO4 in dH2O for 1 h at room tem-
perature. Slices were then washed and en bloc stained
with 1% uranyl acetate in dH2O and dehydrated in solu-
tions with increasing ethanol concentration. Final dehy-
dration was obtained incubating slices in Propylene oxide
and then the infiltration of Epoxy resin was obtained by
serial incubations in increasing resin/propylene oxide dilu-
tions. Samples have been finally flat embedded in Epon
(#E14120-DMP, Science Services) for 48 h at 60°C. The
stratum lucidum in the CA3 region of the hippocampus
was identified using a light microscope and 70-nm sec-
tions of these regions of interest were cut with an Ultracut
UCT ultramicrotome (Leica) equipped with an Ultra 45 di-
amond knife (Diatom) and collected on pioloform-coated
copper slot grids (#EMS2010-Cu, Science Services).
Synapses were identified and imaged using an EM 900
Zeiss Transmission Electron Microscope, or a Tecnai G2
20 (FEI Thermo Fisher Scientific; RRID: SCR_021365) op-
erated at 80–120 keV and equipped with a Proscan 2K
Slow-Scan CCD-Camera (Carl Zeiss) and a Veleta 2K x
2K CCD camera (Olympus), respectively.

Preparation of hippocampal cultures for EM imaging
Primary neuronal hippocampal cultures were prepared

as previously described (Orlando et al., 2019). Briefly, pri-
mary neuronal cultures were generated from both sexes
of postnatal mice from the C57/BL6N strain aged P0–P2
(permit #T0220/09). Brains were removed and placed in
4°C cooled HBSS (Invitrogen). Hippocampi were care-
fully dissected out and placed in Neurobasal-A medium
supplemented with B27, Glutamax (all from Invitrogen),
and penicillin/streptavidin (Roche; full-NBA) at 37°C in a
heated shaker. Full-NBA was replaced with DMEM
(Invitrogen), supplemented with 1 mM CaCl2 and 0.5 mM

EDTA (enzyme solution), containing papain (22.5 U/ml;
CellSytems GmbH) and incubated for 45–60min. The di-
gestion was stopped by removing the enzyme solution
and replacing it with an inactivating solution of DMEM
supplemented with albumin (2.5mg/ml) and trypsin in-
hibitor (2.5mg/ml; both Sigma-Aldrich). The inactivating
solution was removed after 5min and replaced with full-
NBA. Tissue was dissociated mechanically, and cells
were counted on a Neubauer chamber. Dissociated cells
were plated on 6 mm carbon-coated sapphire disks
(Wohlwend) at a density of ;250 cells/mm2. At 13–15 d
of growth in vitro (DIV), primary hippocampal neurons
grown on sapphire discs were transferred to the cham-
ber of a high-pressure freezing machine (EM ICE (RRID:
SCR_021367) or HPM 100 (RRID: SCR_021366), Leica
Microsystems) and cryo-fixed in extracellular solution
containing the following: 140 mM NaCl, 2.4 mM KCl, 10
mM HEPES (Merck), 10 mM glucose (Carl Roth), 2 mM

CaCl2 (Sigma-Aldrich), and 4 mM MgCl2 (Carl Roth); 300
mOsm; pH 7.4. Cryo-fixation was followed by freeze-substi-
tution in anhydrous acetone containing 1% glutaraldehyde,

1% osmium tetroxide and 1% milliQ water in an automated
freeze-substitution device (AFS2, Leica). The temperature
was kept for 5 h at �90°C, brought to �20°C (5°C/h), kept
for 12 h at �20°C and then brought to120°C (5°C/h). Once
at room temperature, samples were en bloc stained in 0.1%
uranyl acetate in acetone, infiltrated in increasing concentra-
tion of Epoxy resin (Epon 812, EMS) in acetone and embed-
ded in pure resin for 48 h at 65°C. Sapphire discs were
removed from the cured resin block by thermal shock; 50-
nm-thick sections were obtained using an Ultracut UCT ul-
tramicrotome (Leica) equipped with an Ultra 45 diamond
knife (Diatome) and collected on formvar-coated 200-mesh
formvar-coated copper grids (#EMS200-Cu, Science
Services). Sections were counterstained with uranyl acetate
and lead citrate and synapses were identified and imaged
using a Tecnai G2 20 (FEI Thermo Fisher Scientific) operated
at 80–120keV and equipped with a Veleta 2K x 2K CCD
camera (Olympus). Images of chemically-fixed cultured hip-
pocampal neurons where obtained with a JEM-1011 (JEOL)
transmission EM. For details on the sample preparation see
https://www.protocols.io/view/chemical-fixation-and-
embedding-of-cultured-cells-bwsbpean.

Development of a vesicle classifier
All programming was done with python 3.6 or python 3.7

(Python Software Foundation; https://www.python.org/) ei-
ther using a business-oriented laptop with a Windows 7
Professional operating system or a High Performance
Compute (HPC)/GPU Server (GPU: NVIDIA GeForce RTX
2080) with a Ubuntu 18.04 LTS or an openSUSE Leap 15.2
operating system.
To train the image classifier we used 21 electron micro-

graphs, of which 19 images of MFBs from acute hippo-
campal slices of three mice and two images of small
synapses from cryo-fixed hippocampal neurons from one
litter/culture (dataset train 1, Table 1). From these images,
we generated 34,805 patches (40� 40 pixels, 90.8 -
� 90.8 nm), and we manually labeled them as either con-
taining or not containing a vesicle. This training dataset
had a ratio of 2.84 between classes non containing (nega-
tive) or containing (positive) a vesicle. We used this slightly
unbalanced dataset because a perfectly balanced one
yielded slightly worse results (results not shown) and add-
ing negative examples improved it. Among negatives
examples, we also included black patches (4184). This
allows users to use a black mask in case they want to ex-
clude a part of an image from the analysis. We further ap-
plied data augmentation using the torchvision python
library (https://pytorch.org/), to increase the variability of
the training dataset, since this technique has been pro-
ven to increase model performance and reduce overfit-
ting (Shorten and Khoshgoftaar, 2019). We employed
spatial (10% rotation), color augmentation (20% varia-
tion in brightness, contrast and saturation) and Gaussian
noise (mean 0 and s 0.1 with a probability of 0.2 and
mean 0, s 0.05 with a probability of 0.1). We evaluated
the model by averaging the results over four rounds of
cross-validation performed by further splitting the train-
ing dataset into training (75%) and validation (25%)
subsets.
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To test the performance of the classifier on patches, we
used patches (4209) obtained from six different images,
of which four images of MFBs from acute hippocampal
slices of two mice and two images of small synapses from
cryo-fixed hippocampal neurons from one litter/culture
(dataset test 1; Table 1). Similar to the training dataset,
the testing dataset was also slightly unbalanced, having a
ratio of 2.94 between negative and positive classes, and
did also contain black patches within the negative exam-
ples (146).
The classifier was built on pytorch, an open-source ma-

