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Background
Massively parallel DNA sequencing experiments including ChIP-seq, ATAC-seq, whole 
exome and whole genome sequencing are widely used research methods. These methods 
have been instrumental for identifying binding sites of DNA-associated proteins, histone 
modification states, chromatin accessibility, and germline and somatic genomic variants. 

Abstract 

Background:  Exogenous cDNA introduced into an experimental system, either inten-
tionally or accidentally, can appear as added read coverage over that gene in next-
generation sequencing libraries derived from this system. If not properly recognized 
and managed, this cross-contamination with exogenous signal can lead to incorrect 
interpretation of research results. Yet, this problem is not routinely addressed in current 
sequence processing pipelines.

Results:  We present cDNA-detector, a computational tool to identify and remove 
exogenous cDNA contamination in DNA sequencing experiments. We demonstrate 
that cDNA-detector can identify cDNAs quickly and accurately from alignment files. A 
source inference step attempts to separate endogenous cDNAs (retrocopied genes) 
from potential cloned, exogenous cDNAs. cDNA-detector provides a mechanism to 
decontaminate the alignment from detected cDNAs. Simulation studies show that 
cDNA-detector is highly sensitive and specific, outperforming existing tools. We apply 
cDNA-detector to several highly-cited public databases (TCGA, ENCODE, NCBI SRA) and 
show that contaminant genes appear in sequencing experiments where they lead to 
incorrect coverage peak calls.

Conclusions:  cDNA-detector is a user-friendly and accurate tool to detect and remove 
cDNA detection in NGS libraries. This two-step design reduces the risk of true variant 
removal since it allows for manual review of candidates. We find that contamination 
with intentionally and accidentally introduced cDNAs is an underappreciated problem 
even in widely-used consortium datasets, where it can lead to spurious results. Our 
findings highlight the importance of sensitive detection and removal of contaminant 
cDNA from NGS libraries before downstream analysis.
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In common functional studies, a wild-type gene or variant of interest is introduced into 
the experimental system with DNA vectors, which can then appear in the sequencing 
library. Sequence reads stemming from the exogenous gene of interest are then mapped 
back to the endogenous locus during the alignment step. In addition, trace amounts of 
vector DNA from other experiments performed in the same laboratory or on shared 
equipment can contaminate the DNA library, leading to the presence of foreign genes in 
the derived alignment. Signal from these contaminant genes can then affect downstream 
results and interpretation, for example through spurious increased copy number [1, 2], 
false germline or somatic variant calls [3, 4], or incorrect coverage peak calls [3–5].

Detection of such exogenous gene signal in an alignment can be challenging, in par-
ticular when the vector-derived signal overlaps true signal derived from exome or chro-
matin profiling. Few methods have been developed to detect vector contamination in 
NGS libraries. Some identify sequence reads, such as SeqClean and VecScreen [6, 7], 
from known cloning vectors, but do not search for the cDNA insert. Vecuum [4] was 
developed to also identify the contaminating gene; however, this tool relies on known 
vector backbone sequences.

Because cloned cDNAs do not contain introns or their physiologic UTR regions, this 
property can be exploited to identify potential contaminants. Reads from these cDNAs 
only partially align to the genome at exon boundaries, with unmapped sequence match-
ing either a vector (at the 5’ and 3’ ends) or a neighboring exon. In a genomic alignment, 
these reads appear as “clipped”, and thus can be distinguished from true signal reads that 
fully map to the genome across exon boundaries (Fig. 1A).

Implementation
Detection of cDNA in NGS libraries

Prompted by the presence of intentional and accidental cDNA cross-contamination 
in our own data, we developed cDNA-detector, a computational tool that detects and 
optionally removes cDNA contamination in DNA sequencing data (Fig.  1B). cDNA-
detector takes a standard BAM-formatted alignment and a gene model file as input. For 
each exon from the model file, the number of clipped and properly mapped reads at the 
two boundaries (the start and end coordinate) are counted. Using a binomial model, we 
test whether the fraction of clipped reads at any given boundary coordinate exceeds the 
expectation based on the background of total clipped reads (Methods). The two P-values 
for each exon and all P-values for each transcript are combined. Significant transcripts 
(P < 0.05) or transcripts with more than 30% of significant exons are considered candi-
date contaminant transcripts for further analysis (Additional file 1: Figure S1).

