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Correction to: Genome Biol 22, 332 (2021)

https://doi.org/10.1186/s13059-021-02529-2

Following publication of the original article [1], the authors identified the following errors:

1) Jonathan Foox, Jessica Nordlund, Claudia Lalancette, Ting Gong, Michelle Lacey

and Samantha Lent are co-first authors.

2) Affiliation 21 was incorrectly published. It should be: Department of Neurology, the

Second Affiliated Hospital of Zhengzhou University. Zhengzhou, China, 450014.

3) Additional file 1 should contain the supplementary figures. The additional file 1 in

this correction article has been updated accordingly.

4) Reference 9 in the original article has been updated to: Vaisvila R, Ponnaluri VKC,

Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton BS, Marks

K, Samaranayake M, Samuelson JC, Church HE, Tamanaha E, Corrêa IR Jr.,

Pradhan S, Dimalanta ET, Evans TC Jr., Williams L, Davis TB. Enzymatic methyl

sequencing detects DNA methylation at single-base resolution from picograms of

DNA. Genome Res. 2021 Jun 17;31(7):1280–9. doi: https://doi.org/10.1101/g.

266551.120. Epub ahead of print. PMID: 34140313; PMCID: PMC8256858.

The original article [1] has been corrected.
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Abstract

Background: Cytosine modifications in DNA such as 5-methylcytosine (5mC)
underlie a broad range of developmental processes, maintain cellular lineage
specification, and can define or stratify types of cancer and other diseases. However,
the wide variety of approaches available to interrogate these modifications has
created a need for harmonized materials, methods, and rigorous benchmarking to
improve genome-wide methylome sequencing applications in clinical and basic
research. Here, we present a multi-platform assessment and cross-validated resource
for epigenetics research from the FDA’s Epigenomics Quality Control Group.

Results: Each sample is processed in multiple replicates by three whole-genome
bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS
MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic
deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl
Capture EPIC), single-molecule long-read nanopore sequencing from Oxford
Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality
assessment and comparison to Illumina EPIC methylation microarrays and testing on
a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find
overall high concordance between assays, but also differences in efficiency of read
mapping, CpG capture, coverage, and platform performance, and variable
performance across 26 microarray normalization algorithms.
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Conclusions: The data provided herein can guide the use of these DNA reference
materials in epigenomics research, as well as provide best practices for experimental
design in future studies. By leveraging seven human cell lines that are designated as
publicly available reference materials, these data can be used as a baseline to
advance epigenomics research.

Introduction
DNA methylation plays a key role in the regulation of gene expression [1], disease on-

set [2], cellular development [1], age progression [3], and transposable element activity

[4]. Whole-genome bisulfite sequencing (WGBS) is increasingly used for fundamental

and clinical research of CpG methylation. Numerous validated protocols and commer-

cially available kits are available for WGBS library preparation ([5–7]). Other assays to

interrogate the epigenome include oxidative bisulfite sequencing [8], enzymatic de-

amination [9], and targeted approaches ([10, 11]), further accelerating the breadth and

rate of discovery in genome-wide DNA methylation studies.

As the field of epigenomics continues to advance, there is a need to establish defini-

tive standards and benchmarks representative of the methylome. In recent years, the

Genome in a Bottle (GIAB) Consortium has established seven human cell lines as refer-

ence material to enable genomics benchmarking and discovery [12]. Recent studies

have characterized the genomes of these cell lines (e.g., germline structural variant de-

tection in [13]), but none yet have examined the epigenome. Here, the FDA’s Epige-

nomics Quality Control (EpiQC) Group presents DNA methylation sequence data

across all seven GIAB reference cell lines, as well as a comparative analysis of targeted

and genome-wide methylation protocols, to serve as a comprehensive resource for epi-

genetics research. We build on top of work done in previous studies to compare the

performance and biases of WGBS library kits (e.g., [6, 14, 15]) by evaluating both com-

monly used and newly available epigenomic library preparation kits. We report the

relative performance of each kit, as measured by mapping efficiencies, CpG coverage,

and methylation estimates. We then characterize the reproducibility and challenges of

methylation estimation across the genome. We further sequenced these cell lines using

long-read technology on an Oxford Nanopore PromethION and here compare its per-

formance alongside more common chemical/enzymatic conversion kits and short-read

sequencing. Finally, we generated microarray data for these cell lines and provide

guidelines for normalization of beta values, site filtration, and comparison to sequence

data. This reference dataset can act as a benchmarking resource and a reference point

for future studies as epigenetics research becomes more widespread within the field of

genomics.

Results
Study design and sequencing outputs

We generated epigenomic data for seven well-characterized human cell lines (HG001-

HG007) that have been designated as reference materials for genomic benchmarking by

the Genome in a Bottle (GIAB) Consortium [12]. These cell lines include NA12878

(HG001) from the CEPH Utah Reference Collection, as well as two family trios from
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the Personal Genome Project, one of Ashkenazi Jewish ancestry (HG002-4) and one of

Han Chinese ancestry (HG005-7).

Libraries for whole epigenome sequencing were prepared using a variety of common bi-

sulfite and enzymatic conversion kits, including NEBNext Enzymatic Methyl-Seq (referred

to here as EMSeq), Swift Bio sciences Accel-NGS Methyl-Seq (MethylSeq), SPlinted

Ligation Adapter Tagging (SPLAT), NuGEN TrueMethyl oxBS-Seq (TrueMethyl), and

Illumina TruSeq DNA Methylation (TruSeq). Cell line genomic DNA was acquired from

Coriell, and one aliquot of each genome was extracted and distributed to six independent

laboratories, each utilizing one library preparation method (Table 1).

Each site prepared two technical replicates per cell line for their respective epigenetic

assay. In the case of EMSeq, libraries were prepared at two sites, designated as Lab 1

and Lab 2. All other sites were designated as Lab 1 for their library type. In the case of

TrueMethyl, pairs of replicates were made using a bisulfite-only treatment (BS) and an

oxidative bisulfite treatment (OX). All libraries were pooled into equimolar concentra-

tions and sequenced in multiplex at one site (see “Methods”), resulting in a range of

500M to 3.5B paired-end reads per replicate. The range of sequencing depth per repli-

cate resulted from an imbalance in library pooling, as well as differences in shearing

condition and size selection per library type (see “Methods”). In addition to short-read

sequencing of epigenetic libraries, Oxford Nanopore R9.4.1 PromethION flow cells (re-

ferred to here as Nanopore) were run to generate long read sequence data for each gen-

ome, each ranging from 75B to 250B bases.

Data quality control

We performed quality control of all sequence data generated within this study using

FASTQC [16] (see Supplementary Data 1 for quality reports for every sample). As a

measure of the success of the bisulfite or enzymatic conversion step of each library

preparation, we estimated the cytosine conversion rate across CpG and non-CpG con-

texts (Additional file 1: Figure S1a). CpG methylation levels fell in the expected 45–

65% range across all libraries (Methyl Capture EPIC, as an exception, showed lower

rates, a reflection of targeting less methylated regions such as promoters and

Table 1 Sequencing across all genomes analyzed in this study, including genomic and targeted
assays. Numbers within each genome/assay cell indicate millions of paired-end 150bp reads
sequenced, with the exception of PromenthION, which indicates millions of reads and mean read
length in parentheses. Each number represents one replicate sequenced for that genome/assay
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enhancers). We detected near zero non-CpG methylation as expected for all libraries,

though CHG and CHH context conversion was somewhat elevated for TruSeq libraries

(Additional file 1: Figure S1a) (see below for mapping and methylation calling that en-

abled these estimates).

Depending on library preparation, different libraries had different completely

unmethylated (lambda) or completely methylated (pUC19 plasmid) spiked-in controls

(see “Methods”). Methylation levels of these controls were very nearly 0% or 100% re-

spectively across all libraries (Additional file 1: Figure S1b), further reflecting the quality

of the data.

Mapping efficiencies

Following quality control, we examined the performance of reference-based read align-

ment and methylation estimation for samples of each library type. Our pipeline of

choice was bwa-meth (a common methylation aware, reference-based read aligner)

followed by MethylDackel for methylation extraction. This combination was chosen for

its high mapping efficiency, greatest mean depth of coverage per CpG, and computa-

tional speed (for a comparison of alignment and methylation calling pipelines, see the

supplementary results, as well as Additional file 1: Figure S2 and Additional file 1: Fig-

ure S3). Each epigenomic assay had a distinct profile of mapping outcomes (Fig. 1a).