chine learning library for python (https://pytorch.org/;
Paszke et al., 2019). The network consists of four convo-
lutional layers followed by one 2� 2 max pooling layer
and three fully connected layers. All convolutional layers
have convolutional filters of size 7� 7 and all inputs to the
convolutional layers are padded with two zeros pixels on
both sides. We applied the Rectified Linear Unit (ReLU)
activation function in all layers and added dropout be-
tween the fully connected layers as well as between the
last two convolutional layers to regularize the network
(Srivastava et al., 2014). To train our classifier, we used
the cross-entropy loss function, the ADAM optimization
algorithm (Kingma and Ba, 2017), and set the learning
rate at 0.0002.
To detect and localize the large number of vesicles

present in an image from a presynaptic terminal, we fed
the CNN with 40� 40 image patches cropped from the
original EM images with a sliding window with a 4� 4 pix-
els stride. Image padding was applied to optimize the de-
tection of vesicles at the edge of an image. This consists
of adding 20 pixels with zeros at each side of the images
before letting them being analyzed by the classifier.
Furthermore, to guarantee a good vesicle prediction on

images with different resolutions, we included a step to
rescale input images to have the same pixel size as the
one used for training the network (2.27 nm).
For every iteration, our classifier assigned to the corre-

sponding pixel the probability to belong to a vesicle. A patch
corresponding to the coordinates �20:119,�20:119 with
respect to the evaluated pixel was used by the classifier to
extract information. As output, we obtained a probability
map expressing the likelihood of each pixel in the micro-
graph to belong to a vesicle. On this output probability (pr.),
we applied a cutoff value of 0.5, such that if a pixel was pre-
dicted to be within a vesicle (pr. � 0.5) we set pr. = pr.; oth-
erwise, we set pr. = 0. The probability map was then resized
to match the size of the original image, using a bilinear

interpolation and smoothened, using a low-pass filter, by
convolving the image with a normalized box filter with a
3� 3 kernel size. Finally, the range of pixel values was con-
verted from 0 to 1 to 0 to 255. A probability map tells how
likely it is that each pixel in an image belong to an object
rather than to the background but does not distinguish sin-
gle objects. In order to identify separated objects (potential
synaptic vesicles) we applied a threshold-based segmenta-
tion and a connected-component labeling algorithm on the
probability map with a 3� 3 structuring element with a
squared connectivity equal to one. Occasionally the objects
distinguished by the connected-component labeling algo-
rithm contained a small group of vesicles rather than a single
one. Therefore, to identify and separate each vesicle, we
applied a k-means clustering algorithm on the detected
“objects”.
To make the most accurate guess on the number of

vesicles present in each “object,” we checked the number
of peaks in the portions of the probability map corre-
sponding to each “object.” The number of peaks with a
Euclidian distance larger than 34nm (which represents
roughly the diameter of a vesicle) turned out to be a very
good estimator of the number of vesicles and it was there-
fore used to define the number of clusters in the k-means
clustering algorithm. Finally, we set a threshold of 330
nm2 (corresponding to the area of 64 pixels) and excluded
clusters with an area smaller than this value, since very
small clusters likely correspond to false positives. This
threshold was set to slightly higher values in images with
a relatively low resolution, since the large rescaling of the
probability map is likely to generate larger clusters (pixel
size � 2.3 nm: threshold 407 nm2; pixel size � 3.3 nm:
threshold 484 nm2; pixel size � 4.3 nm: threshold 562
nm2; pixel size � 5.3 nm: threshold 639 nm2; pixel size �
6.3 nm: threshold 716 nm2). The validity of this approach,
namely, applying a k-means clustering algorithm and set-
ting a threshold for cluster dimension, in improving the
performance of our model is shown in Figure 2D–F and
described in Results.
The sequential application of the described CNN,

connected-component labeling and clustering-based
segmentation algorithm was very effective in detecting
presynaptic vesicles. Indeed, we observed a very low
number of false negatives. However, false positives were
numerous (for details, see Results and Fig. 2B). To reduce
these, we included a final step: we let patches, with a size
of 80� 80 pixels, centered around the detected vesicles
to be evaluated a second time by an additional CNN. This

Table 1: Description of the datasets

Dataset Total images Acute slices Neur. cultures (cryo/chem.fix.) Patches/full images Usage
Train 1 21 19 2/0 Patch. 34805 Train 1° cl.
Test 1 6 4 2/0 Patch. 4209 Test 1° cl.
Train 2 16 10 6/0 Patch. 6245 Train 2° cl.
Test 2 8 5 3/0 Patch. 1912 Test 2° cl.
Test final 27 11 7/9 Full images 27 Evaluation
External 10 0 2/8 Full images 27 Evaluation

Description of the datasets used to train and test the first and second (refinement) classifiers and for evaluating the final performance of the model. The term
“acute slices” refers to images of hMFBs from chemically-fixed acute hippocampal slices, “neur. cultures” refers to images of small hippocampal synapses from
either cryo-fixed or chemically-fixed cultured neurons.
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was performed after padding the images by adding 40
pixels with zeros at each side. This second CNN, that we
named refinement classifier, has the same network archi-
tecture, loss function and optimization algorithm as the
first one. It only differs in the learning rate: 0.0004 instead
of 0.0002. The detected vesicles produced as final output
by our algorithm are all the ones predicted as positives by
this refinement classifier.
To train this second refinement classifier we used 16

electron micrographs, of which 10 images of MFBs from
acute hippocampal slices from three mice and six images
of small synapses from cryo-fixed hippocampal neurons
from one litter/culture (dataset train 2; Table 1). All im-
ages, except one, were different from the ones used to
train the first classifier. From these images we generated
6245 patches (80� 80 pixels, 181.6� 181.6 nm) and we
manually labeled them as either containing or not contain-
ing a vesicle. As the first training dataset, this was also
slightly unbalanced, having a ratio of 2.18 between nega-
tive and positive classes. Similarly, to our first model, we
applied data augmentation as a strategy to increase the
variability of the training dataset. We employed spatial
(10% rotation), color augmentation (20% variation in
brightness, contrast and saturation), and Gaussian noise
(mean 0, s 0.1 with a probability of 0.1).
Finally, to test the refinement classifier we used 1912

patches obtained from eight different images, of which
five images of MFBs from acute hippocampal slices from
two mice and three images of small synapses from cryo-
fixed hippocampal neurons from one litter/culture (dataset
test 2; Table 1). This second testing dataset had a ratio of
2.32 between negative and positive classes.
Our algorithm produces, as output, an excel file con-