Next, cDNA-detector performs an in-depth search for additional evidence at exon 
boundaries for all exons in candidate contaminant transcripts. First, it seeks clipped 
reads within a range of 5 bp of the annotated exon boundary (Additional file 1: Figure 
S1). This step captures clipped reads when part of the clipped region matches the adja-
cent intronic sequence, and thus the clip is not performed at the exact boundary coor-
dinate; and it allows for additional space for potentially added sequence at the cDNA 
ends that could have been introduced during cloning. Further, cDNA-detector infers a 
consensus sequence from the clipped overhangs. It then searches the alignment for addi-
tional reads with short overhangs (1-2 bp) annotated as mismatches rather than clips, 
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but whose overhang sequence aligns to the inferred consensus sequence at the respec-
tive boundary (Additional file 1: Figure S1). Additional evidence from reads identified in 
these steps is added to the clipped read count, and P-values are re-calculated for all can-
didate contaminant exons and transcripts as described above. cDNA-detector further 
checks whether the consensus sequence of the clipped region maps to the neighboring 
exon.

cDNA source inference

Eukaryotic genomes contain endogenous retrogenes, processed (spliced) copies of genes 
that were reverse transcribed and re-inserted into the genomic sequence, often flanked 
by LINE-1 elements in the human genome [8–10]. Similar to contaminant cDNAs, these 
retrogenes are also intron-free and generate clipped reads at the source gene locus, and 
thus cDNA-detector will detect these instances. While retrogenes are rarely picked up in 
ChIP-seq and ATAC-seq data, they can dominate genomic sequencing strategies (whole 
exome and whole genome). The tool therefore attempts to distinguish vector-introduced 
contaminants from retrogene copies (Methods; Additional file  1: Figure S1). To infer 

Fig. 1  Workflow of cDNA-detector. A Schematic illustrating the source of intentional or contaminant cDNA 
reads in sequencing experiments. Vectors (grey) with cDNA (red) are amplified in the library preparation 
process and sequenced together with the experiment. Upon alignment of reads, cDNA-derived reads (red 
boxes) map to the respective gene locus in the genome, along with true signal reads (blue). Textured red 
read segments indicate sequence not mapping to the genome and “clipped” by the alignment algorithm. 
B Overview of the two main components of the cDNA-detector algorithm, “detect” and “decontaminate”. 
C ATAC-seq experiment from TCGA before (pink) and after (green) removal of vector-introduced KRAS. For 
comparison, an uncontaminated sample (grey) is shown. Boxes indicate contaminant signal over exons
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the source of a given cDNA candidate, a database of known cloning vectors [11] as well 
as consensus sequences of transposable elements [12] are queried for the consensus 
sequences derived from clips at the 5’ and 3’ ends of candidate transcripts. In the com-
mon case where clipped sequences are too short to yield a database query result, we 
consider the distance of the clipped position to the annotated boundary: if the distance 
is ≤ 5 bp, a vector is likely the source; if the distance is > 10 bp, the cDNA candidate is 
deemed more likely to originate from a retrogene insertion. Cases where no clear evi-
dence can be found (e.g. custom plasmids, short sequences) are annotated as “unknown”, 
and the user is encouraged to manually review potential sources. When using cDNA-
detector on genomic sequence data, we recommend suppressing the “retrocopy” output, 
such that only potential vector cDNA candidates are reported.