MethylSeq had the highest primary mapping rate and lowest secondary/unmapped rate.

While EMSeq (Lab 1) and SPLAT had comparable primary mapping rates to Methyl-

Seq, SPLAT had the highest fraction of unmapped reads. TrueMethyl had the highest

rate of multi-mapped reads, while TruSeq returned the highest rate of PCR duplicate

reads.

As a measure of protocol efficiency, we estimated the total cytosine conversion in

CpG contexts and found that each whole methylome approach converted 45–65% of

CpGs. As an estimate of conversion efficiency, we also characterized methylation in

CHG and CHH contexts and found methylation rates for all libraries to be close to the

expected 0% range (nearing 100% conversion efficiency), except for TruSeq which

neared 2% in CHG contexts and 1% in CHH contexts, and MethylSeq which

approached 0.75% in CHH contexts (Additional file 1: Figure S1).

Each assay had a specific, tight profile of insert size distributions (Fig. 1b). There was

a strong relationship within each assay between the estimated insert size and the per-

centage of total bases that were trimmed prior to alignment (this included trimming

adapter content, low-quality bases, and dovetailing bases between mates of a pair of

reads). Libraries with insert sizes below 275 bp had anywhere from 5 to 25% of total

bases trimmed, while EMSeq libraries with > 275 bp insert sizes needed very few bases

trimmed other than adapter content (Fig. 1c). This was due to the 150 × 150 chemistry

used for sequencing, and the threshold for fragment size may be lower with shorter

read sequencing.

Imbalanced base trimming and unequal distribution of reads per replicate (see above)

resulted in divergent genome coverage per assay (Fig. 1d). Generally, a minimum of

20× coverage is considered sufficiently deep to characterize a genomic region, and

EMSeq and MethylSeq had the highest percentage of the genome covered at 20×. This

was followed by SPLAT, the oxidative and bisulite replicates of TrueMethyl, and lastly
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Fig. 1 (See legend on next page.)
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the TruSeq libraries, which had the lowest percentage of the genome covered at lower

depths, but a long tail of high-coverage sites. TruSeq libraries also showed a high de-

gree of dinucleotide bias favoring GC-rich regions compared to other libraries (Fig. 1e),

owing to the GC-biased random hexamer ligation step in its library preparation, as well

as exposing samples to sodium bisulfite prior to DNA shearing.

Reads from whole methylome libraries were passed through an alignment and methylation

calling pipeline (see above). Reads were filtered from the methylation calling process if they

did not map to the reference genome, if they were marked as a non-primary alignment (sec-

ondary/supplementary/duplicate reads), or if they were assigned a mapping quality score

below MQ10. The fractions of reads that were filtered along the alignment pipeline (Add-

itional file 1: Figure S4) were highly assay-specific. At the end of this process, EMSeq libraries

retained the highest percentage of reads for methylation calling (maximum 86%), followed by

SPLAT (83%), MethylSeq (81%), TrueMethyl (80%), and finally TruSeq (77%). EMSeq also

showed laboratory specificity, with lower rates of usable bases in libraries prepared using

shorter fragment sizes (mean of 86% in Lab 1 versus 73% in Lab 2) (see “Methods”). We ob-

served no notable differences in read filtration rates between TrueMethyl libraries treated with

potassium perruthenate (KRuO4) oxidation and those only exposed to sodium bisulfite. The

average percentage of usable bases is summarized per assay for HG002 in Table 2, and more

detailed statistics for all cell lines are shown in Additional file 2: Supplementary Table 2.

We next calculated for each library type the relationship between raw total number of

read pairs sequenced versus the mean depth of coverage achieved per CpG (Fig. 1f). We

found that the rates were highly assay-specific, as seen above. Overall, in order to achieve a

target mean depth of 20× per CpG, EMSeq required the fewest reads (275–300M read

pairs), followed by MethylSeq (366M) and SPLAT (369M), then TruSeq (461M), and then

TrueMethyl (692M), as noted in Table 2. In order to compare short-read data to long read

data of variable length from Oxford Nanopore, we calculated the same relationship using

total bases sequenced (Fig. 1g). We found that nanopore sequencing covered CpGs and

called methylation at a similar rate per nucleotide, comparable to short-read libraries.

CpG coverage and downsampling

We next analyzed the distribution of CpG coverage across the genome per assay. In

order to control for the effect of uneven sequencing depth, we first downsampled the

(See figure on previous page.)
Fig. 1 Sequencing and alignment metrics of whole methylome libraries, including all replicates across all
cell lines. EM = EMSeq; MS = MethylSeq; SP=SPLAT; TS = TruSeq; TM = TrueMethyl. a Distribution of
reference-based read alignment outcomes, including primary mapped reads (both mates mapped in
correct orientation within a certain distance), multi-mapped reads (read pairs containing secondary or
supplementary alignments), reads marked as PCR or optical duplicates, and unmapped reads. Ambiguous
and duplicate reads can be a subset of properly aligned reads. b Median insert size distributions derived
from distance between aligned paired end reads. c Percentage of bases trimmed per replicate, either due
to low base quality, adapter content, or dovetailing reads. d Cumulative genomic coverage plot, averaged
across cell line per assay. Coverage is cut off at 200× in this plot, but extends beyond for all assays. Dotted
line indicates 20× mean coverage. e Nucleotide bias plot showing the log2 enrichment of covered versus
expected mono- and di-nucleotides. f The relationship between the number of read pairs sequenced per
assay and the mean depth of coverage per CpG dinucleotide, showing sequencing depth required to
achieve a certain level of coverage. 20× CpG coverage is shown as the dotted line. g Same as f, but plotted
using total bases sequenced, to include Oxford Nanopore sequencing, which produces variable
read lengths

Foox et al. Genome Biology          (2021) 22:332 Page 6 of 30



methylation call sets for every replicate to a given mean coverage value. Downsampling

can be done by either filtering the number of reads in an alignment (BAM files), or by

randomly removing a fraction of observed cytosines and observed thymines per CpG

within methylation call sets (bedGraph files). Because downsampling at the alignment

level can be slow and demanding in terms of disk space and compute time, we set out

to evaluate if the signal from downsampling cytosines within bedGraph files recapitu-

lated downsampling aligned reads within BAM files. The two approaches yielded simi-

lar results in number of CpG sites detected, distribution of read counts, and

methylation calls. bedGraph downsampling had the added benefit that the targeted

average CpG coverage was more accurately estimated than when downsampling BAMs

(Additional file 1: Figure S5).

We proceeded with methylation call sets that were normalized to a mean of 20×

coverage per site. Unless otherwise noted, these call sets comprised merged replicates

per library type, and merged calls on positive and negative strands (i.e., reporting

methylation at the dinucleotide level rather than individual cytosines), and in the case

of TrueMethyl libraries, merging the bisulfite-only (BS) and bisulfite-plus-oxidation

(OX) replicates. The mean coverage per library shifted as expected, indicating the suc-

cess of the down sampling approach (Additional file 1: Figure S6a, showing HG003 rep-

licates to demonstrate). Notably, the methylation percentage distribution also shifted,

with the bimodal peaks at 0% and 100% becoming more pronounced, and putatively

hemimethylated regions dropping out as a function of fewer observations per site

resulting in lowered sensitivity (Additional file 1: Figure S6b). We observed that down-

sampling below 20× exaggerated this effect. Downsampling also produced an assay-

specific pattern of site dropout (Additional file 1: Figure S7). Although the overwhelm-

ing number of sites are covered by all assays, we observed the highest CpG dropout in

Table 2 Summary statistics of mapping and library efficiency per WGBS protocol. Percent CpG
capture calculated with call sets normalized to 20x coverage. The total genome-wide CpGs under
consideration were those that could be mapped to uniquely, excluding any CpGs that fall within
unresolvable regions
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TruSeq, followed by SPLAT, then MethylSeq, then TrueMethyl, then EMSeq, both

when accounting for any coverage at all (≥ 1×) or coverage of ≥ 50% of the overall

mean value.

