
1 
 

The single-cell transcriptional landscape of lung carcinoid 

tumors 

 

Philip Bischoff1,2, Alexandra Trinks1,2, Jennifer Wiederspahn1,3, Benedikt Obermayer4, Jan 

Patrick Pett4, Philipp Jurmeister1,2,5, Aron Elsner6, Tomasz Dziodzio2,6, Jens-Carsten 

Rückert6, Jens Neudecker6, Christine Falk7,8, Dieter Beule4, Christine Sers1,2,9, Markus 

Morkel1,2,9, David Horst1,2,9, Frederick Klauschen1,5,9,10, Nils Blüthgen1,2,3,9,10 

 

Affiliations: 

1) Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and 

Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, 

Germany 

2) Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 

Berlin, Germany  

3) IRI Life Sciences, Humboldt University of Berlin, Philippstrasse 13, 10115 Berlin, Germany 

4) Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, 

Charitéplatz 1, 10117 Berlin, Germany 

5) Institute of Pathology, LMU Munich, Thalkirchner Straße 36, 80337 München, Germany 

6) Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and 

Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte and 

Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany 

7) Institute of Transplant Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 

Hannover, Germany 

8) DZIF, German Center for Infectious Diseases, TTU-IICH Hannover-Braunschweig site, 

38124 Braunschweig, Germany 

9) German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research 

Center (DKFZ), 69120 Heidelberg, Germany 

10) joint last authors 

 

Corresponding author: Philip Bischoff, philip.bischoff@charite.de, +49 30 450 536 127 

 

Competing interests: The authors declare no potential conflicts of interest. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.471416doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471416
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung 

carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes 

of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread while 

no consensus treatment exists for metastasized carcinoids. Several recent single-cell studies 

have provided detailed insights into the cellular heterogeneity of more common lung cancers, 

such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids 

on the single-cell level are yet completely unknown. 

To study the cellular composition and single-cell gene expression profiles in lung carcinoids, 

we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung 

tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral 

heterogeneity associated with clinicopathological features, such as tumor necrosis and 

proliferation index. The immune microenvironment was specifically enriched in non-

inflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were 

characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells 

and pericytes predominated the stromal microenvironment. We found a small proportion of 

myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and 

immune cells exhibited potential paracrine interactions which may shape the microenvironment 

via NOTCH, VEGF, TGFβ and JAK/STAT signaling. Moreover, single-cell gene signatures of 

pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. 

Here, we provide first comprehensive insights into the cellular composition and single-cell gene 

expression profiles in lung carcinoids, demonstrating the non-inflammatory and vessel-rich 

nature of their tumor microenvironment, and outlining relevant intercellular interactions which 

could serve as future therapeutic targets. 
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Introduction 

Lung cancer is a heterogeneous disease comprising different histopathological subtypes. 

Besides adenocarcinomas and squamous cell carcinomas, the 2015 WHO classification 

established the category of pulmonary neuroendocrine tumors (NETs) [1]. This category 

comprises the high-grade subtypes small cell lung cancer (SCLC) and large cell 

neuroendocrine carcinoma (LCNEC), and the low- and intermediate-grade NETs of the lung, 

also referred to as typical and atypical carcinoids, respectively. Lung carcinoids contribute to 

1 % of lung cancer cases [2] with an increasing incidence over the last decades [3]. On 

average, lung carcinoids have a better outcome than conventional lung cancers. Typical 

carcinoids and atypical carcinoids, of which the latter are specified by higher mitotic rate or 

presence of tumor necrosis, have a 5-year survival rate of approximately 90% and 70%, 

respectively [3, 4]. About 10% of carcinoid patients present with regional lymph node 

metastasis [3, 5]. Atypical carcinoids have a higher risk of lymphonodal and systemic 

metastatic spread, and recurrent disease [5, 6]. However, no consensus exists for a 

standardized systemic therapeutic regimen of metastasized lung carcinoids [7]. 

 The more common subtypes of lung cancer, i.e., adenocarcinomas and squamous cell 

carcinomas, are related to smoking and characterized by high tumor mutational burden. In 

contrast, lung carcinoids affect younger patients and non-smokers, harbor a significantly lower 

mutational load and a different spectrum of oncogenic mutations [8]. Consequently, novel 

targeted and immune therapies, which have already improved the outcome in lung adeno- and 

squamous cell carcinomas [9], cannot easily be translated to lung carcinoids. Moreover, 

predicting the efficacy of modern targeted and immune therapies is limited by intratumoral 

heterogeneity, where tumors may harbor primary resistant tumor cell subclones, as well as the 

complex tumor microenvironment, modulating immune responses against the tumor. Single-

cell gene expression profiling allows to overcome this limitation and has already provided 

valuable insights into the cellular heterogeneity of lung adenocarcinomas [10-14]. 

In this study, we comprehensively analyzed the cellular composition of lung carcinoids 

by applying single-cell RNA sequencing to three carcinoid tumor and normal lung tissue 

samples. We show that single-cell gene expression profiles of carcinoid tumor cells reflect 

clinicopathological features and allow assignment to recently defined molecular clusters [15]. 