Alignment decontamination

If potential contaminants are identified, cDNA-detector provides the option to remove 
contaminant reads from the alignment (Fig.  1B and Additional file  1: Figures  S2A-B) 
to reduce the risk of spurious coverage peak and variant calls in downstream analysis. 
In addition to obvious contaminant clipped reads as identified above, cDNA-detector 
further classifies all reads in candidate cDNAs as either genomic or ambiguous (Addi-
tional file 1: Figure S2B; Methods). Genomic reads span the exon boundary and properly 
map to the adjacent intron sequence; ambiguous reads do not overlap the boundary but 
instead map entirely inside the exon, and could thus originate from either true signal 
or the contaminant. In the decontamination step, cDNA-detector removes all bona fide 
contaminant reads. For ambiguous reads, the tool first calculates the fraction of contam-
inant-to-genomic reads at the exon boundaries. Next, a similar fraction of ambiguous 
reads inside the exon is discarded randomly. This approach ensures that any true sig-
nal obscured by cDNA contamination remains in the decontaminated sample. With this 
strategy, contaminants can be effectively removed from alignments, revealing true signal 
previously obscured by contamination (Fig. 1C; Additional file 1: Figure S2C).

Results
cDNA‑detector performance

Several methods exist to detect vector contamination in NGS libraries, includ-
ing Vecuum [4], SeqTrimNext [13], DeconSeq [14] and VecScreen [7]. We evaluated 
cDNA-detector’s sensitivity (recall) and precision in light of these existing methods 
by generating sets of simulated cDNAs with different read lengths, distinct sequenc-
ing strategies (single vs. paired-end) and variable coverage, and introducing these into 
a contamination-free ATAC-seq experiment (2 × 38  bp reads, 43,344,211 reads total; 
Methods). Measuring the identification of mapped contaminant paired-end reads, 
cDNA-detector outperformed all methods in both precision and recall, with outstand-
ing performance at short read lengths (> 70% for all read lengths; Fig. 2A). We further 
performed an in-depth comparison of cDNA-detector with Vecuum, the only other 
tool with functionality to identify and remove the actual DNA insert. We expanded 
our experiments to spike-in contaminants at varying coverage levels for single-end and 
paired-end libraries. Although both methods exhibited very high precision (> 0.95 for 
contaminants with ≥ 20 × coverage and read length > 50 bp, cDNA-detector had much 
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higher recall in both single-end and paired-end low-coverage experiments (Fig.  2B). 
However, cDNA-detector and Vecuum failed on very short, single-end reads because 
the aligner [15] with default parameters does not produce clipped reads when the read 
length is ≤ 30 bp.

We also applied cDNA-detector to the human whole-exome sequencing dataset from 
the original Vecuum publication [3, 4]. cDNA-detector detected contamination with 
MTOR cDNA in the same three of the eight exomes (Additional file  1: Figure S3A). 
In addition, cDNA-detector discovered TMEM138 cDNA, which could be traced to a 

Fig. 2  Performance of cDNA-detector. A Recall, precision and F1 score for cDNA-detector and related tools 
for detection of spiked-in contaminant reads (150 bp paired-end reads) in a simulated data set. Error bars 
indicate standard errors. Sample size n = 10 for each experiment. B Recall and precision of cDNA-detector 
and Vecuum on single-end (left) and paired-end (right) sequencing experiments, depending on read 
coverage. Error bars indicate standard errors. Sample size n = 10 for each library type and read length
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vector construct used in the same research group [16], supporting its validity. cDNA-
detector further identified additional cDNAs of likely retrogene origin (Additional file 1: 
Figure S3A).

The optional second step of cDNA-detector removes inferred cDNA reads from align-
ment files. To test the impact of the clean-up step on downstream analysis, we compared 
peak calls from original, spike-in contaminant experiments (Methods) and decontami-
nated libraries. After discarding of contaminant reads, most spuriously gained peak calls 
were lost again, and cDNA-detector’s decontamination strategy was more efficient than 
Vecuum (Additional file 1: Figure S3B). Importantly, we also show that cDNA-detector’s 
decontamination step does not affect non-contaminant regions and true structural vari-
ant or short variant calls (Additional file 1: Figure S4 and Additional file 2: Table S1).