taining a summary result sheet with the total number of
detected vesicles for each analyzed image and then a
separate sheet for each image containing the vesicle posi-
tion, the distance to the nearest vesicle (nearest neighbor
distance; nnd) in nm and the estimated area for each de-
tected vesicle in nm2. The vesicle position was measured
as the x, y coordinates of the center of the cluster ob-
tained after applying the connected-component labeling
and clustering-based segmentation algorithm on the
probability map produced by the CNN. The nnd was cal-
culated as the shortest Euclidian distance from the posi-
tion of one vesicle to the position of all remaining ones. To
calculate the vesicles area, we took advantage of two
facts: (1) that pixels corresponding to the membrane de-
limiting the vesicles have generally lower values (darker)
with respect to the pixels corresponding to the vesicles
lumen and to the vesicles immediate surroundings (bright-
er) and (2) that vesicles shape (elliptical-circular) and
dimension (diameter circa between 30 and 55nm) is rela-
tively stereotypical across species, brain areas and differ-
ent fixation and imaging protocols. Briefly, we created a
40� 40, 0–1 matrix, and we drew elliptical or circular
shapes on it with the thickness of three pixels (6.81 nm)
and with different radius and ratios (major/minor axis) as-
signing the value of one to the pixels corresponding to the
drawn shape and zero otherwise. Then, we multiplied this
matrix with a 40� 40 patch centered at each detected

vesicle (so that the position of the detected vesicle corre-
sponded to the pixel in the 21st column and 21st row of
the image patch), and calculated the average pixel value
on the elliptical shape of the so obtained matrix. We re-
peated this measurement trying all combinations of ellipti-
cal-circular shapes with radius-axis comprised between 7
and 12 pixels (15.89–27.24 nm) with the only condition
that the major and minor axis could not differ by more
than four pixels (9.08 nm). We also repeated the measure-
ment moving the matrix up to three pixels in all directions
(up, down, left, right) since the initially determined position
may not always correspond to the exact center of a vesi-
cle. Since occasionally the pixels corresponding to the
vesicle’s membrane were not homogeneously dark, we
also added a term to penalized asymmetry, namely,
0.03*SD of the mean pixel values for the four quadrants of
the matrix obtained after multiplication. The elliptical
shape and position obtaining the lowest intensity value,
calculated as described above, was considered the one
delimiting the vesicle. We finally calculated the vesicles
area, knowing the major and minor radius with the follow-
ing formula: major radius * minor radius * p * area of one
pixel in nm2.

Quantification of the performance of the algorithm
To quantify the performance of our algorithm in detect-

ing presynaptic vesicles, we used electron micrographs
from three different preparations: hMFBs from chemi-
cally-fixed acute hippocampal slices, small hippocampal
synapses from cryo-fixed cultured neurons and small
hippocampal synapses from chemically-fixed cultured
neurons. This dataset (dataset test final, Table 1) was
composed of entirely different images than those used
to train (dataset train 1, train 2) and test (dataset test 1,
test 2) the first and the refinement classifier. Moreover,
we selected various publicly available images to further
test the ability of our model to generalize (dataset exter-
nal Table 1).
The performance was evaluated by calculating preci-

sion, recall and F1 score with the following formulae:

precision ¼ true positives
true positives1 false positives

recall ¼ true positives
true positives1 false negatives

F1score ¼ 2 pprecision p recall
precision1 recall

:

The vesicles predicted by the algorithm were compared
with human annotations performed by two different post-
doctoral researchers. In the figures where human annota-
tions are graphically displayed on an EM image, the
annotations from one of the two postdoctoral researchers
are used. Precision, recall and F1-score were calculated
using either researcher’s results as ground truth and then
by averaging the two values.
The following procedure was used to determine true

positives, false positives and false negatives.
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We considered true positives only those cases where
we could find a 1–1 association between ground truths
(human annotations) and algorithm predictions.
To achieve this, we first selected ground truth/predic-

tion pairs, by running a loop over all ground truths and
searching, for each, its nearest prediction. If the Euclidean
distance, between ground truth and the closest predic-
tion, fell within 28.89 nm, we considered the two coordi-
nates a pair. The chosen distance corresponds to the
lower boundary of the diameter of a synaptic vesicle. This
distance was set, because the human annotation and the
algorithm prediction, referring to the same vesicle, are often
found in the very close proximity (within a distance corre-
sponding to the diameter of a vesicle) but rarely in the exact
same location. All ground truths which remained unpaired
were considered false negatives. The same procedure was
repeated by running a loop over all predictions. We used the
averaged count of true positives (resulting from looping over
predictions and ground truths). All predictions which re-
mained unpaired were considered false positives.
Finally, we also compared the number of manually de-

tected vesicles (as the average between the vesicle counts
from the two human annotations) with the number of
vesicles detected by our algorithm (Extended Data Fig. 3-1).

Vesicles detection using ilastik
We used ilastik, an already available machine learning-

based algorithm for analysis of (bio)images (Berg et al.,
2019), to validate the results of our model.
To detect synaptic vesicles with ilastik we used two

workflows, sequentially: Cell Density Counting and Object
Classification (Inputs: Raw Data, Pixel Prediction Map).
We chose the Cell Density Counting workflow since it is
suitable for circular objects of the same size (as synaptic
vesicles). We trained the algorithm by using manual anno-
tations from the same images employed for training our
first classifier. Cell Density Counting produces the density
of objects as output, therefore, to be able to use the
Object Classification workflow we converted the density
images into probability. To do so, for each pixel, x, in a
density image (image) we calculated the probability as a
new pixel value, xnew, as following:

xnew ¼ x� min imageð Þ
max imageð Þ �minðimageÞ :

We then used the same images employed for testing
our first classifier to tune some parameters (threshold and
size filter) to optimize the Object Classification task
(vesicles vs other organelles or background). Finally, we
tested the performance of ilastik on the same image sets
used to evaluate the performance of our model (dataset
test final, Table 1).

Statistics
Results are provided as mean 6 SEM. To test differen-

ces in the performance of the model before and after the
application of certain steps we performed a one-way re-
peated-measures ANOVA and after having verified that at
least one step changed the algorithm’s performance

significantly, we run multiple pairwise paired t test apply-
ing the Bonferroni correction for setting the significance
of p-values. For clarity, we present both the original (p)
and the Bonferroni corrected (p*) p-values. To test differ-
ences in the performance between two models or be-
tween model and humans, we performed paired t tests.
To measure the correlations strength between two varia-
bles, we calculated the Pearson correlation coefficient. P-
values below 0.05 were regarded as statistically signifi-
cant and they are provided approximated at the fourth
decimal. In graphs, one asterisk indicates statistically sig-
nificant differences or correlations.

