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In brief

Kaneshige et al. revealed that initiation of

muscle stem cell (MuSC) proliferation in

overloaded muscles depends on YAP/

TAZ activity in mesenchymal progenitors

(MPs). Inactivation of YAP/TAZ in MPs or

ablation of MPs blunts myonuclear

accretion after mechanical loading. The

crosstalk between MPs and MuSCs is

mediated via the Thbs1-CD47 axis.
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SUMMARY
Adaptation to mechanical load, leading to enhanced force and power output, is a characteristic feature of
skeletal muscle. Formation of newmyonuclei required for efficient muscle hypertrophy relies on prior activa-
tion and proliferation of muscle stem cells (MuSCs). However, the mechanisms controlling MuSC expansion
under conditions of increased load are not fully understood. Here we demonstrate that interstitial mesen-
chymal progenitors respond to mechanical load and stimulate MuSC proliferation in a surgical mouse model
of increasedmuscle load. Mechanistically, transcriptional activation of Yes-associated protein 1 (Yap1)/tran-
scriptional coactivator with PDZ-binding motif (Taz) in mesenchymal progenitors results in local production
of thrombospondin-1 (Thbs1), which, in turn, drives MuSC proliferation through CD47 signaling. Under ho-
meostatic conditions, however, CD47 signaling is insufficient to promote MuSC proliferation and instead de-
pends on prior downregulation of the Calcitonin receptor. Our results suggest that relayed signaling between
mesenchymal progenitors and MuSCs through a Yap1/Taz-Thbs1-CD47 pathway is critical to establish the
supply of MuSCs during muscle hypertrophy.
INTRODUCTION

Skeletal muscle is an essential organ for locomotion, meta-

bolism, and life activities. Its plasticity is reflected by an unparal-

leled ability to adapt to external and internal physiological

alterations. For example, enhanced mechanical load induces

skeletal muscle remodeling and, consequently, increasing mus-
Cell Stem Cell 29, 1–16, F
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cle mass and strength, known as muscle hypertrophy. Hypertro-

phy goes along with enhanced protein synthesis and an increase

in myonuclei (Bamman et al., 2018), with the latter being

completely dependent on muscle stem (satellite) cells (MuSCs)

(Egner et al., 2016;McCarthy et al., 2011). Although a few studies

suggested that MuSCs are less important during the early phase

of hypertrophy (Murach et al., 2017), the majority of studies
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indicate an essential role of MuSCs for efficient muscle hypertro-

phy, either by myonuclear accretion or as a source of paracrine

factors (Egner et al., 2016; Fry et al., 2017; Fukuda et al., 2019;

Goh and Millay, 2017; Moriya and Miyazaki, 2018). Although

themolecular mechanisms regulatingMuSC behavior are critical

for muscle hypertrophy, they remain poorly investigated.

BecauseMuSCs are located on contracting and relaxingmyofib-

ers, it has been assumed that MuSCs sense changes in myofiber

activity. However, MuSCs seem to ignore the basal activity of

skeletal muscle and remain in a quiescent state. MuSCs are acti-

vated and expand only when skeletal muscle is exposed to a

strong mechanical stimulus. At present, it is unknown how

increased mechanical load switches MuSCs from quiescence

to activation. Myofiber injuries might be one possible trigger for

expansion of MuSCs under increasedmechanical load (Ebbeling

and Clarkson, 1989). However, massive damage or even death

of myofibers, required for massive expansion of MuSCs, does

not occur in overloaded muscles (Darr and Schultz, 1987; Fu-

kada et al., 2020). Other mechanisms, such as edema formation

(swelling caused by excess fluid), responsible for early weight

gain of muscles during resistance training, and microfractures

of the sarcolemma are more likely signals (Damas et al., 2018;

Fukada et al., 2020). In addition, myofiber-derived factors that

are released during enhanced mechanical load may contribute

to expansion of MuSCs (Guerci et al., 2012; Serrano et al.,

2008). Nevertheless, and despite much work on the relationship

between mechanical loading and MuSC proliferation, our

understanding of these processes is immature, and research

questions remain.

It has been assumed that myofibers are primarily responsive

for sensing enhanced mechanical load in skeletal muscle,

although interstitial mesenchymal cells might be involved as

well. Mesenchymal progenitors (Uezumi et al., 2010), also known

as fibro/adipogenic progenitors (FAPs) (Joe et al., 2010), are

characterized by expression of platelet-derived growth factor

receptor alpha (Pdgfra) and are responsible for pathological

fibrosis and fat accumulation in skeletal muscle (Joe et al.,

2010; Uezumi et al., 2010, 2011). On the other hand, mesen-

chymal progenitors are also involved in homeostasis and regen-

eration of skeletal muscle (Joe et al., 2010; Lemos et al., 2015;

Uezumi et al., 2021; Wosczyna et al., 2019). However, knowl-

edge about the role of mesenchymal progenitors in regulation

of muscle hypertrophy is lacking.