Resource consumption

To test cDNA-detector’s compute resource consumption, we used a human exome 
alignment [3] with 300 M reads. From this exome, we randomly sampled different read 
numbers and ran cDNA-detector on a single core on a Linux high-performance clus-
ter with 72 processors and 251 GB RAM. For small datasets (< 50 M aligned reads), the 
cDNA detection step was typically completed within 15 min and used ≤ 1 GB memory. 
cDNA detection on the full exome took about 44  min and 2  GB memory (Additional 
file 1: Figures S5A-B). For large datasets, including whole genome alignments, cDNA-
detector can be run in multi-thread mode to decrease processing time, but requires 
additional memory (Additional file 1: Figures S5C-D). With its moderate resource foot-
print, cDNA-detector can easily be integrated into existing NGS processing pipelines as 
an additional quality control step.

cDNA contamination in public databases

We applied cDNA-detector to several large public datasets with different types of high-
throughput sequencing experiments to assess potential cDNA cross-contamination. 
Among 402 ATAC-seq experiments generated from primary tumors in The Cancer 
Genome Atlas [5], we identified 69 samples (17%) with suspected exogenous cDNA con-
tamination. Contaminants included the cancer genes KRAS (2 samples, including one 
sample identified by manual review), STAG2 (35 samples), DDX58 (25 samples; DDX58 
encodes RIG-I), and SNAP25 (9 samples), some of which can be traced to other pro-
jects from the same laboratory [17, 18] (Fig. 3A; Additional file 3: Table S2). Inspection 
of consensus ATAC-seq peak calls provided with the study revealed that at least some 
contaminant exons caused spurious peak calls that could affect downstream analyses 
(Fig. 3A). Sixteen cDNAs (in 41 samples) were detected in 14,485 ChIP-seq, ATAC-seq 
and other DNA-seq experiments from the Encyclopedia of DNA Elements (ENCODE) 
consortium (Fig.  3B; Additional file  4: Table  S3). Some of these represent intention-
ally introduced genes, such as TERT for cell line immortalization, or KLF4 and MYC in 
reprogrammed iPS cells (Additional file 1: Figure S6). Other genes (PPARG, PAX7) could 
not be traced to intentional transduction in the cell lines in which they were detected 
and are likely cross-contaminants. Peak calls generated from these experiments and 
available for public use are affected by these exogenous cDNAs where they contribute 
signal in unexpected genomic locations (Fig. 3B). We further performed cDNA detection 
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on a random sampling of 619 human sequencing tracks from 317 projects listed in the 
NCBI’s Sequence Read Archive (SRA). Fifteen samples with 39 cDNAs were identified in 
this dataset (Fig. 3C; Additional file 5: Table S4). Detected cDNAs again included inten-
tionally introduced transgenes, but also contaminants that could be traced to other pro-
jects in the same laboratory (e.g. refs.[19–22]; Fig. 3C). A sampling of 71 mouse genome 
sequencing tracks from 36 projects in SRA yielded three cDNAs. These include inten-
tionally introduced truncated Sun1 and NRAS of human origin [23], demonstrating that 
cDNA-detector is mismatch-tolerant and can detect instances of cross-species cDNA 
contamination (Fig.  3D; Additional file  6: Table  S5). No candidate vector-introduced 
cDNAs were detected in 324 exomes from the Cancer Cell Line Encyclopedia (CCLE 
[24]; data not shown). Of note, only a small subset of the contaminants in these public 
datasets were identified by Vecuum (Methods; Additional file 7: Table S6).