Generation of a GUI
For making our algorithm easily accessible to everyone

we generated a GUI with the widget toolkit Tk using the
python interface tkinter (https://docs.python.org/3/library/
tkinter.html). The GUI has the purpose of guiding the ex-
perimenter through the required steps to conduct the au-
tomatic vesicle analysis and offers a tool to display the
results. The results are provided in an excel file and in-
clude the number of vesicles per image and, for each pre-
dicted vesicle, the x, y coordinates, the nnd and the
estimated area. Furthermore, the GUI includes a manual
proof-reading tool which allows users to easily add (false
negatives) or remove (false positives) predictions from
each analyzed image. These manual changes are auto-
matically incorporated in the result excel file.
All documentations and the instructions about how to

use the GUI can be found in the README file in the
GitHub repository at the address specified below, in Code
accessibility.

Code accessibility
The codes described in the paper for training the classi-

fiers and for using the GUI are freely available online at:
https://github.com/Imbrosci/synaptic-vesicles-detection.
Beyond the source codes, a README file, a require-
ments.txt file as well as the weights of the trained models
are also available at the same address. The codes used for
data analysis are freely available online at: https://github.
com/Imbrosci/synaptic-vesicles-detection-extra. All codes
are available as Extended Data 1.

Results
Evaluation of the algorithm
To develop an algorithm for the automated recognition

of synaptic vesicles, we created, as a first step, a vesicle
classifier based on CNNs. The model consists of four con-
volutional layers followed by one 2� 2 max pooling layer
and three fully connected layers (Fig. 1A). To train the
CNN we generated a large dataset of labeled image
patches obtained from micrographs of hMFBs or from
small hippocampal synapses either containing or not con-
taining a synaptic vesicle. The training dataset was then
further split (75%/25%) to perform four rounds of cross-
validation.
First, we evaluated the effect of tuning some hyperpara-

meters on the performance of the model. Specifically, we
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tried to vary the size of the convolutional filters (5� 5, 7� 7,
and 9� 9 pixels) as well as the number of the filters for the
first, second, third and fourth convolutional layer: 8–16–32–
64, 16–32–64–128, or 32–64–128–256. We selected the
model hyperparameters with the highest average four-fold
cross-validation performance (lowest average loss and high-
est F1-score). This model turned out to have convolutional

filters of 7� 7-pixel size and 16–32–64–128 filters (for the
first, second, third, and fourth layer, respectively; Fig. 1A).
Subsequently, we used the entire training dataset (dataset
train 1, Table 1) to train a model with the chosen hyperpara-
meters and evaluated its performance on a test dataset gen-
erated with the same procedure as the training dataset
(from labeled image patches) but from different micrographs

Figure 1. Architecture and performance of the vesicle classifier. A, Architecture of the CNN and diagrams showing the (B) cross-en-
tropy loss, (C) accuracy, (D) precision, (E) recall, (F) F1-score, and (G) ROC curve on the training and test dataset (black and blue,
respectively). H, Prediction of the vesicle classifiers on 39 image patches from the test dataset. The number in the first square
brackets, on top of each image, represents the label assigned manually whereas the number in the second square brackets repre-
sents the prediction done by the classifier. The value 0 indicates that the label/prediction was negative (no vesicle) while the value 1
indicates a positive label/prediction (vesicle). In this representative example, 38 out of 39 images were predicted correctly. Red and
black colors are used to indicate wrong and correct predictions, respectively.
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(dataset test 1, Table 1). Figure 1B–F showed the loss, accu-
racy, precision, recall, and F1-score for both training and
test datasets. The loss rapidly decreased, while the other
measurements rapidly increased within the first few epochs
in both training and test dataset. Between epochs 10 and 25
the performance of the model clearly reached a plateau (Fig.
1B–F). We further calculated the receiver operating charac-
teristic (ROC) curve (Fig. 1G) on the test dataset. The area
under the ROC curve (AUC) was 96.1%. All together these
statistics indicate that our model has a very strong predic-
tive power in this image classification task. We selected the
weights from the epoch achieving the highest F1-score on
the test dataset (dataset test 1, Table 1) and after which we
observed an increase in the loss in three consecutive
epochs (epoch 21).
To have a visual confirmation of the classification re-

sults, we selected 39 image patches either containing or

not containing a vesicle from our test dataset (Fig. 1H).
The number in the first square bracket, on top of each
image, represents the label assigned manually (0 = no
vesicle, 1 = vesicle), whereas the number in the second
square brackets represents the label predicted by the
classifier. Our classifier outputs the probability of a patch
to contain a vesicle which was then converted into 0 or 1
with a cutoff value of 0.5. As can be seen by comparing
the manual labels and predictions, the great majority of
the images were classified correctly by our model.
Next, we tested the performance of our algorithm on 11

electron micrographs of a hMFB containing hundreds of
vesicles (subset of dataset test final, Table 1) and com-
pared the results to human labeled data (Fig. 2A). To this
end, we incorporated the vesicle classifier in a sliding win-
dow algorithm and run thereafter a connected-compo-
nent labeling and a k-means clustering algorithm as

Figure 2. Evaluation of single steps built in the algorithm. A, Micrograph showing a hMFB, from a chemically-fixed acute hippocam-
pal slice, with all manually detected vesicles tagged by the white dots. Only vesicles belonging to the synaptic terminal delimited by
the blue line were manually labeled and predicted. B, Magnification of the rectangular area shown in A with vesicles predicted by
the algorithm. The vesicles were predicted either without (top), or with the contribution of the refinement CNN (bottom). On the left,
the positions of the predicted vesicles are tagged by the white dots and false positives and false negative are marked by the semi-
transparent blue and red circles, respectively. On the right, beyond the position of the predicted vesicles (white dots), the estimated
vesicles areas are also represented as overlaid semi-transparent pink mask. C, F1-score without and with the contribution of the re-
finement CNN. D, EM image of a small portion of a hMFB (top, left), from a chemically-fixed acute hippocampal slice, same portion
overlaid with the probability map generated by the first CNN as semi-transparent blue mask (top, middle), probability map alone
(top, right), the green open circles point at three erroneously merged vesicles before clustering, while the two blue circles point at
two clusters falling below the threshold size for being considered as vesicles. Vesicles detected without clustering-based segmenta-
tion (bottom, left), the arrows point at three merge errors. Vesicles detected without setting the size threshold for excluding very
small clusters (bottom, middle), the arrows point at two false positives. Vesicles detected after implementing both clustering-based
segmentation algorithm as well as after the threshold for excluding too small clusters (bottom, right), note that here both errors
types are eliminated. E, F1-score without and with the contribution of the clustering-based segmentation algorithm and of (F) the
size threshold for excluding very small clusters. * in C, E, and F indicate a p value , 0.05.
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described in detail in Materials and Methods. Figure 2B,
top, showed that this approach was sufficient to detect
the great majority of the vesicles, corroborating the high
sensitivity of the model. However, a not negligible number
of false positives were present, especially within intracel-
lular organelles, such as mitochondria, or along synaptic
membranes. To reduce the number of false positives we
let the detected vesicles to be evaluated a second time by
the refinement classifier (for details, see Materials and
Methods). The weights selected for performing this
second round of prediction derived from the epoch
achieving the highest F1-score on the test dataset (da-
taset test 2; epoch 47th). This “double” prediction
eliminated the great majority of false positives, espe-
cially within mitochondria and other intracellular or-
ganelles (Fig. 2B, bottom) causing a large increase in
the precision of the model. At the same time, the recall
was affected to a lesser extent and remained relatively
high. Overall, after the prediction by the second CNN,
the F1-score of the model improved significantly
(p,0.0001, p* , 0.0001; Fig. 2C; Table 2).
A clustering-based segmentation algorithm is likely to