Further, we found that the tumor microenvironment was characterized by differentiating 

monocyte-derived myeloid cells with non-inflammatory features, tumor-associated endothelial 

cells, a spectrum of vascular smooth muscle cells and pericytes, and myofibroblasts with 

cancer-associated fibroblast-like features. Our analysis provides the basis for further studies 

of the lung carcinoid tumor microenvironment, potential prognostic and predictive biomarkers 

as well as novel therapeutic targets. 
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Results 

Single-cell RNA sequencing uncovers the cellular diversity of lung carcinoids  

To explore the cellular composition of lung carcinoids and their tumor microenvironment on the 

single-cell level, we collected fresh tissue samples of tumor tissue and normal lung 

parenchyma from 3 previously untreated lung carcinoid patients undergoing primary surgery 

(patients 1-3, Fig. 1A). All three patients showed tumor cells growing in solid nests with 

expression of the neuroendocrine marker proteins synaptophysin and chromogranin A (Fig. 

1B). Tumors comprised one typical carcinoid (patient 1), one atypical carcinoid with high 

proliferative activity (patient 2, see Supp. Fig. 1A for Ki67 immunostaining), and one atypical 

carcinoid with focal tumor necrosis (patient 3, see Supp. Fig. 1B for HE staining of necrotic 

area). Both atypical carcinoid cases (patients 2 and 3) had regional lymph node metastases at 

the time of diagnosis. Tissue samples were enzymatically dissociated and subjected to single-

cell RNA sequencing using a commercial droplet-based system. Single-cell gene expression 

data of 7 normal lung tissue samples from a previously published cohort (patients 4-10) [14] 

were included in the subsequent analyses. Altogether, we analyzed 73,105 single-cell 

transcriptomes of which 64,697 high-quality transcriptomes remained after quality control and 

filtering (Fig. 1C, see Supp. Fig. 1C-D for quality control parameters). 

Visualization of single-cell transcriptomes by uniform manifold approximation and 

projection (UMAP) revealed distinct shifts between normal and tumor tissue samples (Fig. 1D). 

Note that single-cell transcriptomes of different patients overlapped in many clusters, excluding 

systematic batch effects across samples (Fig. 1E). In the epithelial, immune and stromal cell 

compartment, which were defined by gene expression of canonical marker genes (Supp. Fig. 

1E), we observed tumor-specific changes (Fig. 1F). In the tumor tissue samples, we mostly 

found epithelial and stromal single-cell transcriptomes, whereas immune single-cell 

transcriptomes were more abundant in the normal tissue samples (Fig. 1G). 
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Figure 1: Single-cell RNA sequencing of lung carcinoids 

(A) Clinical characteristics of 3 lung carcinoid patients analyzed in this study. (B) H&E staining 

and immunohistochemical staining for neuroendocrine marker proteins of 3 lung carcinoid 

patients. (C) Simplified schematic representation of the single-cell RNA sequencing workflow. 

(D-F) UMAPs based on the top 10 principal components of all single-cell transcriptomes after 

filtering, color-coded by (D) tissue type, (E) patients, and (F) main cell type. (G) Proportions of 

main cell types per sample. 

 

Intertumoral heterogeneity of lung carcinoids reflects clinicopathological features and 

molecular subtypes 

To further analyze the epithelial cell compartment, epithelial single-cell transcriptomes were 

subset and re-clustered. Epithelial cell clusters overrepresented in normal or tumor tissue 

samples were assigned as normal or tumor cell clusters, respectively (Supp. Fig. 2A, 2B). We 

observed that normal cell clusters were shared by different patients whereas tumor cell clusters 

were highly patient-specific (Fig. 2A). In the normal cell clusters, using canonical marker genes 

and predefined gene signatures [16, 17], we identified alveolar epithelial type 1 and 2, ciliated, 

club, and basal cells (Fig. 2A-B, Supp. Fig. 3A-B). As indicated by the highly patient-specific 

tumor cell clusters, we found many differentially expressed genes in the tumor cells between 
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patients (Fig. 2C), such as CD44, TFF3 and EGFR, which correlated with differential protein 

expression, as shown by immunohistochemistry (Fig. 2D). Highly expressed genes in the 

typical carcinoid of patient 1 comprised many that have been associated with good prognosis, 

such as MT1G, MT1M, MT1X, PCK1, LPL, CD44 [18]. While we found distinct transcriptional 

differences between different tumor cases, transcriptional profiles within individual tumors were 

quite homogeneous and varied mainly depending on the number of reads and genes per cell 

(Supp. Fig. 2C-F). 

To further explore interpatient heterogeneity, we inferred different functional traits from 

the single-cell gene expression profiles, namely cell cycle phase, proportion of mitochondrial 

reads and signaling pathway activity. The tumor cells of patient 2 had the highest proportion 

of cells in S phase while at the same time showing the highest Ki67 proliferation index in 

immunohistochemistry (Fig. 2E, see Supp. Fig. 1A for Ki67 immunostaining). The highest 

proportion of mitochondrial reads was observed in tumor cells of patient 3 which was 

characterized by focal tumor necrosis (Fig. 2F, see Supp. Fig. 1B for H&E of necrotic area). 