Conclusions
cDNA-detector is a highly sensitive and accurate method to identify cDNA inserts in 
NGS libraries and remove contaminant reads if desired. cDNA-detector does not 
remove vector backbone sequences unmapped to the reference genome; however, other 

Fig. 3  cDNA contamination in published datasets. A Examples of ATAC-seq signal from two primary tumor 
samples from the TCGA [5] showing contamination with DDX58 (encoding the antiviral innate immune 
response receptor RIG-I; left) or the cohesin component STAG2 (right). True signal would be expected at the 
promoter and potential intragenic regulatory elements, but not over all exons. Arrowheads indicate spurious 
signal peak calls caused by contaminant reads over exons (black boxes in gene track; peak calls obtained 
from ref [5]). B cDNA contamination with PPARG​ in a FOXK2 ChIP-seq experiment in HEK293T cells and PAX7 in 
an EZH2 ChIP-seq experiment in HUVEC cells from the ENCODE project. Arrowheads indicate official ENCODE 
peak calls due to contaminant signal over exons. C Examples of cDNA contamination with prostate cancer 
genes FOXO1 and SPOP in an androgen receptor (AR) ChIP-seq experiment performed in the prostate cancer 
cell line C2-4 [36, 37]. D Example of transduced human NRAS cDNA in a mouse ATAC-seq experiment in cell 
line ICC2.7
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methods exist for this purpose (e.g. DeconSeq, SeqtrimNext). Another limitation of 
cDNA-detector is the dependence on a pre-defined gene model to detect cDNA inserts. 
For newly or incompletely assembled genomes, a gene model can be approximated by 
mapping genes of a closely related species. Similarly, custom amplicons used in the labo-
ratory or sequencing facility should be added to the gene model to optimize detection 
sensitivity.

Our results highlight that intentional and unintentional cDNA contamination is per-
vasive in published sequencing experiments, including some widely used, highly cited 
datasets, yet remains largely unnoticed. cDNA contaminants are shown to directly affect 
signal peak calls, and may contribute to other spurious findings. In some cases, spe-
cific genes detected as contaminant cDNAs could be traced to other published studies 
from the submitting laboratory, highlighting the risks of intra-lab contamination. This 
cross-contamination raises potential issues with keeping specific research constructs 
confidential and private when necessary. In addition to laboratory protocol improve-
ments, we thus recommend careful review and computational decontamination of high-
throughput genomic sequencing data for cDNA contaminants as an essential part of any 
sequence processing pipeline. Our two-step method consisting of detection and decon-
tamination of cDNA allows users to review potential cDNA candidates before deciding 
to remove them from data, reducing the risk of accidental removal of true variants.

Methods
Method outline

The general framework of cDNA-detector consists of three steps: 1. Preparation of a 
gene model file, for example all exons for a given species and genome assembly, 2. detec-
tion of potential cDNA in a BAM-format alignment file, 3. optional clean-up of identi-
fied cDNA sequencing reads from the alignment (Fig. 1B; Additional file 1: Figures S1 
and S2A).

Generation of gene model file

An annotation file containing genomic coordinates for exon positions for a given species 
and assembly is required to run cDNA-detector. A processing script to generate such 
gene models from GTF format annotation files is part of the cDNA-detector distribu-
tion. Pre-generated models for the human (hg19 and hg38) and mouse exome (mm10 
and mm39) are provided with the tool. Users may consider adding entries for specific 
transcript variants (such as truncated genes), custom amplicons, or non-coding RNAs 
that are suspected or known contaminants.

Detection of candidate cDNA in DNA sequencing experiments

cDNA source reads at exon boundaries

Soft-clipped reads as identified by a read’s CIGAR string (S) in the BAM file are con-
sidered potential contaminant reads. In addition, cDNA-detector looks for reads with 
mismatches just past the exon boundary inside the intron (by MD tag). Reads whose 
overhang into the intron sequence is an exact substring of the consensus sequence of 
other soft-clipped reads in this location are also counted as possible cDNA reads. 



Page 9 of 14Qi et al. BMC Bioinformatics          (2021) 22:611 	

Consensus sequences are generated by aligning the intron overhang of all clipped reads, 
including a base with ≥ 80% frequency in the consensus.