Even after normalizing for mean CpG coverage, we observed a range of assay-specific

empirical cumulative distributions (Fig. 2a). In particular, TruSeq produced left and

right tails of very low and very high coverage. This had an effect on reproducibility be-

tween replicates of the same assay (Fig. 2b), where, compared to an expected distribu-

tion of cross-replicate concordance, TruSeq showed the highest variation, followed by

TrueMethyl, while SPLAT, MethylSeq, and EMSeq were more reproducible than ex-

pected. Intra-assay coverage reproducibility was relatively consistent above 20× cover-

age (r > 0.98 for all assays), but became less consistent below 10× (r ≤ 0.95 for all

assays). We therefore recommend 20× as a minimum CpG dinucleotide coverage value

(Additional file 1: Figure S9).

We restricted further analyses to Chromosome 1, which represents a significant portion

of the genome (10%), contains most difficult regions (such as tandem duplications and

satellites), and is computationally much more tractable than a genome-wide analysis.

When aligning CpGs covered in the 20× downsampled libraries, we found that the major-

ity of CpGs (> 90%) were covered by all assays, with some assay-specific dropout (Fig. 2c).

Nanopore sequencing was able to cover the highest number of CpGs not covered by other

assays, and TruSeq missed the highest number of CpGs covered by other assays (Fig. 2d).

Among the regions covered uniquely by Nanopore sequencing, about 20% were relevant

for epigenetic regulation (promoter, TSS, or exonic sites), while the few CpGs uniquely

captured by other assays were intronic or intergenic (Fig. 2d). Despite the small number

of differences of CpG coverage observed between assays, the genomic annotation of sites

covered was highly consistent (Additional file 1: Figure S8).

We also examined the coverage of CpG islands, shelves, and shores (Fig. 2e). Nano-

pore returned the most even coverage across these annotations, while TruSeq showed

elevated coverage relative to its overall mean in these GC-rich regions. EMSeq, Methyl-

Seq, and SPLAT returned reduced coverage in CpG islands relative to their mean CpG

coverage. This pattern was recapitulated around transcript start sites (TSS), where Tru-

Seq was overrepresented, Nanopore and TrueMethyl stayed relatively flat, and EMSeq,

MethylSeq, and SPLAT were respectively underrepresented in TSS (Fig. 2f).

Methylation across genomic CpGs

After comparing coverage of CpGs, we examined estimates of per-site methylation

across assays. As expected, we found methylation percentages to be bimodally distrib-

uted with peaks near 0% and 100% methylation. All assays exhibited enrichment for

fully methylated regions (Fig. 3a), with the exception of Nanopore, which showed un-

derrepresentation of fully methylated regions, a current limitation of the underlying

base modification calling method (see “Methods”). For short-read approaches, we cal-

culated and corrected for methylation bias (or “mbias”), a measurement of overinflated

hypo- or hyper-methylation signal toward the 5′ and 3′ ends of reads. Mbias analysis

revealed assay-specific deviation at read ends (Fig. 3b). We trimmed bases uniquely for

each sample where values began to inflate as recommended by MethylDackel. Mbias

analysis also revealed overall methylation trends, with SPLAT and EMSeq tending to
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have the highest average methylation across reads, while TrueMethyl had the lowest

among short-read protocols, and TruSeq was the most variably methylated per base

across reads.

Fig. 2 Coverage of CpGs across the genome. All samples visualized here were downsampled to 20× mean
coverage per CpG. a Empirical cumulative distribution functions for median coverage, averaged across
samples for HG002-HG007. b Standard deviation between replicate beta values for HG002 as a function of
average coverage. The expected curve (computed based on the assumption that replicate beta values are
independent and identically distributed estimates of a common proportion p) is added as a solid black
curve. c Intersection of CpG coverage (min 5×) across Chromosome 1. Exact values of CpGs covered per
assay are shown on the right. d Count and genomic annotation for CpGs uniquely covered by an assay
(left) and uniquely not covered by an assay (right). Up5kb = 5 kb upstream distance from promoter region;
Promoter = within 1 kb upstream of transcript start site. e Distribution of coverage in CpG shelves, shores,
and islands. EM = EMSeq; MS = MethylSeq; SP=SPLAT; TS = TruSeq; TM = TrueMethyl. f Mean coverage
curves around transcript start sites (TSS)
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We next assigned genomic features to each CpG and summarized methylation across

regions in a metagene plot (Fig. 3c). As expected, we found that methylation levels

dropped significantly at TSS and then rose again beyond the 5′UTR in all assays. As

detected in the global analysis, methylation captured by Nanopore was lower than by

short-read assays. Nevertheless, all assays including Nanopore showed highly similar

methylation profiles around transcript start sites (TSS) genome-wide (Fig. 3d). Correl-

ation of methylation values across genome-wide CpGs was very high (Fig. 3e). How-

ever, concordance broke down among all assays when restricting to sites with 20–80%

methylation, where correlations were as low as r = 0.42 between Nanopore and TruSeq

(Fig. 3f). Therefore, the majority of disagreement between assays fell in CpG sites that

were either hemimethylated, clonally complex, or undercovered with respect to the glo-

bal mean. Although short-read protocols had higher concordance with one another (r

> 0.93 for all pairwise short-read comparisons) than with Nanopore estimates, we

found that methylation estimation from Nanopore base modification calling was com-

parable to short-read protocols, with Pearson correlation values around r = 0.90 for all

pairwise comparisons (Fig. 3g).

Family trio differential methylation

Differential methylation was examined at the family trio level. For each methylome assay,

we used the replicate-combined methylation calls (including merging bisulfite and oxida-

tive bisulfite replicates for TrueMethyl) that were normalized to 20× mean coverage.

A total of 2,298,846 CpG sites were present on Chromosome 1 in all six assays

(EMSeq, MethylSeq, Nanopore, SPLAT, TrueMethyl, and TruSeq). Coverage levels on

HG002 were positively correlated among EMSeq, MethylSeq, and TrueMethyl (Spear-

man’s ρ ≥ 0.24). SPLAT coverage was also correlated with these three assays as well as

with TruSeq, which was only weakly correlated with any other assay. Nanopore cover-

age was uncorrelated with that of any other assay. The magnitude of pairwise coverage

correlations within each assay varied considerably, with the highest levels observed for

TruSeq (0.85 ≤ ρ ≤ 0.86), SPLAT (0.62 ≤ ρ ≤ 0.71), and MethylSeq (0.47 ≤ ρ ≤ 0.48),

and the lowest for Nanopore (0.14 ≤ ρ0.22), EMSeq (0.28 ≤ ρ ≤ 0.31), and TrueMethyl

(0.32 ≤ ρ ≤ 0.34).

For each assay, differential methylation analysis was independently conducted at the

family level (Ashke nazi Trio HG002-HG004 against the Chinese Trio HG005-HG007).

This also included a restriction to sites with 5× coverage in at least two out of three

members of each family group, resulting in small data reductions for EMSeq, Methyl-

Seq, Nanopore, SPLAT, and TrueMethyl (3%, 4%, > 1%, 4%, and 3%, respectively), and

a greater loss for TruSeq (14%). Comparative analysis considered only the 1,928,536

CpG sites that met this criterion for all six assays. To assess consistency in sites identi-

fied as differentially methylated (DM) by each assay (DMA), we computed the fraction

of DMA sites that were unique to each assay (a pseudo false-positive rate) (Additional

file 2: Supplementary Table 3). We also computed the total number of DM sites com-

monly identified by four or more assays (DM4+), which totaled 1.5% of the common

sites. We then determined the percentage of DMA sites that were also DM4+ sites (a

measure of specificity), as well as the percentage of DM4+ sites that were also DMA

sites (a measure of sensitivity).
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Fig. 3 Estimates of methylation per CpG across the genome for HG002. All samples visualized here were
downsampled to 20× mean coverage per CpG. a Methylation percentage distributions per assay. b
Methylation bias (mbias) plots showing mean methylation per base for short-read assays (Nanopore
excluded here). Dotted lines indicate recommended cutoffs for methylation calling for these data. Original
top/bottom refer to mappings to bisulfite-converted strands in the reference genome. c Metagene plot
showing mean methylation across genomic feature per assay. Promoter regions span 1 kb upstream of
transcript start sites (TSS). d Mean methylation curves surrounding TSS across all genes. e Pearson
correlation matrix of genome-wide methylation estimates. f Pearson correlation matrix of methylation
estimates for sites where methylation was estimated to be between 20 and 80%. g Methylation percentage
correlation between Oxford Nanopore and all other assays. Pearson correlation values shown on top.
Marginal histograms show methylation curves per assay
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For EMSeq, 26% of the sites identified as DM were unique to that assay, comparable

to MethylSeq (26%) and SPLAT (29%). These three assays were also comparable in the

percentage of DM sites that were identified in at least three other assays (36%, 38%,

and 35% for EMSeq, MethylSeq, and SPLAT, respectively), and in the percentage of

DM sites called by at least three other assays that they also detected (90%, 86%, and