Tumor cell transcriptomes of patient 3 had high scores for EGFR pathway activity and strong 

EGFR expression on the protein level (Fig. 2D, 2G). The pathway activity scores for estrogen 

and androgen receptor signaling correlated with the patient’s sex (Fig. 2G, see Fig. 1A for 

clinical characteristics). Recently, it has been shown that lung carcinoids can be subtyped into 

three distinct molecular clusters based on transcriptional and epigenetic features [15]. In our 

single-cell gene expression profiles, we could assign the tumors of patients 2 and 3 to cluster 

A1, and the tumor of patient 1 both to cluster A2 and cluster B (Fig. 2H). Notably, the immune 

and stromal cell compartment exhibited only minor expression scores of molecular cluster 

gene signatures.  

Taken together, lung carcinoid tumor single-cell transcriptomes revealed intertumoral 

heterogeneity which reflected different clinical and histomorphological features, such as 

patient’s sex, tumor proliferative activity and tumor necrosis, as well as recently proposed 

molecular clusters of lung carcinoids. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.471416doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471416
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 

Figure 2: Intertumoral heterogeneity of tumor cells in lung carcinoids 

(A) UMAPs based on the top 10 principal components of all epithelial single-cell transcriptomes 

color-coded by tissue type, patient, and cell type. (B) Average gene expression of selected 

marker genes of normal epithelial cell types, for cell type color code see (A). (C) Differentially 

expressed genes in tumor epithelial cells grouped by patients, top 20 genes showed per 

patient, for patient color code see (A). (D) Immunohistochemical staining of proteins encoded 

by selected differentially expressed genes indicated by black arrowheads in (C). (E) Proportion 

of tumor epithelial cells assigned to different cell cycles, grouped by patient. (F) Proportion of 

mitochondrial reads in tumor epithelial transcriptomes, grouped by patient. (G) Mean pathway 

activity scores of tumor epithelial cells, grouped by patient, and normal epithelial cells, grouped 
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by patient groups. (H) Module scores of marker genes of molecular clusters according to Alcala 

et al. [15] in epithelial, immune, and stromal cells, grouped by patient. 

 

The immune microenvironment of lung carcinoids is characterized by non-inflammatory 

monocyte-derived myeloid cells 

To discover the cellular composition of the immune microenvironment, immune single-cell 

transcriptomes were subset and re-clustered. We identified a variety of different cell types 

within the immune cell compartment using canonical marker genes and predefined gene 

signatures [16, 17] (Fig. 3A-B, Supp. Fig. 3A-B).  

We identified different lymphoid cells, such as conventional T cells, CD8+ T cells, NK 

cells, B cells and plasma cells (Fig. 3A, Supp. Fig. 4A-B, Supp. Table 1-2). On average, the 

proportion of lymphoid cell types in tumor tissues closely resembled normal tissues while we 

also noted some interpatient heterogeneity in both tumor and normal tissues. Gene signatures 

reflecting naiveness, cytotoxicity or exhaustion [13] of lymphoid cells showed similar 

expression scores in normal and tumor tissues (Fig. 3C). Note that signature scores for 

exhaustion were low in all lymphoid cell types, contrasting the microenvironment of lung 

adenocarcinoma in a reference dataset, which was enriched in exhausted T cells (Supp. Fig. 

5A-B) [14]. Together, the lymphoid microenvironment of lung carcinoids resembles the 

lymphoid cell compartment of normal lung parenchyma. 

Within the myeloid cell compartment, we identified monocytes, dendritic cells, 

macrophages and mast cells with different abundancies in tumor and normal tissues (Fig. 3A, 

Supp. Fig. 4A, Supp. Table 3-4). Among the monocytes, the classical monocyte cluster 2 was 

enriched in tumor tissues (Fig. 3D). Conventional dendritic cells comprised two clusters of 

which the CD141+ cluster 1 was mostly found in tumor tissues (Fig. 3E). Beyond, we identified 

a tumor-enriched cell cluster with high expression levels of both monocyte markers, such as 

CD14, and LGMN, a gene upregulated in differentiating monocytes [19] (Fig. 3B). We conclude 

that this cell cluster represents the spectrum of monocyte-derived myeloid cells differentiating 

either into macrophages, as shown by high APOC1 and APOE expression in cluster 3, or into 

dendritic cells, as shown by high S100A8 and S100A9 expression in cluster 1 [20, 21] (Supp. 

Fig. 4D). While the proportions of monocytes and conventional dendritic cells were 

heterogeneously increased across patients, monocyte-derived myeloid cells were consistently 

increased across all three carcinoid tumors analyzed (p = 0.0070). Monocyte-derived myeloid 

cells were further characterized by high expression of SELENOP, C1QA, C1QB, C1QC and 

the chemokines CCL3 and CCL4 (Fig. 3F). Compared to normal tissues, monocyte-derived 

myeloid cells in tumor tissues showed equal to slightly lower expression scores of various gene 

signatures related to inflammation and immune response (Fig. 3G). In a reference dataset of 

lung adenocarcinoma, the microenvironment was composed of both pro- and non-
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inflammatory clusters (Supp. Fig. 5A-B). In contrast, our results indicate that the lung carcinoid 

immune microenvironment is predominated by non-inflammatory monocyte-derived myeloid 

cells. 