be effective in reducing merge errors (which produce
false negatives). However, it may also cause an increase
in false positives because of split errors. Therefore, we
wanted to confirm if our clustering strategy, applied after
the first CNN, improved the performance of the algorithm.
Our results showed that adding the k-means clustering al-
gorithm to our model increased significantly the F1-score
(p=0.0016, p* = 0.0049; Table 5). This was because the
recall of the model increased to a greater extent with re-
spect to the decrease in the precision (Fig. 2E; Table 2).
Therefore, we can conclude that the reduced merge er-
rors exceeded the few split errors generated by this strat-
egy. An example showing merge errors eliminated by our
clustering-based segmentation algorithm is displayed in
Figure 2D, before clustering: bottom, left panel; after clus-
tering: bottom, right panel, see arrows. Finally, we eval-
uated the effect of setting a threshold to exclude too small
clusters from being considered as vesicles. Our analysis
showed that introducing this threshold improved signifi-
cantly the F1-score of the model (p,0.0001, p* ,
0.0001; Table 5). This was because of a marked increase
in the precision of the model without a significant effect
on the recall (Fig. 2F; Table 2). An example showing false
positives eliminated by the application of a threshold set-
ting a minimal cluster dimension is displayed in Figure 2D,
without threshold: bottom, middle panel; with threshold:
bottom, right panel, see arrows.

Next, we tested the performance of our algorithm on
images from different preparations and hippocampal syn-
apses (dataset test final, Table 1; Fig. 3A–C).
The number of vesicles detected by the algorithm was

similar to the number of manually detected vesicles in all
three preparations (Extended Data Fig. 3-1). The perform-
ance of the model was also relatively high (Table 3),
although there were differences between preparations:
the precision was higher in neuronal cultures with respect
to acute slices, while the recall was highest in chemically-
fixed and lowest in cryo-fixed neuronal cultures (Fig. 3D).
To better interpret the quality of these results we also
evaluated the difference between human-based analysis
conducted by two researchers, independently. When we
compared the results from the two human-based analysis
with each other (considering the manual analysis of either
one or the other researcher as ground truth) we obtained
F1-scores which were statistically significantly higher
than the results obtained by the algorithm (p-values for
differences in F1-score, acute slices: p=0.0004, cryo-
fixed: p=0.0068, chemically-fixed: p=0.0004; Table 5).
Nonetheless, the F1-scores of human analysis were only
a few % points higher with respect to the result of the al-
gorithm (from 13.96% in acute slices to a maximum of
110.52% in cryo-fixed neuronal cultures) and they were
lower than 100% (see Table 3), suggesting that a margin
of uncertainty may be inevitable since present in analyses
conducted by humans.
Furthermore, to fill the gap that remains between

human and machine performance, we added a proof-
reading tool to our GUI which allows to evaluate and cor-
rect the predictions done by the algorithm, whenever nec-
essary. Further details to use this function can be found in
the README file in the GitHub repository at the address
specified in Materials and Methods, Code accessibility.
To further evaluate our results, we compared our algo-

rithm with ilastik, a well-established, machine learning-
based tool for (bio)image analysis (Berg et al., 2019). Our
strategy to detect synaptic vesicles with ilastik was to use
two workflows, sequentially: Cell Density Counting and
Object Classification (for details, see Materials and
Methods). An example of the results from ilastik can be
found in the Extended Data Figure 3-2. The performance
of ilastik in detecting synaptic vesicles with the chosen
process was statistically significantly lower in compar-
ison to our model for all three preparations (dataset
test final, Table 1; p-values for differences in F1-score,
acute slices: p, 0.0001, cryo-fixed: p= 0.0003, chemi-
cally-fixed: p = 0.0056; Tables 4, 5).

Table 2: Improvement of the model performance by applying additionally the refinement classifier and postprocessing
steps

Data Precision Recall F1-score
Without refinement 49.626 2.87%, n=11 95.786 0.60%, n=11 64.736 2.32%, n=11
Without clustering 78.586 1.17%, n=11 79.026 1.93%, n=11 78.386 1.18%, n=11
Without size threshold 71.636 1.12%, n=11 82.786 1.80%, n=11 76.386 0.90%, n=11
Final 77.876 1.15%, n=11 82.346 1.87%, n=11 79.636 1.11%, n=11

Performance of the model (precision, recall, and F1-score) on images of hMFBs from chemically-fixed acute hippocampal slices (subset of dataset test final) with-
out refinement classifier, without clustering-based segmentation, without removal of too small clusters, and with all steps included. Data are presented as mean
6 SEM.
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Figure 3. Evaluation of the performance of the algorithm on different sample preparations. A, Portion of a micrograph of a hMFB
from a chemically-fixed acute hippocampal slice with all manually detected vesicles tagged by the white dots (left), with all predicted
vesicles tagged by the white dots and false positives and false negatives marked by the semi-transparent blue and red circles, re-
spectively (middle), and with all predicted vesicles tagged by the white dots and their estimated areas represented by the overlaid
semi-transparent pink mask (right). Same as in A, but here, the micrographs show small hippocampal synapses from (B) a cryo-
fixed and a (C) chemically-fixed neuronal culture. D, Precision, recall, F1-score of the algorithm for the three different sample prepa-
rations and F1-score obtained by comparing the results from the two human-based analysis (F1-s. man). For this analysis, only
vesicles belonging to one synaptic terminal were manually labeled and predicted. Extended Data Figure 3-1 shows the comparison
between synaptic vesicle count detected by humans and by the algorithm. Extended Data Figure 3-2 shows an example of synaptic
vesicles detection using ilastik.
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Evaluation of the robustness of the algorithm to noise
and changes in contrast
Next, we evaluated the effect of adding Gaussian noise