Statistical identification of candidate cDNAs

To evaluate whether the number of soft-clipped boundary-spanning reads for a given 
exon exceeds the number expected by chance, we build a background expectation model 
by using all soft-clipped reads overlapping any exon region boundary as defined in the 
gene model. We then test for significant enrichment of soft-clipped reads, as calculated 
above, for each single exon boundary genomic position. We define the total number 
of reads overlapping a specific exon boundary, including genomic reads from the tar-
get experiment properly mapped to the adjacent intron, as nt . The total number of soft-
clipped and overhang reads is defined as nc . The total number of soft-clipped reads in all 
exon regions is Nc , and the total number of all reads in all exon regions is defined as Nt . 
We use a beta-binomial model to calculate the probability of observing at least nc reads 
at a given exon boundary by chance (Eq. 1):

For nc > 0 X in { nc, nc + 1, . . . , nt }, where α = Nc , β = Nt− Nc + 1 and B(α, β) is the 
Beta function.

An exon with contaminant cDNA will have soft-clipped reads at both of its bounda-
ries. We therefore combine the P-values for both exon boundaries for all exons using 
the harmonic mean P-value [25] (to account for dependence between the two P-values). 
Finally, all combined exon-wise P-values are corrected with the Benjamini–Hochberg 
procedure [26]. Exons with corrected P-value (Q-value) ≤ 0.05 are considered candidate 
cDNA-exons. To further increase confidence that a flagged exon originates from cDNA, 
the overhang consensus sequence of soft-clipped reads at both exon boundaries will be 
compared to the sequence of the neighboring exon(s). If at least one substring match is 
found, exons are kept for further analysis. Finally, transcripts with ≥ 30% of exons pass-
ing the above criteria will be reported. Because the background model is built on the 
total number of clipped reads at exon boundaries, it is recommended to remove adapter 
sequences before alignment to increase sensitivity especially for low-concentration con-
taminants (Additional file 1: Figure S7).

cDNA source inference

cDNA-detector attempts to identify the source of a candidate cDNA to distinguish 
endogenous (retrocopy) and exogenous (vector) origins. Source inference is performed 
by querying the overhang sequence of the 5’ and 3’ ends of a candidate cDNA against 
the NCBI UniVec database  (https://​www.​ncbi.​nlm.​nih.​gov/​tools/​vecsc​reen/​univec/) 
and Repbase database of human and mouse known repeat sequences [12]. The highest-
scoring match with E-value ≤ 10 is taken as probable origin. Accordingly, a “vector” is 
reported if the top match stems from UniVec and “retrocopy” is inferred if this hit comes 
from RepBase. In addition, we require a distance of > 5 bp for a repeat match from the 
clipped position for a “retrocopy” assignment, as these genes often carry adjacent UTR 

(1)P(X ≥ nc) = 1−

nc−1
∑

x=0

(

nt

x

)

B(α + x, nt − x + β)

B(α,β)

https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
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sequence [27]. In case where no suitable match is found, we use the distance from the 
exon boundary to the clip as estimate: if the distance is ≤ 5 bp, a cloned vector sequence 
is more likely (“vector-likely”); if the distance is greater than 10  bp, we infer a possi-
ble retrogene (“retrocopy-likely”); otherwise the source is labeled “unknown”. Because 
source inference strongly depends on the length of the overhang sequence available for 
BLAST query, it is thus most reliable for experiments with long read lengths.

Removal of contaminant reads from alignment

After the candidate cDNA contamination detection step, a new alignment file can be 
generated with candidate contaminant reads removed. This step is straightforward for 
soft-clipped reads at flagged exon boundaries, as these are very likely contaminants. 
However, exogenous DNA will also be present as fully aligned reads inside exon regions 
without overlapping boundaries. In some cases, such as a first exon, these reads can 
overlap with actual ChIP-seq or ATAC-seq signal derived from the proximal promoter. 
To address this issue, cDNA-detector assigns reads in candidate cDNA exon regions into 
three classes: (1) clipped reads and their mates clearly obtained from cDNA contamina-
tion ( Rc ); (2) reads derived from the genome aligned across an exon boundary without 
soft-clips or mismatches, neighboring exon homology, or a proper mate mapped outside 
the exon ( Rg ); and (3) reads which cannot be unambiguously assigned to either class ( Ra ) 
due to full genomic alignment inside an exon region.