89%, respectively). TrueMethyl detected fewer DM sites overall, with 22% of sites

unique to this assay and 42% detected in at least three other assays. However, this did

not correspond to a large decline in sensitivity, as 85% of the sites detected by three or

more other assays were also identified by TrueMethyl. The smallest number of DM

sites was identified in the Nanopore samples, with high specificity (17% unique DMAs

and 56% of sites in DM4+) and lower sensitivity, identifying only 51% of the sites iden-

tified by four or more other assays. TruSeq, on the other hand, was associated with the

largest number of DMA sites and had poor agreement with the other assays, with 43%

unique sites, 38% of its sites identified in two or more other platforms, and only 71% of

the sites identified by three or more platforms among its DMAs.

Figure 4 illustrates the role of coverage variability for each platform. For each assay,

the range between the 5th and 95th percentile of median coverage is shown along the

x-axis, while the degree of agreement with other assays for DM sites is shown along the

y-axis. We see that agreement declines at higher coverage levels, but this effect is min-

imal for EMSeq, MethylSeq, Nanopore, and TrueMethyl. Because SPLAT has a more

heavy tailed coverage distribution with stronger sample-to-sample correlations, the im-

pact is more pronounced, while for TruSeq the coverage distribution is extremely dif-

fuse and there is markedly poor agreement with other platforms in its upper coverage

percentiles.

Normalization of array data

In addition to bisulfite sequencing, microarrays are another commonly used technique

to interrogate the DNA methylation. For each cell line, across three laboratory sites, we

generated 3–6 biological or technical replicates with microarray data from the Illumina

MethylationEPIC Beadchip (850k array) (Table 1). As a first step before integrating

microarray data with the sequencing data, we assessed the performance of different

microarray normalization pipelines.

We implemented 26 normalization pipelines with different combinations of between-

array and within-array normalization methods. The between-array normalization

methods evaluated were no normalization (None), quantile normalization (pQuantile)

[17], functional normalization (funnorm) [18], ENmix [19], dasen [20], SeSAMe [21],

and Gaussian Mixture Quantile Normalization (GMQN) [22]. The within-array

normalization methods evaluated were no normalization (None), Subset-quantile

Within Array Normalization (SWAN) [23], peak-based correction (PBC) [24], and Re-

gression on Correlated Probes (RCP) [25]. All combinations were implemented with

the exception of pQuantile + SWAN and SeSAMe + SWAN, which were not possible

due to incompatible R object types.

We first performed principal component analysis (PCA) and visually inspected the

first two principal components (PCs) for each normalization pipeline (Additional file 1:

Figure S10). Generally, samples from the same cell line clustered together more tightly
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after normalization, although a few pipelines (PBC alone, GMQN alone, GMQN +

PBC) did not show obvious improvement in replicate clustering. Most pipelines failed

to clearly distinguish samples from cell lines HG005 and HG006, the Han Chinese

father/son pair, from one another.

A variance partition analysis was used to compute the percentage of methylation vari-

ance explained by cell line, lab, or residual variation at each CpG site in each normal-

ized dataset. A superior normalization pipeline would have more variation explained by

cell line across the epigenome compared to other pipelines as well as clear clustering of

biological and technical replicates.

Funnorm + RCP had the highest median across the epigenome (90.4%), although

many pipelines had medians in the 85–90% range (Fig. 5a). SeSAMe and RCP per-

formed well (median > 85%) no matter which methods they were combined with. While

using RCP or SWAN usually improved performance compared to having no within-

array normalization, using PBC for within-array normalization always reduced the me-

dian variance explained by cell line. For all downstream analyses, we used the funnorm

+ RCP normalized microarray data because this pipeline had the highest median vari-

ance explained by cell line. Figure 5a shows the full distribution of variance explained

by cell line across the epigenome for each normalization pipeline. Most pipelines had a

bimodal distribution, so CpG sites typically had almost no variation explained by cell

line or nearly 100% of variation explained by cell line.

Fig. 4 Mosaic plots illustrating agreement between assays for differentially methylated per assay (DMA)
sites as coverage levels vary. Rows represent the number of the six assays for which each DMA site was also
identified, with values ranging from 1 (indicating no other assays, shaded in red) to 6 (indicating all assays,
shaded in purple). Columns indicate the median coverage across HG002-HG007, with values ranging
between the 5th and 95th percentiles for each assay
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In light of previous work that has shown that microarray data is not reliable for sites

with low population variation [26], we investigated whether sites with poor concord-

ance between replicates (% variance explained near 0) overlapped with low-varying

sites. We used the 59 SNP probes on the Illumina EPIC array to compute a data-driven

threshold for categorizing sites as low varying (Fig. 5b-d; see “Methods” for details). We

found that nearly all CpG sites in the normalized (funnorm + RCP) microarray data

with poor concordance between replicates met our definition of low-varying sites (Fig.

5e). This suggests that our data-driven definition of low-varying CpG sites, which can

be applied to any Illumina 450k or 850k array dataset, may be useful for filtering out

less reliable CpG sites before analysis.

Normalized microarray concordance with sequencing data

We performed 6 additional variance partition analyses, adding samples from one se-

quencing assay (EMSeq, MethylSeq, SPLAT, TrueMethyl, TruSeq, or Nanopore) at a

time, to evaluate the concordance between microarray and downsampled 20× sequen-

cing data. For each site and each sequencing assay, we estimate the percentage of

methylation variance explained by cell line, assay (sequencing or microarray), and re-

sidual variation. A higher percentage of variance explained by cell line indicates better

agreement with the microarray data.

Ternary density plots of the variance explained by cell line, assay, or residual variation

show lower concordance between the Nanopore sequencing data and the microarray

data than other sequencing assays (Fig. 6a). The five other sequencing assays (EMSeq,

MethylSeq, SPLAT, TrueMethyl, and TruSeq) have a high density of sites where nearly

100% of the methylation variance in the merged sequencing/microarray dataset is ex-

plained by cell line. However, for all assays, there is a smaller peak of CpG sites where

nearly 100% of the methylation variance is explained by assay, indicating that there

were some technical artifacts introduced by assay, but these technical artifacts were not

widespread across the epigenome.

We investigated what was driving poor concordance between assays at this subset of

CpG sites and found a strong, non-linear relationship between the amount of variability

at a CpG site and concordance (Fig. 6b). The non-linear relationship between CpG site

variance in the microarray data and concordance between assays indicates that there is

a minimum amount of population variance needed for reproducibility, but beyond this

threshold more variation does not improve concordance. This confirms our proposed

approach of estimating technical noise from the SNPs on the array to create a binary

“low-varying” or “high-varying” classification for CpG sites.