or varying the image contrast on the performance of our
model. We first added artificial Gaussian noise to six dif-
ferent electron micrographs (three of hMFBs from chemi-
cally-fixed acute hippocampal slices and three of small
hippocampal synapses from chemically-fixed neuronal
cultures; subset of dataset test final, Table 1). The noise
was applied on images with the range of pixel values nor-
malized to 0–1. We used a Gaussian distribution with zero
mean and gradually increase SD (s ).
Up to a relative high level of noise (s 0.2), the model’s

precision improved, while increasing the noise caused a
decline in the model’s recall. This was because of a large
increase in the number of false negatives. This suggests
that, on noisy images, the model is very conservative in
deciding about the presence of a vesicle. Above a certain
level of noise both precision and recall dropped. Because
of this different behavior between precision and recall, the
F1-score declined relatively slowly (Fig. 4A,B).
We then artificially decreased or increased the level of

contrast in the same electron micrographs used in Figure
4A,B. We observed a large plateau in model performance
so that it was only marginally affected in images with a
contrast level between 0.05 and 1.5 times the level of the
original images. In general, the F1-score remained almost
unchanged for a large range of contrasts demonstrating
the robustness of our model to changes in this parameter
(Fig. 4C,D).

Evaluation of the robustness of the algorithm on
publicly available images
Finally, to test the limits of our model, we evaluated

its performance on images with pixel size ranging from
0.69 to 5.15 nm, coming from different sample prepa-
rations, different species, and acquired with different
microscopes in other laboratories (dataset external,
Table 1).
We tested two images from virtual sections of an electron

tomogram of cryo-fixed mice synapses (pixel size=5.15nm;

Imig et al., 2020; see their videos S1 and S2) and obtained a
precision of 73.936 7.45%, a recall of 83.686 0.73% and an
F1-score of 78.326 4.54% (Fig. 5A), the vesicle count
detected manually and by the model was 534.756 283.25
and 580.56 267.50, respectively; one transmission EM
image from a chemically-fixed zebrafish synapse (pixel
size= 1.61nm, http://cellimagelibrary.org/images/6230) and
obtained a precision of 86.21%, a recall of 77.54% and an
F1-score of 81.64% (Fig. 5B), the vesicle count detected
manually and by the model was 129 and 116, respectively;
six images from serial block face scanning EM of chemically-
fixed synapses [pixel size=5nm (Jorstad et al., 2015); https://
github.com/NeuroMorph-EPFL/NeuroMorph/tree/master/
NeuroMorph_Datasets/EM_stack] and obtained a precision
of 81.526 2.10%, a recall of 53.7861.39% and an F1-score
of 64.5961.44% (Fig. 5C), the vesicle count detected
manually and by the model was 133.256 14.17 and
86.676 7.94, respectively, and finally a virtual section from
an electron tomogram of chemically-fixed human synapses
(pixel size=0.69nm; Rollenhagen et al., 2020; see their
Movie 2) obtaining a precision of 86.76%, a recall of 49.08%
and an F1-score of 61.10% (Fig. 5D), the vesicle count de-
tected manually and by the model was 67 and 34, respec-
tively. The precision of the model was similar across all
images and comparable to the one obtainedwith our own im-
ages. However, one limitation of our algorithm was that the
recall was more variable, mainly because of the fact that
vesicles that were not sharp or that did not have a clearly visi-
ble membrane were often false negatives.

Parameters provided by the algorithm
Beyond the vesicle count and the position of each de-

tected vesicle, our algorithm provides the nnd and the es-
timated area of each vesicle. We compared the values
obtained by our system with the ones measured manually
in 22 images of small hippocampal synapses (10 from
cryo-fixed and 12 from chemically-fixed neuronal cul-
tures; subset of dataset test final, Table 1) and observed
significant correlations for all three parameters (Fig. 6A–C,
vesicle count: r=0.88 p, 0.0001, nnd: r=0.63, p= 0.0015,
area: r=0.76, p, 0.0001; Table 5).

Table 3: Evaluation of the model performance on images from different preparations

Data Precision Recall F1-score (alg.) F1-score (human)
Acute slices 77.876 1.15%, n=11 82.346 1.87%, n=11 79.636 1.11%, n=11 83.596 1.71%, n=11
Cryo-fixed n.c. 85.106 1.30%, n=7 78.136 4.69%, n=7 80.826 2.38%, n=7 91.336 0.93%, n=7
Chemically-fixed n.c. 87.536 1.96%, n=9 87.246 1.53%, n=9 87.226 1.37%, n=9 92.996 0.70%, n=9

Performance of the model (precision, recall, and F1-score) on images of hMFBs from chemically-fixed acute hippocampal slices (acute slices) and of small hippo-
campal synapses from either cryo-fixed or chemically-fixed neuronal cultures (cryo-fixed n.c. and chemically-fixed n.c., respectively; dataset test final) and F1-
score obtained comparing the annotations of two humans with each other. Data are presented as mean 6 SEM.

Table 4: Evaluation of the performance of ilastik and comparison with our model

Data Precision (ilastik) Recall (ilastik) F1-score (ilastik) F1-score (alg.)
Acute slices 50.606 3.19%, n=11 66.926 4.60%, n=11 56.896 3.36%, n=11 79.636 1.11%, n=11
Cryo-fixed n.c. 63.306 4.52%, n=7 62.626 2.45%, n=7 62.166 2.25%, n=7 80.826 2.38%, n=7
Chemically-fixed n.c. 74.156 3.24%, n=9 71.246 5.97%, n=9 70.486 4.14%, n=9 87.226 1.37%, n=9

Performance of ilastik (precision, recall, and F1-score) on the same images used in Table 3 (dataset test final) and F1-score obtained with our model. Data are
presented as mean 6 SEM.
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Discussion
In the present study we present a successful applica-

tion of deep CNNs for the automated recognition of nano-
scale organelles (synaptic vesicles) in EM images.
Recent studies showed that the distribution of synaptic

vesicles can underlie neuromodulation (Patzke et al., 2019,
2021) and synaptic plasticity (Rey et al., 2020; Orlando et al.,
2021; Reshetniak and Rizzoli, 2021). Therefore, automating
synaptic vesicles detection constitutes an important tool for
researchers interested in synaptic function and plasticity.
Deep neural networks are acquiring growing impor-

tance in many aspects of our lives. They contribute to the

extraordinary advances of many digital applications, such
as automatic speech recognition, natural language proc-
essing, object recognition, and cancer diagnosis just to
mention a few (Shrestha and Mahmood, 2019). CNNs are
a class of deep neural networks heavily employed in the
field of computer vision. Thanks to their unique architec-
tures, inspired by the visual cortex, they achieved unpre-
ceded results in visual tasks ranging from image
classification and object detection to autonomous driving
(Rawat and Wang, 2017).
CNNs have already found different applications in the

field of neuroanatomy. In particular, they showed to

Table 5: Statistical table

Data type Compared groups Test Results df
F1-score (%); Fig. 2 Final vs no refin., no

cluster, no size thr.
Repeated-measures
ANOVA

F = 40.33 3

Data type Compared groups Test Confidence level df
95% Bonferroni corr.