For each candidate contaminant exon, cDNA-detector will first calculate the ratio of 
Rc to all unambiguous reads ( Rc + Rg ), and then remove the same fraction of ambiguous 
reads fully mapped inside the exon regions ( Ra):

where Rna is the number of ambiguous reads to remove, nint is the nearest integer func-
tion. Rna reads are then randomly selected and removed from this exon. After removal of 
contaminant reads in all flagged exons, a separate “clean” BAM file is written to a speci-
fied output location.

Performance

cDNA simulation experiments for  sequencing strategy and  read length  To evaluate 
detection performance, we generated simulated contaminating cDNAs by randomly 
selecting 100 cDNAs sequences from the CCDS database [28] for each of 10 simulation 
experiments. Selected cDNAs were “cloned” in silico into the pLX307 vector sequence 
(http://​www.​addge​ne.​org/​117734/), by replacing the luciferase gene with the correspond-
ing tested cDNA. We then randomly simulated artificial paired-end or single-end reads 
with read lengths 30 bp, 35 bp, 50 bp, 100 bp, 120 bp, 150 bp, and fragment size 350 bp 
for paired-end experiments, from the vector with insert, to an average target coverage of 
100 × . Simulated reads were aligned to the hg38 human genome assembly with bwa mem 
[15]. Aligned reads were then added to a T47D ATAC-seq experiment with ERBB2 reads 
from an intentionally introduced construct removed with cDNA-detector. For experi-
ments with < 100 × coverage, we randomly downsampled to the desired target coverage 

Rna = nint

(

Rc

Rg + Rc
∗ Ra

)

http://www.addgene.org/117734/
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from this alignment. cDNA-detector was run with default settings to discover simulated 
cDNA contamination.

Resource consumption  In order to test the time and memory usage and multi-threaded 
performance of cDNA-detector, we randomly extracted reads to the desired read number 
from exome SRR1819826 [3]. Time and memory consumption were assessed for cDNA-
detector with default settings.

Comparison with related tools

For comparison of cDNA-detector with Vecuum (1.0.1) [4], SeqtrimNext (2.0.68) [13], 
DeconSeq (0.4.3) [14] and VecScreen (BLAST 2.9.0 +) (https://​www.​ncbi.​nlm.​nih.​gov/​
tools/​vecsc​reen/), we used the simulation strategy outlined above. For SeqtrimNext, 
DeconSeq, VecScreen, original FASTQ or FASTA files were used as input. Alignments 
(BAM) were input into Vecuum and cDNA-detector. Due to different functionality of 
these tools, we measured the ability to identify mapped contaminant reads with the fol-
lowing metrics: Recall was defined as (called true simulated mapped reads)/(true sim-
ulated mapped reads); precision was defined as (called true simulated mapped reads)/
(called mapped reads); F1 was defined as (2 × precision × recall)/(precision + recall). 
Performance to detect cDNA inserts (only Vecuum and cDNA-detector) was evaluated 
with recall defined as (called true cDNAs)/(true spiked-in cDNAs), precision as (called 
true cDNAs)/(called cDNAs) and F1 as (2 × precision × recall)/(precision + recall). Due 
to possible identical alignments for reads derived from homologous genes, a homolog 
was also counted as true positive if identified as cDNA candidate.

We further compared cDNA-detector to Vecuum using the exome data used in the 
respective publication (SRP055482; [3]). FASTQ files were aligned to the hg19 genome 
assembly with bwa mem with the default settings [15]. cDNA-detector was run with 
–num_initial_potential_cdna 5000 (allowing a larger number of initial cDNA candi-
dates for evaluation) to detect cDNA contamination. Candidate cDNAs were manu-
ally reviewed for presence of soft-clipped reads and other evidence in the Integrative 
Genome Viewer (IGV; [29]).