Because each cell line had 3–6 microarray replicates and only one (merged replicate)

sequencing sample, these results are largely driven by the microarray data and the esti-

mates of the percentage of variation explained by cell line (vs. assay) are likely biased

upward by this. Visual inspection of the joint distribution of microarray and sequencing

beta values for all HG002 replicates (with sequencing replicates from the same lab

merged) shows that there is substantial technical noise in the data when comparing any

two assays (Additional file 1: Figure S11). For the same assay in two different labs, we

see much better concordance between HG002 beta values with microarrays than with

EMSeq.
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Differential methylation in microarray sites

We took differentially methylated regions between family groups (see above) and re-

stricted them to sites captured by the Illumina MethylationEPIC Beadchip (850k array)

(see above). Of the 82,013 probes on the array that map to regions on Chromosome 1,

81,456 sites (99.3%) were detected at high depth by all six sequencing assays. Of these,

the number of differentially methylated assays (DMAs) ranged from 1027 (Nanopore)

to 4267 (TruSeq). For EMSeq, MethylSeq, Nanopore, and TrueMethyl, over 99% of

these DMA had estimated percent methylation difference (PMD) of 20% or greater

Fig. 5 Microarray normalization and low-varying site definition. a Densities showing the percentage of DNA
methylation variation explained by cell line across the epigenome (N = 677,520 overlapping CpG sites) for
each normalization method. b Raw beta values at each of the 59 SNP probes on the Illumina EPIC arrays,
with samples colored by lab. c Variance in methylation beta values (no normalization) within each
genotype cluster at the 59 SNP probes, separated and colored by lab. The dotted vertical line represents
the 95th percentile. d Variance in methylation beta values (normalized with funnorm + RCP) across the
epigenome. Sites in the shaded area, which have less variation than 95% of SNP probe genotype clusters,
are defined as low-varying sites. e Percentage of methylation (normalized with funnorm + RCP) variance
explained by cell line across the epigenome, stratified by high-varying vs. low-varying sites
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between the family groups, while 95% and 80% of DMAs met this criterion for SPLAT

and TruSeq, respectively.

To analyze concordance between the sequencing-based and array results, we com-

puted the proportion of these DMAs for which a corresponding difference of at least

20% was observed for the arrays, with these array PMDs estimated via ANOVA models

with random intercepts for each genome. As illustrated by Additional file 2: Supple-

mentary Table 4, the overall agreement was comparable for four of the six methods

with values ranging from 55.5% (EMSeq) to 60.0% (TrueMethyl), with a higher level of

67.0% for Nanopore and a lower level of 49.6% for TruSeq. However, among the 4137

sites with array |PMD| > 0.2, only 16.6% were Nanopore DMAs in comparison to 42–

44% for all other assays, suggesting high precision but lower sensitivity for this assay.

Discussion
The EpiQC study provides a comprehensive epigenetic benchmarking resource using

human cell lines established by the Genome in a Bottle Consortium as reference mate-

rials to advance genomics research. We provide datasets for a broad range of methy-

lome sequencing assays, including short-read whole-genome bisulfite sequencing

(WGBS) and enzymatic deamination (EMSeq), and native 5-methylcytosine calling

using Oxford Nanopore long-read sequencing. We also provided data from targeted ap-

proaches, including reduced representation bisulfite sequencing (Methyl Capture EPIC),

methylated DNA immunoprecipitation and sequencing (MeDIP-seq) for mC and hmC,

and the Illumina Infinium MethylationEPIC 850k array. While most of the published

and/or commercialized assays have been tested with some standard samples (e.g.,

GM12878), the sample used to benchmark each assay was drawn from different DNA

aliquots, extracted from cells grown at different passages, and potentially grown in dif-

ferent media. Here, aliquots of the same gDNA were distributed across multiple labora-

tories and used for all data generated. To remove additional variability, all libraries

were sequenced on multiple flow cells of one Illumina NovaSeq 6000 (then a third flow

cell on the same instrument type). For all assays, libraries were produced in duplicates,

providing both inter- and intra-assay datasets.

Benchmarking whole methylome sequencing technologies is important for determin-

ing which method will achieve the best performance, and to provide recommendations

and standards for experimental design within future studies. Large projects such as the

NIH Roadmap Epigenomics Project [27], the International Human Epigenome Consor-

tium [28], and the Cancer Genome Atlas [29] have produced, compiled, and analyzed a

vast amount of WGBS data comprising tissues and cell lines from normal and neoplas-

tic tissues. Building upon these previous works, our study encompasses an up-to-date

range of commonly used whole methylome assays as well as emerging methods such as

enzymatic methylation and native 5mC calling from long-read technologies and pro-

vides data across 7 different reference material cell lines, providing a comprehensive

examination of DNA methylation analysis methods.

We found that the library preparation method of choice and parameters used within

each protocol can significantly impact data quality and utility for biological interpreta-

tions. Libraries with longer inserts benefited from less adapter contamination, fewer

dovetailing (overlapping) reads, and fewer low-quality bases, which increased mapping

efficiency and mean coverage per CpG. This is particularly impactful when one chooses
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Fig. 6 a Density plots of sequencing/microarray concordance indicating the percent of variance explained
(VE) by cell line, assay (sequencing or microarray), and residual variation for 841,833 CpG sites with
complete information in all assays. b Distribution of percent variance explained by cell line in the
sequencing/microarray variance partition analysis as a function of beta value variance (binwidth = 0.001)
and median coverage (binwidth = 1) at each CpG site. 90% of the y-axis values fall between the outermost
dotted lines for each bin along the x-axis
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to employ a cost-effective sequencing on an Illumina system with paired-end 150 bp

reads, as was done within this study. This sequencing scheme resulted in a highly vari-

able depth of coverage per library preparation. While imbalanced pools may account

for some of the difference, library preparation methods had the biggest impact. Except

for TruSeq, all the other library preparations start with shearing of the gDNA. For the

other bisulfite-dependent protocols, the DNA fragments range between 200 and 400,

whereas EMSeq allows for longer fragments (550 bp). TruSeq libraries tend to have

short (130 bp) insert sizes and are therefore more suitable for 75 bp paired-end read

lengths. To overcome the impact of imbalanced sequence depth, this study provides ro-

bust recommendations for downsampling across sequencing types, showing both how

different downsampling schemes (i.e., at the BAM level or at the methylation bedGraph

level) are comparable, and how downsampled datasets can be directly compared to one

another to assess the performance of the assays themselves.

The methods that have proven to have greater genome-wide evenness of coverage,

namely Accel-NGS MethylSeq [15], SPLAT [6], and TrueMethyl [30], tend to have lon-

ger insert sizes (200–300 bp), fewer PCR duplicates (down to a few percent, depending

on sequencing platform), and high mapping efficiencies (> 75%). The SPLAT libraries

herein had shorter insert sizes than desired due to the use of 400 bp Covaris shearing

prior to library preparation. To achieve insert sizes of ≥ 300 bp, the SPLAT authors

now recommend using DNA fragmented to 500–600 bp as input and to perform final

library purification at 0.8× AMPure ratio to remove shorter fragments. The same rec-

ommendation may also improve the insert size for MethylSeq and TrueMethyl proto-

cols. SPLAT is the only method in our evaluation that is not commercial/kit-based and

could be comparatively ~ 10× cheaper per library [6]. This can be important when con-

sidering the sample preparation cost alongside sequencing costs.

The EMSeq protocol [31] compares favorably to the bisulfite sequencing-based ap-

proaches analyzed herein. In almost all comparisons, EMSeq libraries capture more

CpG sites at equal or better coverage. We also show that the methylation signal

achieved by native base modification detection from Oxford Nanopore long-read se-

quencing is highly comparable to short-read bisulfite- and enzymatic-methylation se-

quencing, with average Pearson correlation values of r = 0.90 for CpG methylation

concordance. Moreover, Nanopore can detect a significant number of sites that short-

read assays miss, many of which occur in promoter and exonic regions that are poten-

tially of biological significance.

Beyond library preparation, the use of algorithmic tools has an impact on the per-

formance of each methylome assay. Asymmetrical C-T distributions between DNA

strands and reduced sequence complexity make epigenetic sequence alignment differ-

ent from regular DNA processing. We compared common methylation processing

pipelines and compared their mapping efficiencies, depth of coverage achieved per

CpG, and computational time to run, and observed bwa-meth to provide the best per-

formance when considering all of these factors. Notably, BitMapperBS was faster than

bwa-meth, and not far behind in mapping efficiency and CpG coverage.

Another important parameter is the amount of data retained from a WGBS experi-

ment following adapter and quality trimming, mapping, and de-duplication. Here, we

show the effects of each mapping step on each methylome assay (Additional file 1: Fig-

ure S4), and how reads are filtered along each step, including the estimated number of
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reads required to achieve a certain mean coverage per CpG (Table 2). Similarly, previ-

ous studies [5, 15] have implemented a metric to estimate the efficiency of WGBS gen-

ome coverage by determining the raw library size (number of PE 150 bp reads prior to

filtering) required to achieve at least 30× coverage of 50% or more of the genome. We

propose a modified version of the calculation proposed by Zhou and colleagues, deriv-

ing the number of PE150 bp reads needed to achieve 20× average CpG coverage for a

library, as this metric directly relates back to the CpG sites whose methylation levels

will be interrogated. We also calculate usable bases, reflecting the total bases used for

methylation estimation out of the total bases sequenced per library. Adoption of such

metrics will make it significantly easier to compare and contrast results from different

methods.