F1-score (%); Fig. 2 Final vs no refin. Paired t test 10.44% to 19.36% 9.18% to 20.62% 10
F1-score (%); Fig. 2 Final vs no cluster Paired t test 0.60% to 1.90% 0.41% to 2.08% 10
F1-score (%); Fig. 2 Final vs no size thr. Paired t test 2.34% to 4.15% 2.08% to 4.41% 10
F1-score (%), acute
slices; Fig. 3

Algorithm vs humans Paired t test �5.67% to �2.25% - 10

F1-score (%), Cry. fix.
n.c.; Fig. 3

Algorithm vs humans Paired t test �16.89% to �4.15% - 6

F1-score (%), Che. fix.
n.c.; Fig. 3

Algorithm vs humans Paired t test �8.10% to �3.45% - 8

F1-score (%), acute slices Algorithm vs ilastik Paired t test 16.20% to 29.27% - 10
F1-score (%), Cry. fix. n.c. Algorithm vs ilastik Paired t test 12.42% to 24.89% - 6
F1-score (%), Che. fix. n.c. Algorithm vs ilastik Paired t test 6.46% to 27.01% - 8
Vesicle count; Fig. 6 Algorithm vs humans Pearson corr. 0.7288 to 0.9494 - 42
Vesicle nnd; Fig. 6 Algorithm vs humans Pearson corr. 0.2838 to 0.8309 - 42
Vesicle area; Fig. 6 Algorithm vs humans Pearson corr. 0.4979 to 0.8949 - 42

Figure 4. Performance of the model with different levels of noise and contrast. A, Precision (pink), recall (blue), and F1-score (black)
at increasing noise levels. B, Portions of micrograph of a hMFB with increasing level of noise (from left to right) with all predicted
vesicles tagged by the white dots. The level of noise in the images in the middle and on the right is marked by the gray rectangles in
A. C, D, Same as in A, B, but instead of noise, different levels of contrast were tested. The contrast level in the images on the left
(low contrast) and on the right (high contrast) is marked by the gray rectangles in C. For this analysis, only vesicles belonging to one
synaptic terminal were manually labeled and predicted. On A, C, the dots represented the mean and the bars the SEM.

Research Article: Methods/New Tools 12 of 16

January/February 2022, 9(1) ENEURO.0400-20.2021 eNeuro.org



achieve very high accuracy in the segmentation of neuronal
structures and they have been employed for the computation
of 3D reconstruction of neuronal micro-circuitry in connec-
tomics studies (Cireşan et al., 2012; Ronneberger et al., 2015;
Januszewski et al., 2018). Despite these advanced applica-
tions of CNNs, the automated segmentation of synaptic
vesicles remains a challenge because of vesicle size, which is
often smaller than the z resolution of 3D reconstructions. A re-
cent application of the CDeep3M software (Steinkellner et al.,
2021) seems to be nowadays the only tool capable to localize
synaptic vesicles but it still requires a re-training of the seg-
mentation algorithm.
We therefore devoted our effort in the development of a

ready-to-use software specialized in the detection of syn-
aptic vesicles from transmission EM images.
For training our CNN-based vesicle classifier we used

;90� 90 nm images patches, the majority of which was

obtained from micrographs of hMFBs and a smaller por-
tion from images of hippocampal cultured neurons.
hMFBs are a particular type of synapse showing a pecu-
liar form of presynaptic plasticity (Nicoll and Schmitz,
2005). Each hMFB, similarly to other large synapses (e.g.,
neuromuscular junctions, calyx of held, cerebellar mossy
fibers), contains up to thousands synaptic vesicles thus
constituting an excellent model for establishing the auto-
mation of synaptic vesicles detection.
When we evaluated the performance of our vesicle

classifier on the test dataset, consisting of patches
from a different set of images, either containing or not
containing a synaptic vesicle, we obtained a predictive
power above 96% (Fig. 1). This result suggests that
our model efficiently learned to extract relevant fea-
tures for predicting the presence or the absence of a
vesicle in an image.

Figure 5. Performance of the algorithm on images available online. A–D, Portion of micrographs containing synaptic vesicles with
all manually detected vesicles tagged by the white dots (left), with all predicted vesicles tagged by the white dots and with false pos-
itives and false negatives marked by the semi-transparent blue and red circles, respectively (middle), and with all predicted vesicles
tagged by the white dots and their estimated areas represented by the overlaid semi-transparent pink mask (right). The image in A,
is a portion of a virtual section of an electron tomogram from a cryo-fixed mouse hMFB (Imig et al., 2020); the image in B belongs to
a synapse from a chemically-fixed zebrafish optic tectum (http://cellimagelibrary.org/images/6230). C, A portion of a synapse from
a serial block face scanning EM (https://github.com/NeuroMorph-EPFL/NeuroMorph/tree/master/NeuroMorph_Datasets/EM_stack).
D, A virtual slice of an electron tomogram of a chemically-fixed human synapse from the temporal lobe neocortex. Images in A, B,
D were obtained with a transmission EM, whereas the image in C was obtained with a scanning EM. For this analysis, all vesicles
present in the images were manually labeled and predicted.
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The network architecture of our vesicle classifier was in-
spired by LeNet-5 (Le Cun et al., 1989), a pioneer image
classification CNN that became famous for its ability to
automatically recognize handwritten digits, and slightly
modified to increase performance (Fig. 1). Despite the fact
that, recently, more sophisticated CNN architectures have
been developed and employed in neuron segmentation
studies (Cireşan et al., 2012; Ronneberger et al., 2015;
Januszewski et al., 2018), here we show that the relatively
simple architecture we chose is sufficient for detecting
structures which are largely homogeneous in size and
shape as synaptic vesicles.
To detect and localize multiple synaptic vesicles from

an entire image from a hMFB, we incorporated the vesicle
classifier in a sliding window detection algorithm. Despite
sliding window detectors are generally highly computa-
tionally expensive, the computational cost of our algo-
rithm was acceptable because small clear synaptic
vesicles have a very similar size and shape and therefore,
we need to use just a single window size to slide through
the image.
When tested on micrographs of mossy fibers presynaptic

terminals, our CNNmodel, combined with a connected-com-
ponent labeling and a k-means clustering algorithm, effec-
tively detected and localized the great majority of synaptic
vesicles. However, we could still systematically observe false
positives especially within mitochondria and along mem-
branes. This was expected since these organelles contain ve-
sicular structures which strongly resemble synaptic vesicles.
We managed to largely overcome this limitation by imple-
menting a second network, so called refinement classifier,
which functions as a check-point to confirm or reject all
vesicles predicted as such by the first CNN. Thanks to this
additional step, we managed to eliminate a large portion of
false positives and significantly improved the performance
(F1-score) of our model (Fig. 2B,C; Table 2).
We also tested our clustering-based segmentation al-