We also applied Vecuum to the samples from the TCGA, NCBI SRA (human samples 
only) and ENCODE in which cDNA-detector identified candidate cDNAs. Vecuum run 
with default parameters (minimal match length l = 20 and mapping quality threshold 
Q = 30) detected few cDNAs in the comparison data. Individual hits could be recovered 
with Vecuum with more relaxed parameters (-l15 -Q1 for TCGA ATAC-seq; -l 10 -Q1 
for NCBI SRA and ENCODE data), although at the cost of lost specificity.

Assessment of downstream effect of cDNA contamination and application of cDNA‑detector

For assessment of peak calling after cDNA decontamination, we used the simulated 
cDNA strategy described above. MACS2 (2.2.7.1) [30] was applied to call peaks in the 
original, contaminated, and decontaminated (by either cDNA-detector or Vecuum) 
samples. Differential peaks were counted with BEDTools (v2.30.0) [31].

For assessment of variants of cDNA contamination, we generated simulated cDNAs 
with one random point mutation (limited to chromosome 10) and added them to the 
human HG002 whole-genome sequencing sample from the Genome In A Bottle project 

https://www.ncbi.nlm.nih.gov/tools/vecscreen/
https://www.ncbi.nlm.nih.gov/tools/vecscreen/
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[32]. Then we applied cDNA-detector to identify and remove cDNAs. Bcftools (1.9) [33] 
was used to call variants in the original HG002, contaminated, and decontaminated 
samples.

Effect of adapter sequences on cDNA‑detector

We aligned reads from the T47D ATAC-seq sample before adapter removal to the hg38 
human genome, then simulated cDNAs as described above, and compared performance 
metrics to the same sample after adapter removal.

Application to public datasets

We applied cDNA-detector snapshot 26 to three large public data sets using the Terra.
bio platform and on local compute: 402 ATAC-seq experiments from primary tumors 
from TCGA [5], 14,485 ChIP-seq, ChIA-PET, ATAC-seq and DNase-seq tracks from 
ENCODE [34] with read length > 30 bp, 324 exomes from the Cancer Cell Line Ency-
clopedia [24], and 317 human and 36 mouse studies from the NCBI’s SRA repository 
(see references in Additional files 5 and 6: Tables S4 and S5). Adapters were removed 
from TCGA ATAC-seq libraries before running cDNA-detector, and results were 
inspected manually. Only high-confidence cDNA candidates are reported. SRA studies 
were selected based on the availability of BAM-format files and restricted to ChIP-seq, 
ATAC-seq and DNase-seq experiments with sequence read length > 30 bp. We then ran-
domly selected one or two (if the study contained more than one experiment) samples 
from those projects. SRA files were downloaded, then converted to BAM format with 
sam-dump (https://​ncbi.​github.​io/​sra-​tools/​sam-​dump.​html) and samtools [35] with 
default parameters. Analysis with cDNA-detector was performed as described above. 
Potential cDNAs were manually reviewed in IGV.

Availability and requirements
Project name: cDNA-detector. Project home page: https://​github.​com/​rhein​baylab/​
cDNA-​detec​tor. Operating system(s): Any. Programming language: Python. Other 
requirements: Python 3.7.6 or higher, BLASTN  2.9.0. License: BSD-3-Clause License. 
Any restrictions to use by non-academics: none.

Abbreviations
ATAC-seq: Assay for transposase-accessible chromatin using sequencing; CCDS: The Consensus Coding Sequence; CCLE: 
Cancer cell line encyclopedia project; ChIA-PET: Chromatin Interaction Analysis by Paired-End Tag Sequencing; ChIP-seq: 
Chromatin immunoprecipitation followed by sequencing; CIGAR​: Compact idiosyncratic gapped alignment report; 
ENCODE: Encyclopedia of DNA elements; iPS: Induced pluripotent stem cell; LINE-1: Long interspersed nuclear ele-
ment-1; NCBI: National Center for Biotechnology Information; NGS: Next-generation sequencing; RAM: Random-access 
memory; SRA: Sequence read archive; TCGA​: The Cancer Genome Atlas; UTR​: Untranslated region.
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