The composition of the myeloid cell compartment was to some degree heterogeneous 

across the three lung carcinoids analyzed by single-cell RNA sequencing. In order to study 

interpatient heterogeneity in a larger cohort, we quantified the expression of marker genes of 

characteristic immune cell types in a published bulk gene expression dataset of lung carcinoids 

[15, 22]. Here, we found that marker genes of the tumor-enriched monocyte-derived myeloid 

cell cluster 2 and 3 were associated with atypical carcinoids, albeit not correlated with overall 

survival (Supp. Fig. 4E), indicating microenvironmental differences between lung carcinoid 

subtypes. 
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Figure 3: Composition of the immune tumor microenvironment in lung carcinoids 

(A) UMAPs based on the top 10 principal components of all immune single-cell transcriptomes, 

split by tissue type, color-coded by cell type, and proportions of lymphoid and myeloid cell 

types per tissue type and, for tumor samples, per patient, Mann-Whitney U test, ** = p<0.01. 

(B) Average gene expression of selected marker genes of immune cell types, for cell type color 
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code see (A). (C) Module scores of gene signatures related to naiveness, cytotoxicity and 

exhaustion in different lymphoid cell types, split by tissue type, for cell type color code see (A). 

(D) Average gene expression of selected marker genes of monocyte subsets and relative size 

of monocyte clusters, for tissue type color code see (C). (E) Average gene expression of 

selected marker genes of conventional dendritic cell subsets and relative size of conventional 

dendritic cell clusters, for tissue type color code see (C). (F) Differentially expressed genes in 

myeloid cells in tumor samples, grouped by cell type, top 10 genes shown per cell type, for cell 

type color code see (A), black arrowheads indicate genes mentioned in the main text. (G) 

Module scores of gene signatures related to immune response in different myeloid cell types, 

split by tissue type, for cell type color code see (A), for tissue type color code see (C). 

 

Vascular cells and CAF-like myofibroblasts constitute the stromal microenvironment of 

lung carcinoids 

To gain insight into the composition of the stromal microenvironment, stromal single-cell 

transcriptomes were subset and re-clustered. Here, we identified different clusters of 

endothelial, fibroblastic and smooth muscle cells using canonical marker genes and predefined 

gene signatures [16, 17] (Fig. 4A-4B, Supp. Fig. 3A-B).  

Among the endothelial cells we could distinguish bronchial, capillary, arterial and 

venous endothelial cells based on predefined marker gene signatures [16] (Fig. 4A, Supp. Fig. 

3A, Supp. Table 5-6). While different subtypes of endothelial cells were present in normal lung 

parenchyma, tumor tissues were significantly enriched in bronchial-type endothelial cells (p = 

0.0070) (Fig. 4A, Supp. Fig. 6A). Here, the majority of endothelial transcriptomes was obtained 

from the tumor of patient 1, correlating with dense vascularization as shown by immunostaining 

(Supp. Fig. 6B). Endothelial cells in tumor tissues showed high mRNA expression of INSR, a 

marker gene of tumor-associated endothelial cells [23], and high INSR protein expression, 

contrasting normal lung tissue (Supp. Fig. 6C-D). Moreover, we found high expression of 

genes that have been related to angiogenesis, such as VWA1, COL15A1, IGFBP7 and GSN 

[10] (Supp. Fig. 6D), suggesting a phenotype of tumor-associated endothelial cells in the 

microenvironment of lung carcinoids comparable to those found in the microenvironment of 

lung adenocarcinoma (Supp. Fig. 5A, C) [14].  

Within the fibroblastic and smooth muscle cell compartment in tumor tissues, we found 

myofibroblasts, vascular smooth muscle cells and pericytes, whereas fibroblasts were 

significantly decreased compared to normal tissues (p = 0.0091) (Fig. 4A, Supp. Table 7-8). 

Myofibroblasts were strongly enriched in tumor tissues (p = 0.0074) and showed high 

expression of extracellular matrix components, such as COL1A1, COL3A1 and COL6A3, as 

well as matrix-degrading enzymes, such as SULF1 (Fig. 4C), suggesting that these cells might 

be involved in extracellular matrix remodeling. Moreover, myofibroblasts were characterized 
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by high activity of TGFβ signaling (Fig. 4D). Within the myofibroblasts, cluster 1 showed a 

specific overexpression of FAP and MMP11 as well as a higher expression of various 

collagens, compared to myofibroblast cluster 2 and other fibroblast and smooth muscle cell 

clusters (Fig. 4E). In an independent cohort of lung carcinoids characterized by bulk RNA 

sequencing [15, 22], the marker gene signature of myofibroblast cluster 1 was significantly 

associated with atypical carcinoids and correlated with worse overall survival (Supp. Fig. 6E). 

Together, these data indicate that myofibroblasts in lung carcinoid tumor tissues exhibit 

biological traits characteristic of cancer-associated fibroblasts.  