gorithm and the threshold setting for excluding too small
clusters and confirmed the importance of these steps,
which follow the first CNN, in improving the performance
of our model. (Fig. 2D–F; Table 2).
After the evaluation of all single steps built in our model,

we tested its overall performance on chemically-fixed acute
slices, cryo-fixed, and chemically-fixed neuronal cultures
from the mouse hippocampus. The model performed well in

all three sample preparations, reaching a mean F1-score just
below 80% (;79.6%) in hMFBs from acute slices, ;80.8%
in cryo-fixed neuronal cultures and ;87.2% in chemically-
fixed neuronal cultures (Fig. 3; Table 3). In considering the
performance achieved by our model, we should point out
that even manual analyses are likely to have some margin of
error. Indeed, when we compared the human annotations
performed by two postdoctoral researchers, we realized that
they did not coincide entirely, but they display marginal differ-
ences. This highlights that morphologic manual analyses of
this kind are susceptible to human subjectivity. This is likely
because of the fact that consistent portion of vesicles are not
clearly distinguishable in an electron micrograph, mainly be-
cause synaptic vesicles are 3D structures, and the image is a
2D projection of a 3D section.
The uncertainty present in the analysis conducted by

humans suggests that it may be impossible to reach a
performance near 100%, and it implies that the manually
originated training dataset may also not be completely un-
biased. In this regard, we want to highlight that, even if
our model inevitably inherits the bias present in the man-
ual labels, it will still offer the advantage of using the very
same detection strategy for every tested image, making it
a very useful tool for groups comparisons (for instance,
control vs treatment).
Next, to verify whether our algorithm brings about a

substantial improvement in the automate detection of
synaptic vesicles with respect to already available tools,
we analyzed the same images using ilastik, an interactive
machine learning-based tool specialized in (bio)image
analysis (Berg et al., 2019). The results of our algorithm
were significantly better than the ones obtained with ilas-
tik on the same sets of images (Table 4). Therefore, de-
spite ilastik remains a very useful and flexible tool for a
large variety of image analyses, our solution is superior on
the specific task of detecting synaptic vesicles.
Finally, to offer the possibility to refine the automatic

analysis, we also provide a proof-reading tool to easily
add-delete false negatives and positives, respectively.
Next, we evaluated the robustness of our model in face

of changes in noise and contrast. Interestingly, the preci-
sion of the model improved when Gaussian noise was
added to the original micrographs (up to a relatively high
level of noise, s =0.2). The introduction of noise caused
also an increase in false negatives, as seen by the decline

Figure 6. Correlations of parameters obtained by human analysis or by the algorithm. Correlations between algorithm and human
results for (A) total vesicle count, (B) nnd, and (C) estimated vesicle area. Each dot represents the average value for an image. The
black lines represent the linear regressions. * indicate a p value , 0.05.
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in recall. The sum of these two effects caused the overall
model performance (F1-score) to be relatively constant up
to a low-moderate level of noise (s 0.075) and to then de-
cline (Fig. 4A,B). Since we consider unlikely that recent
image acquisition systems produce images with a noise
higher than to the one simulated in this study with a s �
0.075, we are confident that differences in noise level are
unlikely to significantly affect our model. The performance
of the model was only marginally affected when tested on
images with a large range of contrast levels. As for the
noise, changing contrast negatively affected the recall
more than the precision. However, in general the F1-
score remained almost unchanged in images with con-
trast level far more extreme that what is usually produced
by transmission EM (Fig. 4C,D). The reported robustness
of our model to changes in noise and contrast is likely the
result of introducing noise and changes in contrast as
data augmentation strategy while training the networks.
As ultimate test, to evaluate to what extent our model

performs well, we used images taken from either public
repositories or from the Extended Data of two publica-
tions (Imig et al., 2020; Rollenhagen et al., 2020; Fig. 5).
These included images of synapses from different spe-
cies, taken at different resolutions and prepared with dif-
ferent protocols. Remarkably, the precision of the model
was similarly high in all kind of images tested and compa-
rable with the precision obtained on our own images.
However, the recall showed important differences, and it
was relatively low in some of the tested images, thereby
affecting the F1-score. Based on these results, we can
deduce that our algorithm is very precise in detecting
vesicles across a broad range of different image types but
its efficiency in recognizing vesicles might have consistent
variations depending on the vesicle appearance. For in-
stance, in images acquired with a scanning EM, as in
Figure 5C, false negatives were mainly present if vesicles
were not sharp or their lumen was not recognizable. For
rendering the application of our model possible also to
these cases we still offer the possibility to refine the re-
sults with our proof-reading tool or to re-train the model
with one own images, by providing in our GitHub reposi-
tory the source code of the vesicle classifiers and the
codes to train them (see README file of the GitHub re-
pository at the address specified in Materials and
Methods). Taken together, our results show that our algo-
rithm generalizes well and we are confident that most
people working on transmission EM images can directly
use the weights from our trained models (the weights can
also be found in the public GitHub repository). The main
reasons why we believe the model is likely to work on the
majority of transmission EM images are the following: (1) it
was trained on images from both chemically-fixed and
cryo-fixed samples; (2) the shape and dimension of syn-
aptic vesicles varies only marginally across species, brain
area and preparation techniques; (3) transmission EM
produces images with good resolution allowing to distin-
guish the membrane delimiting the vesicles as well as
their lumen; (4) we included a step to rescale all input im-
ages before being evaluated by our CNNs. This allows the
model to work with images of different resolutions.

Finally, our algorithm does not only count the number of
vesicles, but it also outputs the position, the nnd, and the
estimated area for each detected vesicle (Fig. 6). The pro-
vided values can be used for measuring many parameters
such as synaptic vesicle density, vesicle distribution in-
side the terminal, and distance from the active zone.
These measurements are all important for gaining insight
into synaptic function and modulation.
Furthermore, thanks to the provided GUI, our solution

has the great advantage of being easy to use by life-sci-
ence researchers with little programming experience.
It is conceivable that future versions of the algorithm

will be trained to further recognize and distinguish other
intracellular organelles. The recently developed family of
object detection algorithms, R-CNNs, are well suited for
achieving these goals. By combining a region proposal
network (RPN) with a CNN, they can effectively and accu-
rately localize objects of different size and shape within an
image (Girshick, 2015).
In summary, in the present study we developed and

evaluated an algorithm to automate the analysis of synap-
tic vesicles in transmission EM images. We believe that
the implementation of this automatic method can strongly
increase the throughput of research focusing on synapses
structure and function.
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