Choice of computational algorithms is equally important in analyzing methylation

microarray data as the data generation. In this study, we compared 26 different

normalization pipelines. Many algorithms (SWAN, RCP, pQuantile, dasen, funnorm,

ENmix, SeSAMe) generally performed well in this dataset, clustering replicates from

the same cell line together while preserving differences between cell lines. Given the

comparable performance of these methods, the best normalization pipeline will depend

on the needs of individual studies. For instance, cohorts with multiple tissues may want

to use the multi-tissue extension of funnorm, funTooNorm [32], and cohorts with very

large sample sizes may want to use SeSAMe [21], which is the only single-sample

normalization method we evaluated. All pipelines performed poorly at sites with low

population variance, confirming previous work [26]. We propose using the SNPs on

the 850k array to calculate a data-driven threshold for classifying and filtering out low-

varying sites before analysis. Previously published associations at sites with low popula-

tion variation, which can also often be identified by their extreme (< 5% or > 95%) me-

dian methylation values [26], should be interpreted with caution. Additionally, our data

from EM-Seq and microarray replicates across different labs (Additional file 1: Figure

S11) support previous findings that the Illumina 850k array was more reproducible

than TruSeq across paired technical replicates from 4 cord blood samples [33]. We

conclude that overall, microarrays are a good option for researchers who are comfort-

able with a targeted assay.

One final caveat for the data within this study is our use of high-quality DNA from

EBV-immortalized, B-lymphoblastoid cell lines. Using this highly controlled input, the

methods examined within this study produced mostly comparable data. However, the

performance of each kit may be more variable on less optimal input DNA (lower input,

more highly fragmented, etc.) that mirrors real clinical samples more closely. The opti-

mal data herein should serve as a launch point for future studies of more realistic

inputs.

Summary items

(1) We provide DNA methylation data for epigenomic benchmarking across seven cell

lines designated as reference materials by the Genome in a Bottle Consortium for

furthering genomics research. These data are publicly available within NCBI SRA
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under accession numbers SRR13050956–SRR13051274, and the code used to

analyze and visualize the data is fully available at https://github.com/jfoox/epiqc.

(2) We recommend the use of bwa-meth for reference-based alignment of bisulfite

data, followed by MethylDackel for methylation estimation, based on a combin-

ation of computational time required and mapping efficiency.

(3) Although there are characteristic differences between whole genome methylation

library preparations, they are highly concordant for 5mC characterization. There is

almost no detectable 5-hydroxymethylcytosine in these cell lines and they are not

recommended for benchmarking 5hmC.

(4) We provide estimates of how many reads are required per protocol to reach 20×

mean coverage of genome-wide CpGs (Table 2). Enzymatic deamination reactions

(EMSeq) are as efficient or better as bisulfite methods are. For all library prepar-

ation types, we recommend longer insert sizes, especially for 2 × 150 bp sequencing

chemistries.

(5) The concordance of nanopore sequencing and native base modification calling

with enzymatic/chemical conversion methods (r = 0.92) has improved considerably

and will continue to improve with newer base modification models. Nanopore data

can also be used to characterize many thousands of CpGs that are inaccessible to

short-read data types. Areas of disagreement between modalities typically involve

estimates of complete methylation in short-read bisulfite data that are more het-

erogeneous (5mC% at 75–90%) in long-read nanopore data.

(6) For normalization of microarray data, non-sample variance is best minimized using

a combination of Funnorm and RCP (though many pipeline combinations per-

formed comparably with medians in the 85–90% range).

(7) We propose using the SNPs on the 850k array to calculate a data-driven threshold

for classifying and filtering out low-varying microarray sites before analysis. Associ-

ations at sites with low population variation should be interpreted with caution.

(8) Beta values from microarrays and base-level methylation estimates from sequence

data are highly comparable. Variance between the two in shared sites is almost en-

tirely sample-specific and likely reflective of technical noise.

Study limitations

There are several limitations to the experimental design within this study. First,

the low number of replicates per protocol per cell line limited our ability to distin-

guish assay-specific signal from technical noise. Second, not all laboratories in-

volved in the study used the same set of positive and negative control spike-ins

(fully methylated pUC19 plasmid and fully unmethylated lambda phage), which

limited our ability to directly compare the quality and efficiency of each library

preparation type. Finally, the imbalanced library pooling and loading onto flow cells

led to a wide range of data generated per library, which resulted in low coverage

for some replicates, and in several cases below the minimum we recommend for

methylation analysis. This forced us to compare protocols with replicates merged,

which further limited our ability to analyze variability within each protocol. Thus,

there is room for future studies to build upon and expand these data to further

address questions of reproducibility.
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Methods
Genomic DNA

The samples in this study comprise genomic DNA (gDNA) from seven EBV-

immortalized B-lymphoblastoid cell lines designated as reference samples by the Na-

tional Institute of Standards and Technology (NIST) Genome in a Bottle Consortium

(see https://www.coriell.org/1/NIGMS/Collections/NIST-Reference-Materials). The

NA12878 (HG001) cell line was selected as it is the most commonly used reference for

benchmarking or generation of genomics datasets. Additionally, six cell lines represent-

ing two trios from the Personal Genome Project, which are consented for commercial

redistribution, were also included. The HG002/3/4 samples were provided by a son/

father/mother trio of Ashkenazi Jewish ancestry, and the HG005/6/7 come from a Han

Chinese son/father/mother trio.

For each reference cell line, 100 μg genomic DNA (gDNA) was purchased from the

Coriell Institute for Medical Research, along with viable cell lines for later growth and

distribution. The gDNA was quantitated using Qubit Broad Range dsDNA kit and an

aliquot from reference sample gDNA was distributed to six independent laboratories

for NGS library preparation or microarray analysis.

NGS library preparation

Enzymatic Methyl-Seq (EMSeq)

EMSeq libraries were prepared at two different laboratories using slightly altering pro-

tocols. At Lab1, genomic DNA was spiked in with 2 ng unmethylated lambda as well as

0.1 ng CpG methylated pUC19, and was then fragmented to 500 bp using a Covaris S2

(200 cycles per burst, 10% duty-cycle, intensity of 5, and treatment time of 50 s). At

Lab2, genomic DNA was fragmented to 450 bp using Covaris 130 μL. While all repli-

cates of HG001-004 were created using 100 ng of DNA, both labs created replicates of

HG005-007 using 100 ng, 50 ng, and 10 ng of DNA in order to test the effects of input

concentration. EMSeq libraries from both laboratories were prepared using the NEB-

Next Enzymatic Methyl-Seq (E7120, NEB) kit following the manufacturer’s instruc-

tions. Final libraries were amplified with NEBNext Q5U polymerase using 4 PCR cycles

for 100 ng, 5 cycles for 50 ng, and 7 cycles for 10 ng inputs. Libraries were quality con-

trolled on a TapeStation 2200 HSD1000.

Swift Biosciences Accel-NGS Methyl-Seq (MethylSeq)

Libraries were prepared according to the manufacturer’s instructions (Swift) using

dual-indexing primers. Briefly, 100 ng of genomic DNA was spiked in with 1%

unmethylated Lambda gDNA and fragmented to 350 bp (Covaris S220, 200 cycles

per burst, 5% duty factor, 175W peak displayed power, duration of 50 s). Bisulfite

conversion was performed using EZ DNA Methylation-Gold kit (Zymo Research).