The stromal microenvironment of carcinoids was predominated by vascular smooth 

muscle cells (p = 0.0160) and pericytes, contrasting the microenvironment of lung 

adenocarcinoma which mainly contained myofibroblasts (Supp. Fig. 5A, C) [14]. The highest 

proportion of pericytes was found in case 1 which was diagnosed as a typical carcinoid 

whereas fewer pericytes were found in patients 2 and 3 diagnosed with atypical carcinoids 

(Fig. 4A). Correspondingly, in an independent lung carcinoid cohort characterized by bulk RNA 

sequencing [15, 22], the pericyte marker gene signature was associated with typical carcinoids 

and correlated with better overall survival (Supp. Fig. 6F). Pericytes in tumor tissues showed 

a high expression of RGS5, a gene involved in pericyte development, and ACTA2, a smooth 

muscle marker gene (Fig. 4F). Smooth muscle cells expressed low levels of pericyte marker 

genes, such as COX4I2 and PDGRB (Fig. 4C). We found these genes expressed in a graded 

fashion suggesting that pericytes and vascular smooth muscle cells rather form a continuum 

than discrete cell types in tumor tissues (Fig. 4G). These results show that the stromal 

microenvironment of lung carcinoids is composed of myofibroblasts reminiscent of cancer-

associated fibroblasts, and a spectrum of vascular smooth muscle cells and pericytes. 

Myofibroblasts and pericytes may be linked to worse and better overall survival, respectively. 
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Figure 4: Composition of the stromal tumor microenvironment in lung carcinoids 

(A) UMAPs based on the top 10 principal components of all stromal single-cell transcriptomes 

split by tissue type, color-coded by cell type, and proportions of endothelial and 

fibroblastic/smooth muscle cell types per tissue type and, for tumor samples, per patient, 

Mann-Whitney U test, * = p<0.05, ** = p<0.01. (B) Average gene expression of selected marker 

genes of stromal cell types, for cell type color code see (A). (C) Differentially expressed genes 

in fibroblastic/smooth muscle cells, grouped by cell type, top 10 genes shown per cell type, for 

cell type color code see (A), black arrowheads indicate genes mentioned in the main text. (D) 
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Mean pathway activity scores of different fibroblastic/smooth muscle cell clusters, mesothelial 

cells excluded, black arrowheads indicate pathways and cell types mentioned in the main text. 

(E) Average expression of selected marker genes of myofibroblast cluster 1 as indicated by 

black arrowhead. (F) Average gene expression of pericytes in tumor versus normal tissues, 

top 10 genes overexpressed in tumor tissues indicated, genes mentioned in the main text in 

bold. (G) UMAPs of fibroblastic/smooth muscle cells, colored by gene expression of canonical 

pericyte marker genes. 

 

Interactions between tumor microenvironmental cells potentially activate NOTCH, 

VEGF, TGFβ, and JAK/STAT signaling 

We observed that different cell types are specifically enriched in the lung carcinoid 

microenvironment (Fig. 5A). In order to delineate functional relationships between 

microenvironmental and tumor cells, we quantified potential paracrine receptor-ligand 

interactions [24]. Interestingly, most potential interactions were found between cell types of the 

stromal microenvironment, involving tumor-associated endothelial cells, myofibroblasts, 

vascular smooth muscle cells and pericytes, whereas tumor cells are less involved in potential 

paracrine interactions (Fig. 5B, Supp. Table 9). Note that the number of potential interactions 

was independent from the number of cells or mean number of mRNA counts per cell type 

(Supp. Fig. 7A-B). Focusing on the most relevant signaling pathways, we found many 

interactions potentially activating NOTCH, TGFβ, VEGF, and JAK/STAT signaling (Fig. 5C). 

Tumor-associated endothelial cells receive potentially VEGF, TGFβ, and NOTCH pathway-

activating signals, while myofibroblast mainly receive potentially TGFβ pathway-activating 

signals, both via various paracrine and autocrine interactions. Dendritic cells, monocytes and 

monocyte-derived myeloid cells receive potentially JAK/STAT pathway-activating signals 

mainly via autocrine and paracrine interactions with other immune cells. These results indicate 

that autocrine and paracrine interactions between various stromal and immune cells may 

shape the lung carcinoid tumor microenvironment. 
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Figure 5: Potential paracrine interactions within the lung carcinoid tumor 

microenvironment 

(A) Characteristic cell types of the lung carcinoid tumor microenvironment and selected cell 

type marker genes. (B) Number of potential auto-/paracrine interactions between characteristic 

cell types of the lung carcinoid tumor microenvironment, calculated using the CellPhoneDB 

algorithm. (C) Number of potential cell-cell interactions filtered for high-confidence receptors 

and ligands of relevant signaling pathways, grouped by interaction families. Each heatmap 

shows potential interactions where the respective receptor is expressed in the cell type 

indicated above.  
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Discussion 

In this study, we analyzed the tumor heterogeneity and cellular composition of the tumor 

microenvironment in lung carcinoids. By applying single-cell RNA sequencing to tumors from 

three patients, we outline the single-cell landscape of lung carcinoids in unprecedented depth 

and comprehensiveness. We could show that tumor cell transcriptomes reflect high 

intertumoral but low intratumoral heterogeneity. The immune microenvironment was 

characterized by non-inflammatory monocyte-derived myeloid cells, classical monocytes and 

conventional dendritic cells, while the lymphoid cell compartment was comparable to normal 

lung parenchyma. The stromal microenvironment was composed of tumor-associated 

endothelial cells, myofibroblasts with features of cancer-associated fibroblasts, and a spectrum 

of pericytes and vascular smooth muscle cells.  

 Since gene expression profiles are linked to the biological behavior of tumors, 

transcriptional subtypes have been defined for many tumor entities. Recently, Alcala et al. 

described three molecular clusters of lung neuroendocrine neoplasms based on transcriptome 

and methylome profiling [15]. However, it is not known to what extent information from bulk 

multi-omic profiling originate from tumor cells or the associated non-neoplastic immune and 

stromal cells. Indeed, molecular subtypes of some entities have been shown to be mainly 

driven by features of the tumor microenvironment, such as in colorectal cancer [25]. In our 

dataset, we could show that assignment of lung carcinoids to recently defined molecular 

clusters is not substantially driven by immune or stromal cells, but rather represent tumor-

intrinsic features. Nonetheless, molecular clusters of lung neuroendocrine neoplasms have 

been suggested to be associated with distinct cell types of the tumor microenvironment [15]. 

Although the size of our dataset does not allow to define patient subgroups based on tumor 

microenvironment composition, we observed that the tumor of patient 1 was assigned to 

molecular cluster B and harbored the highest proportion of monocytes while patient 3 was 

assigned to cluster A1 and harbored the highest proportion of conventional dendritic cells. 

Exemplarily, this underlines the proposed association of molecular clusters of lung 

neuroendocrine neoplasms with tumor microenvironment composition [15]. 

Many studies have dissected the composition of the immune microenvironment of lung 

cancer and its potential effects on response to immune checkpoint blockade, being an 

important pillar in treatment of advanced disease [26]. However, the immune cellular diversity 

in lung carcinoids has much less been studied. It has been described that only a small 

proportion of carcinoids are substantially infiltrated by CD8+ T cells, which does not correlate 

with survival [27]. While most studies report no expression of PD-L1 in lung carcinoids at all 

[27, 28], some studies report a small proportion of PD-L1-postive cases and a correlation of 

PD-L1 expression with metastatic spread [29]. We observed that the composition of the 

lymphoid cell compartment closely resembled normal lung parenchyma which is in line with a 
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recent study analyzing the lung carcinoid immune microenvironment by flow cytometry [30]. 

While it has been discussed that carcinoid tumors are not eligible for immune checkpoint 

inhibitor therapy due to their low mutational and neoantigen load [31], still, combined anti-PD1 

and anti-CTL4 blockade has shown efficacy in individual advanced atypical carcinoid cases 

[32]. Beyond CD8+ T cells, myeloid cells in the microenvironment can modulate the response 

to immune checkpoint inhibitors [33]. Across all three lung carcinoids analyzed, we observed 

a consistent decrease in tissue-resident alveolar macrophages and an increase in monocyte-

derived myeloid cells, compared to normal lung tissue, which has likewise been observed in 

lung adenocarcinomas [10, 14]. Monocyte-derived myeloid cells can give rise to monocyte-

derived dendritic cells or monocyte-derived macrophages exhibiting different functionalities in 

the tumor microenvironment [20]. In our dataset, gene expression patterns favored a 

differentiation towards monocyte-derived macrophages. However, complementary information 

on protein expression is necessary to determine the lineage commitment of these cells since 

cell types are yet mainly defined by surface marker profiles obtained in FACS studies [20]. 

Furthermore, in our study, monocyte-derived myeloid cells showed low expression scores of 

various inflammation-related pathways, high expression of SELENOP1, which has been 

associated with M2 polarization of tumor-associated macrophages, high expression of the 

cytokines CCL3 and CCL4, which both can exert pro- or anti-tumorigenic functions [34, 35], 

and high expression of all components of the C1q protein complex, which has been found to 

have tumor-promoting features [36, 37]. Together, we conclude that monocyte-derived myeloid 

cells exhibit rather non-inflammatory and pro-tumorigenic features in the lung carcinoid tumor 

microenvironment. 

 The microenvironment of neuroendocrine neoplasms often harbors a dense vascular 

network. We found that tumor-associated endothelial cells in lung carcinoids exhibit a distinct 

gene expression profile and share many highly expressed genes, such as INSR, VWA, 

COL15A1, IGFBP7 and GSN, with tumor-associated endothelial cells of more aggressive 

cancers, such as lung adenocarcinoma [10, 14]. In addition, we observed a high proportion of 

vascular smooth muscle cells and pericytes. Antiangiogenic drugs have been in clinical trials 

and the VEGFR inhibitor sunitinib has been approved for therapy of pancreatic neuroendocrine 

tumors [31]. Interestingly, compared to normal tissues, tumor-associated pericytes expressed 

high levels of RGS5, which has been found to be overexpressed in developing pericytes during 

embryogenesis [38] and is associated with reduced response to VEGF inhibition in mouse 

models [39]. Moreover, we observed high expression of smooth muscle actin ACTA2 in tumor-

associated pericytes, which has been proposed as a marker for tumors refractory to VEGFR2 

inhibition in a pancreatic neuroendocrine tumor mouse model [40]. Furthermore, the 

microenvironment of lung carcinoids contained a small proportion of myofibroblasts which were 

characterized by high TGFβ and hypoxia signaling, high expression of matrix components, 
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matrix degrading enzymes, and marker genes such as FAP, all being features of cancer-

associated fibroblasts [41, 42].  