Adaptase was used to ligate adapters to the 3′ end of the bisulfite-converted DNA,

followed by primer extension, second strand synthesis, and ligation of adapter se-

quences at its 3′ end. The libraries were amplified for a total of 6 rounds using

the Enzyme R3 provided with the kit. Libraries were quality controlled on a TapeS-

tation 2200 HSD1000.
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SPlinted Ligation Adapter Tagging (SPLAT)

In total, 100 ng gDNA was fragmented to 400 bp (Covaris E220, 200 cycles per burst,

10% duty factor, 140 peak incident power PIP, 55 s treatment time). Bisulfite conversion

was performed using the EZ DNA Methylation-Gold kit (Zymo Research). SPLAT li-

braries were constructed as described previously [6]. Briefly, adapters with a protruding

random hexamer were ligated at the 3′ end and 5′ end of single-stranded DNA in con-

secutive reactions. The resulting libraries were amplified with 4 PCR cycles using

KAPA HiFi Uracil+ PCR enzyme (Roche). Libraries were quality controlled on a TapeS-

tation 2200 HSD1000.

NuGEN TrueMethyl oxBS-Seq (TrueMethyl)

In total, 200 ng of genomic DNA was spiked with 1% unmethylated Lambda gDNA and

fragmented to 400 bp (Covaris S220, 10% duty factor, 140W peak incident power, 200

cycles per burst, duration of 55 s). Fragmented DNA was processed for end repair, A-

tailing, and ligation using NEB’s methylated hairpin adapter. Ligation was performed at

16 °C overnight in a thermocycler. The USER enzyme reaction was performed the next

morning, according to the manufacturer’s protocol, and the adapter-ligated DNA

cleaned up using 1.2:1 Ampure XP bead:ligated DNA ratio. Each ligation was then split

into 2 aliquots to perform oxidation + bisulfite conversion or mock (water) + bisulfite

conversion according to the OxBS module instructions (Tecan/NuGen). PCR amplifica-

tion was performed using NEB’s dual-indexing primers and KAPA Uracil+ HiFi enzyme

for a total of 10 cycles. Libraries were quality controlled on a TapeStation 2200

HSD1000.

Illumina TruSeq DNA Methylation (TruSeq)

In total, 100 ng of genomic DNA was bisulfite converted using EZ DNA Methylation-

Gold Kit (Zymo Research). Sequencing libraries were prepared according to the manu-

facturer’s protocol (Illumina). Briefly, the bisulfite-converted DNA was first primed by

random hexamers containing a tag sequence on its 5′ end. Next, the bottom strand

was extended and a 3′ end oligo added. The libraries were amplified with 10 PCR cy-

cles using the FailSafe PCR enzyme (Illumina/Epicentre). Libraries were quality con-

trolled on a TapeStation 2200 HSD1000.

Illumina Methyl Capture EPIC

In total, 500 ng of genomic DNA was prepared according to the manufacturer’s proto-

col (Illumina), including a spike-in of 2 ng of unmethylated lambda. Briefly, the gen-

omic DNA was fragmented to 200 bp using a Covaris S220 (10% duty-cycle, 175W

peak incident power, 200 cycles per burst, duration of 360 s). The fragmented DNA was

next purified using AMpure XP beads, end-repaired, and A-tailed, before ligation of

single index adapters with methylated cytosines. Libraries cleaned using AMpure XP

beads, then pooled in 3- and 4-plex. The pools were denatured to single-stranded DNA

before hybridization to the RNA baits provided with the kit. After cleanups of the hy-

bridizations according to the manufacturer’s protocol, the captured strands were proc-

essed for library amplification by PCR using KAPA Uracil+ HiFi enzyme (Roche) and
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TrueSeq primers included in the kit. Libraries were quality controlled on a TapeStation

2200 HSD1000.

Oxford Nanopore Library Preparation

Genomic DNA was quantified using a Qubit 4 Fluorometer (ThermoFisher Q33238),

and libraries were prepared using a Ligation Sequencing Kit (SQK-LSK109, Oxford

Nanopore Technologies). Briefly, 1000 ng of genomic DNA was end-repaired and dA-

tailed using the NEBNext End Repair/dA-tailing module, and then sequencing adapters

were ligated. DNA fragments below 4 kb were removed using the long fragment wash

protocol option according to the manufacturer’s protocol.

EPIC microarrays

Illumina Infinium MethylationEPIC BeadChip (850k array)

Bisulfite conversion was performed using the EZ DNA Methylation Kit (Zymo Re-

search) with 250 ng of DNA per sample. The bisulfite converted DNA was eluted in

15 μl according to the manufacturer’s protocol, evaporated to a volume of < 4 μl, and

used for methylation analysis on the 850k array according to the manufacturer’s proto-

col (Illumina).

Microarray experiments were run at three different labs, denoted labs A, B, and C to

distinguish them from the sequencing labs (lab 1 and lab 2). The resulting dataset con-

tains 30 samples, with each of the seven cell lines (HG001-HG007) having between

three and six replicates (biological or technical). Two technical replicates were gener-

ated for each cell line at lab A, one replicate from each cell line was generated at lab B,

and three technical replicates were generated for the Han Chinese family trio cell lines

(HG005-HG007) at lab C.

LC-MS/MS quantification of 5mC and 5hmC

Genomic DNA from HG001-007 cell lines was used for the analysis. Samples were

digested into nucleosides using Nucleoside digestion mix (M0649S, New England Bio-

labs) following manufacturer’s protocol. Briefly, 200 ng of each sample was digested in

a total volume of 20 μl using 1 μl of the digestion mix. Samples were incubated at 37 °C

for 2 h.

LC-MS/MS analysis was performed using two biological duplicates and two technical

duplicates by injecting digested DNA on an Agilent 1290 UHPLC equipped with a

G4212A diode array detector and a 6490A Triple Quadrupole Mass Detector operating

in the positive electrospray ionization mode (+ESI). UHPLC was performed on a Wa-

ters XSelect HSS T3 XP column (2.1 × 100 mm, 2.5 μm) using a gradient mobile phase

consisting of 10 mM aqueous ammonium formate (pH 4.4) and methanol. Dynamic

multiple reaction monitoring (DMRM) mode was employed for the acquisition of MS

data. Each nucleoside was identified in the extracted chromatogram associated with its

specific MS/MS transition: dC [M + H] + at m/z 228-112, 5mC [M + H] + at m/z 242-

126, and 5hmC [M + H] + at m/z 258-142. External calibration curves with known

amounts of the nucleosides were used to calculate their ratios within the analyzed

samples.
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DNA sequencing

Illumina sequencing

The short-read sequencing libraries were collected from participating laboratories and

sequenced centrally at two sequencing centers. Libraries were pooled by library type in

high concentration equimolar stock pools (4 nM). After pooling, bead-based clean-up

was performed to remove peaks < 200 bp. The cleaned stock pools were quantified on

an Agilent Bioanalyzer using High sensitivity DNA chip and subsequently diluted to

1.5 nM prior to sequencing on Illumina NovaSeq 6000 S4 flowcells PE150 read length

to a targeted minimum per replicate CG coverage of 20×. Base calling was performed

using RTA v3.4.4. Additional details about the sequencing parameters can be found in

the Supplementary Materials and Methods.

Oxford Nanopore Sequencing

The Nanopore libraries were run simultaneously on seven FLO-PRO002 flow cells for

64 h on a PromethION Beta device to maximize yield. FAST5 files were generated

using default parameters within MinKNOW on the PromethION machine. Base calls

and base modification calls were generated using Megalodon v2.2.9 (https://

nanoporetech.github.io/megalodon/) with guppy v4.2.2 (https://community.

nanoporetech.com/downloads/guppy) as the basecaller backend. The MinION DNA

R9.4.1 5mC configuration file from the Rerio database (https://github.com/

nanoporetech/rerio) was used as the base modification model. The MinION model was

chosen because it maintained more consistent peaks at 0% and 100% methylation as

compared to the PromethION model.

Data quality control

FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to

evaluate the quality of sequencing data, including base qualities, GC content, adapter

content, and overrepresentation analysis. Adapter sequences were trimmed using

FASTP [34] with a minimum length of two bases, quality filtering disabled, and forced

poly-G trimming. The data generated using the Swift Methyl-Seq kit were further

trimmed for an additional 10 bp on the 3′ end of R1 and 10 bp on the 5′ end of R2 to

remove Adaptase sequence introduced during library preparation.

Alignment and methylation calling

Alignment comparison was conducted on sample HG002. All short-read WGBS librar-

ies were aligned to the human reference genome (build GRCh38) with additional con-

tigs included representing bisulfite controls spiked within pooled libraries, including

lambda, T4, and Xp12 phages, as well as cloning vector plasmid pUC19. The Epstein-

Barr Virus (EBV) sequence was also included as a decoy contig to account for use of

EBV to immortalize B-lymphocytic cell lines.