The tumor microenvironment of lung carcinoids and lung adenocarcinomas shared 

some features, such as tumor-associated endothelial cells, cancer-associated myofibroblasts, 

and monocyte-derived myeloid cells. Other microenvironmental features were specific for lung 

carcinoids, such as the predominance of vascular smooth muscle cells and pericytes, and the 

normal-like composition of the lymphoid cell compartment. Beyond these patient-overarching 

features of the lung carcinoid microenvironment, we observed inter-patient heterogeneity in its 

cellular composition. In a larger cohort of lung carcinoids profiled by bulk RNA sequencing, we 

found that certain cell types such as monocyte-derived myeloid cells, pericytes, and 

myofibroblasts might be associated with different histological subtypes of lung carcinoids 

(typical versus atypical) and patient prognosis. However, since the microenvironment of lung 

carcinoids is rather sparse yet complex, its cellular composition can only to a limited extent be 

inferred from bulk gene expression data. Therefore, our study forms a basis for subsequent 

single-cell transcriptome profiling or multiplex immunofluorescence studies of larger cohorts. 

In the future, a more detailed and comprehensive understanding of the tumor 

microenvironment could reveal specific cell types that are eligible for novel targeted therapies, 

and provide valuable prognostic and predictive information to improve the clinical management 

of lung carcinoid patients. 
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Methods 

Collection of tissue specimens  

Fresh tissue samples of approximately 0.1-0.5 cm³ of tumor tissue and normal lung 

parenchyma were obtained during intraoperative pathologist consultation. Informed consent 

was obtained from all patients were. Research was approved by vote EA4/164/19 of the ethics 

committee of Charité - Universitätsmedizin Berlin. Normal tissue samples of patients 4-10 have 

already been part of a previous study (patient 4 = P018, patient 5 = P019, patient 6 = P027, 

patient 7 = P029, patient 8 = P030, patient 9 = P031 and patient 10 = P033) [14]. 

Tissue dissociation and single cell isolation 

For transport, tissue samples were stored for max. 3 hours on ice in Tissue Storage Solution 

(Miltenyi). First, tissue samples were minced into pieces of max. 1 mm³ using two scalpels. 

Minced tissue samples were disaggregated using the Tumor Dissociation Kit, human (Miltenyi) 

according to the manufacturer’s protocol in a gentleMACS Octo Dissociator with heaters 

(Miltenyi) using the preinstalled program 37C_h_TDK_1 for 30-45 min. Subsequently, cell 

suspensions were filtered through 100 µm filters and kept at 4°C or on ice for all subsequent 

steps. Next, cells were pelleted by centrifugation at 300 g for 5 min in BSA-coated low-binding 

tubes, and resuspended in 1 ml ACK buffer for 60 seconds for erythrocyte lysis. Cells were 

washed with DMEM, again pelleted, and resuspended in PBS. After filtering the cell 

suspensions through 20 µm filters, debris was removed using the Debris Removal Solution 

(Miltenyi) according to the manufacturer’s protocol. Finally, cell concentration was determined 

using a Neubauer chamber. 

Single-cell RNA sequencing 

Immediately after single cell isolation, 10,000 single cells per tissue sample were subjected to 

barcoding and library preparation, using the Chromium Single Cell 3´Reagent Kit v3 (10x 

Genomics) and the Chromium Controller (10x Genomics) according to the manufacturer’s 

protocol. Libraries were sequenced on a HiSeq 4000 Sequencer (Illumina) at average 240 mio. 

reads per library, resulting in average approx. 50,000 reads per cell. 

H&E and immunostaining 

For hematoxylin and eosin (H&E), and immunohistochemical staining, 3-5 µm tissue sections 

were prepared from formalin-fixed and paraffin-embedded (FFPE) tissue.  

For H&E staining, tissue sections were incubated in acidic haemalum staining solution 

(Waldeck) for 8 min, washed, and incubated in eosin staining solution (Sigma-Aldrich) for 2.5 

min at room temperature using a Tissue-Tek Prisma Plus slide stainer (Sakura). 

For antigen retrieval, tissue sections were incubated in CC2 buffer (for mouse anti-INSR) or 

CC1 mild buffer (for all other antibodies, Ventana Medical Systems) for 30 min at 100°C. 

Sections were incubated with the primary antibody for 60 min at room temperature, washed, 
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and incubated with the secondary antibody for 30 minutes at room temperature. Antibodies 

were diluted in Dako Real Antibody Diluent (Dako, S2022). Staining was performed on the 

BenchMark XT immunostainer (Ventana Medical Systems). 