BISMARK

Adapter-trimmed reads were aligned using two parallel instances of BISMARK v0.23.0

(https://github.com/FelixKrper replicate) and bowtie2 (http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml) as the read aligner. BAM files were position sorted using

Foox et al. Genome Biology          (2021) 22:332 Page 24 of 30

https://nanoporetech.github.io/megalodon/
https://nanoporetech.github.io/megalodon/
https://community.nanoporetech.com/downloads/guppy
https://community.nanoporetech.com/downloads/guppy
https://github.com/nanoporetech/rerio
https://github.com/nanoporetech/rerio
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/FelixKrper
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml


sambamba sort (https://lomereiter.github.io/sambamba/) and deduplicated using dedu-

plicate_bismark with default parameters. Methylation was called using bismark_methy-

lation_-extractor using 2 multicore instances and default parameters and strands were

merged into dinucleotide contexts using MethylDackel (https://github.com/dpryan79/

MethylDackel) mergeContext.

BitMapperBS

Alignment was run using default parameters within BitMapperBS v1.0.2.2 on adapter-

trimmed FASTQs and the resulting BAMs were position sorted using sambamba sort.

Alignments were deduplicated using Picard MarkDuplicates (https://broadinstitute.

github.io/picard). Methylation was extracted using MethylDackel extract and strands

were merged into dinucleotide context using MethylDackel mergeContext.

BSSeeker2

Adapter-trimmed reads were aligned across four threads within BSSeeker2 using bow-

tie2 as the aligner per user guide recommendation. Alignments were sorted using sam-

bamba sort and deduplicated using Picard MarkDuplicates. Methylation was called

within bs_seeker2-call_methylation, and strands were merged into dinucleotide con-

texts using MethylDackel mergeContext.

bwa-meth

Adapter-trimmed reads were aligned using bwa-meth v0.2.1 with default parameters

and converted into BAM format using sambamba view. Alignments were then position

sorted with sambamba sort and deduplicated using Picard MarkDuplicates. Methylation

was called with MethylDackel extract and strands were merged into dinucleotide con-

texts using MethylDackel mergeContext

gemBS

gemBS v3.2.0 (https://github.com/heathsc/gemBS) requires two set-up files to enable

analysis. The first file is a metadata sheet, in which sample barcodes were provided in

assay/lab/genome/replicate format (e.g. EMSeq_LAB01_HG001_REP01). The second

file is a configuration sheet, in which default parameters were applied, including MAPQ

threshold of 10, base quality threshold of 13, reference bias of 2, 5′ trim of 5 bp, 3′ trim

of 0 bp, removing improper pairs, marking duplicate reads, diploid alignment, auto con-

version, and all files generated (CpG, non-CpG, bedMethyl, and bigWig). These files

were fed into gemBS which uses GEM3 for alignment and BScall for methylation

calling.

Downsampling methylation calls

The 5-methylcytosine bedGraph files generated by the bwa-meth aligner (see “Results”

for rationale to proceed with bwa-meth calls for secondary analyses) were normalized

such that each call set had a given mean global coverage per CpG. In order to

maximize coverage per library, all technical replicates were combined per library type

per cell line per laboratory (e.g., all replicates for EMSeq HG002 from Laboratory 1

were combined) by summing up the methylated and unmethylated counts per CpG site.
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Next, counts along the positive and negative strands were merged in order to produce

one value per CpG dinucleotide using MethylDackel mergeContext. The resulting

replicate-CpG-merged bedgraphs were downsampled using https://github.com/

nebiolabs/methylation_tools/downsample_methylKit.py where a fraction of counts kept

corresponding to the desired downsampling depth.

To compare downsampling from mapped reads (BAM files) in comparison to bed-

Graph files, the BAM files from all replicates representing EMSeq HG006 (Lab 1) were

respectively merged using samtools merge. The merged BAMs were then downsampled

using samtools view using the −s parameter, calculating the fraction of reads necessary

to achieve the desired mean coverage per BAM. Methylation was called on these BAM

files using the same methodology as above. The strands were merged by CpG dinucleo-

tide using MethylDackel merge context, creating one methylation call per CpG site.

The procedure is outlined in Additional file 1: Figure S5.

Differential methylation

Differential methylation between the two family groups (Ashkenazi Jewish Trio,

HG002-HG004 vs Han Chinese Trio, HG005-HG007) was assessed at each site on

Chromosome 1 for which at least two samples per group were covered by 5 or more

reads. Following aggregation of replicates, strand merging, and down sampling to mean

20× coverage, analysis was independently conducted via logistic region for each of six

platforms (MethylSeq, EMSeq, Nanopore, TruSeq, SPLAT, and TrueMethyl) using the

standard “glm” function in R. p values were adjusted using the Benjamini-Hochberg

correction and adjusted values < 0.05 were considered statistically significant. Compari-

sons among platforms considered only sites that were present for all assays.

Microarray normalization

Microarray normalization methods were divided into two broad categories: between-

array normalization and within-array normalization. Between-array normalization is

used to reduce technical variation while preserving biological variation between sam-

ples, while within-array normalization is used to correct for the two different probe de-

signs on the Illumina methylation arrays, which have been observed to have different

dynamic ranges [24]. The between-array normalization methods evaluated were

pQuantile [17], funnorm [18], ENmix [19], dasen [20], SeSAMe [21], and GMQN [22].

We implemented all possible combinations of between-array and within-array

normalization methods as well as each method individually. Samples from all 3 labs

were normalized together as one joint dataset.

In order to evaluate the performance of each pipeline, all 30 microarray samples from

3 labs were pooled together in a variance partition analysis [35]. For each pipeline and

at each CpG site, the percentage of variation in DNA methylation beta values explained

by cell line and lab was calculated. Additionally, we performed principal components

analysis (PCA) and visually inspected clustering of technical and biological replicates

across all normalization pipelines.

After normalization, we used the 59 SNP probes on the 850k array, meant to identify

sample swaps [36], to define a data-driven classification of low-varying sites. Previous

studies have found that low-varying sites have poor reproducibility on the Illumina
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arrays [26] and have suggested data-driven probe filtering using technical replicates [37,

38] or beta value ranges [26]. However, not all studies have technical replicates, and

previously proposed beta value range cutoffs for one experiment may not be

generalizable to another experiment. We first called genotype clusters based on the

beta values at each of the 59 SNP probes within each of the 3 different labs (Fig. 5b).

Although we used a naïve approach for calling genotypes (< 25% methylation = cluster

1, 25–50% methylation = cluster 2, > 75% methylation = cluster 3), which was sufficient

for the clear separation in our dataset (Fig. 5b), more sophisticated methods [39] can

be used for datasets with less clear separation and/or outlier values. In theory, because

these 59 SNP probes are meant to measure genotypes, cell lines with the same geno-

type should have exactly the same readout in an experiment without any technical

noise. Therefore, we can use variance within genotype clusters from the same experi-

ment as a measure of technical noise and determine the minimum population variation

needed to exceed the observed technical variation. Within each of the 3 labs, we calcu-

lated methylation variance at each SNP probe within each genotype cluster, giving us a

distribution of observed technical noise (Fig. 5c). To avoid being overly conservative

due to outlier values at these 59 SNP probes, we use the 95th percentile of these geno-

type cluster variances as the threshold for defining low-varying sites (Fig. 5c, d).

Sequencing performance in microarray sites

Variance partition analyses [35] were used to compare the microarray and down-

sampled sequencing datasets and assess concordance between microarray and sequen-

cing assays. Each of the variance partition analyses included all microarray replicates,

normalized with funnorm + RCP, and one sequencing sample per cell line with all rep-

licates merged. The percent of variation in DNA methylation explained by cell line,

assay (sequencing or microarray), and residual variation was calculated at each CpG

site. This produced 6 sets of results, one per sequencing assay. The percentage of vari-

ation explained by cell line at each site was used as a measure of cross-platform con-

cordance between each sequencing platform and the microarray data. The variance

partition results presented are restricted to CpG sites that were measured in all 7 cell

lines across all 7 assays (N = 841,883) to ensure a fair comparison.
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