The following primary antibodies were used: mouse anti-Synaptophysin (1:50, clone 27G12, 

Leica, NCL-L-SYNAP-299), rabbit anti-Chromogranin A (1:100, clone EP38, Epitomics, AC-

0037), mouse anti-CD44 (1:50, clone DF1485, Dako, M7082), rabbit anti-EGFR (prediluted, 

Roche, 790-4347), rabbit anti-TFF3 (1:250, Abcam, ab108599), Rabbit anti-ERG (prediluted, 

clone EPR3864, Roche, 790-4576), mouse anti-Ki67 (1:50, clone MIB-1, Dako, M7240), 

mouse anti-INSR (1:50, clone CT-3, Invitrogen, AHR0271). 

Slides were imaged using a Pannoramic SCAN 150 slide scanner (3DHISTECH). 

Single-cell gene expression analysis 

Preprocessing 

After sequencing, reads were aligned and UMIs quantified using Cellranger 3.0.2 (10x 

Genomics) with reference transcriptome GRCh38. All subsequent analyses were performed in 

R using the toolkit Seurat v4 [43], if not stated otherwise. Single-cell gene expression data of 

all patients were merged and filtered for the following quality parameters: 500-10,000 genes 

detected, 1,000-100,000 UMIs counted, fraction of mitochondrial reads <40%, and fraction of 

hemoglobin reads <5%. Single-cell gene expression data was normalized using the 

scTransform function with default parameters, and the number of UMIs per cell and the fraction 

of mitochondrial reads was regressed out. 

Cell type annotation 

After principal component analysis (PCA), the top 10 principal components were used for 

clustering and UMAP embedding of single-cell transcriptomes. Main cell types (epithelial, 

immune, stromal) were assigned based on cluster-wise expression of canonical cell type 

marker genes (resolution = 0.3, otherwise default parameters). The dataset was split into three 

main cell type subsets, and PCA, clustering and UMAP embedding was rerun on each subsets 

using the top 10 principal components and a clustering resolution of 2 with otherwise default 

parameters. In order to assign epithelial, immune, and stromal cell types, selected cell type 

marker genes according from Habermann et al. [44] and Tata et al. [45], and cell type 

signatures according to Vieira Braga et al. [17] and Travaglini et al. [16] were used. Clusters 

contaminated with epithelial or immune transcriptomes were identified by expression of 

EPCAM or PTPRC, respectively, and removed from the dataset prior to subsequent analyses. 

In the epithelial subset, cell clusters which were overrepresented in tumor tissue samples were 

annotated as tumor cells. 

Differential gene expression analysis 

Prior to differential gene expression analysis of epithelial cells, tumor cells from tumor samples 

were subset and gene expression rescaled. Immune and stromal subsets were split into 
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lymphoid, myeloid, endothelial and fibroblastic/smooth muscle subsets, and gene expression 

rescaled. Next, marker genes of each cell cluster were calculated against all other clusters of 

the subset using the FindAllMarkers function with Wilcoxon rank-sum test and the following 

parameters: include only positive markers, proportion of expressing cells inside the cluster ≥ 

0.25, difference between proportions of expressing cells inside and outside the cluster ≥ 0.25, 

log2 fold change between cells inside and outside the cluster ≥ 0.25. 

Functional analysis 

Cell cycle phases were assigned using the CellCycleScoring function. The AddModuleScore 

function was used to score the expression of functional relevant gene signatures: the hallmark 

signatures of the collection of the Broad Institute [46], naiveness, cytotoxicity and exhaustion 

signatures according to Guo et al. [13], and molecular cluster marker genes according to Alcala 

et al. [15]. For the latter, the top 50 upregulated genes in each individual molecular cluster 

versus the two other clusters were combined and used as gene sets. Oncogenic signaling 

pathway activity scores were computed using the R toolkit Progeny [47, 48] based on the top 

500 genes with otherwise default parameters. The CellPhoneDB toolkit was used with default 

parameters to calculate potential cell-cell interactions [24]. The curated list of high-confidence 

ligands and receptors of oncogenic pathways can be found in ref. [14]. 

Bulk gene expression and survival analysis 

Bulk gene expression data was downloaded from the GitHub repository 

https://github.com/IARCbioinfo/DRMetrics [22] and clinical data from [15] was added. After 

filtering out genes located on sex and mitochondrial chromosomes, bulk gene expression data 

was normalized using the VarianceStabilizingTransformation function of the DESeq2 toolkit. 

Data on histological subtype (typical vs. atypical) was available for 75 carcinoid cases. Overall 

survival data was available for 76 carcinoid cases. Single-cell gene expression data was split 

into myeloid, lymphoid, endothelial and fibroblastic/smooth muscle subsets and rescaled. 

Marker genes were calculated as described above. Next, marker gene lists were used as gene 

sets for single-sample gene set enrichment analysis (ssGSEA) [49] of the bulk gene expression 

data using the gsva function of the R toolkit GSVA assuming Gaussian distribution with 

otherwise default parameters. For survival analyses, ssGSEA enrichment scores were 

dichotomized (ES > median or ≤ median). Survival curves, log-rank statistics and Cox 

regression were calculated using the R packages survival and survminer. 

Code and data availability 

The code used for analyses is available from https://github.com/bischofp/lung_carcinoid. Gene 

expression count data is available from [link provided upon acceptance of the manuscript]. 
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