Yes-associated protein 1 (Yap1) and transcriptional coactiva-

tor with PDZ-binding motif (Taz, also known as Wwtr1), are well-

known effectors of the Hippo kinase cascade, required for

proliferation, survival, and tumorigenesis in many cell types (Yu

et al., 2015). Yap1/Taz also function as sensors and transducers

of mechanical signals (Dupont et al., 2011), which might impor-

tant for induction of muscle hypertrophy by mechanical load. In

fact, overexpression of YAP induces muscle hypertrophy

(Goodman et al., 2015; Watt et al., 2015). However, total Yap1

and phosphorylated Yap1 levels peak only 7 days after onset

of surgical overload in FVB/N mice, much later compared with

mTORC1 signaling, which peaks 2 days after induction of over-

load (Goodman et al., 2015). We found previously that Yap1 ac-

cumulates in nuclei of calcitonin receptor (CalcR) mutant MuSCs

and demonstrated that the CalcR-protein kinase A axis sup-

presses Yap1 activity in quiescent MuSCs (Zhang et al., 2019).
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CalcR mutant and constitutively active Yap1-expressing MuSCs

(Tremblay et al., 2014) did not exhibit substantial cell division as

in overloaded muscle. These results suggest that Yap1 does not

have a primary function in myofibers and MuSCs, arguing for an

alternative mechanism that is required to induce MuSC expan-

sion in response to increased mechanical load.

Here we investigated the role of mesenchymal progenitors for

proliferation of MuSC in overloaded muscle. We further analyzed

the role of Yap1/Taz in these cells and assessed their effect on

MuSC expansion during increased mechanical load.

RESULTS

Mesenchymal progenitors are essential for myonuclear
accretion from muscle stem cells in overloaded muscle
Wespeculated that Pdgfra+mesenchymal progenitors (hereafter

Pa+ cells) have a previously underappreciated function inmuscle

hypertrophy. Therefore, we studied Pa+ cells in overloadedmus-

cles in which the distal tendons of the gastrocnemius and soleus

muscles were cut (tenotomy) to induce compensatory hypertro-

phy in the plantaris (PLA) muscle with little degenerative damage

to myofibers (Fukuda et al., 2019). Proliferating Pa+ cells on days

2, 4, and 7 after tenotomy were counted after labeling with 5-

ethynyl-20-deoxyuridine (EdU) or staining against an activation/

proliferation marker, Ki67, in Pdgfra-H2B-EGFP (Pa-EGFP) or

C57BL/6 mice (Figure 1A). Two and 4 days after tenotomy,

approximately 2% and 13% of Pa+ cells were positive for EdU,

and 5%and 30%of Pa+ cells were positive for Ki67, respectively

(Figures 1B, 1C, S1A, and S1B). Only a few Pa+ cells were

labeled with EdU 6–7 days after tenotomy, and approximately

3% of Pa+ cells expressed Ki67 on day 7 after tenotomy (Figures

1B and 1C). The number of Pa+ cells was increased slightly on

day 4 (1.6-fold) and 7 days (2-fold) after tenotomy in Pa-EGFP

(Figure 1D). The same increase was also detected in C57BL/6

mice 7 days after tenotomy (Figure S1C). In addition, similar to

MuSCs, the cell size and granularity of Pa+ cells in fluores-

cence-activated cell sorting (FACS) analyses were increased

2 days after tenotomy, (Figures 1E, 1F, S1D, and S1E). During

this period, apoptotic Pa+ cells were not detected (Figure S1F),

indicating that Pa+ cells are activated in response to increased

mechanical load and show a transient and moderate increase

in proliferation.

To determine the role of activated Pa+ cells in overloaded

muscles, we depleted Pa+ cells by treating PdgfraCreERT::

RosaDTA (Pa-DTA) mice with tamoxifen and confirmed success-

ful depletion of Pa+ cells (Figure S2A), as reported previously

(Uezumi et al., 2021). Next, PLA muscle hypertrophy was

induced in Pa+ cell-deficient mice by tenotomy, followed by

EdU injections (Figures 2A). Although the sham muscle weight

was decreased by Pa+ cell depletion, correlating with our

previous study (Figure S2B), the increased ratio of overloaded

muscle weight to sham muscle weight was similar in control

(PdgfraCreERT/+) and Pa-DTA mice 7 days after tenotomy (Fig-

ure 2B), suggesting that early responses, including edema,

were similar in control and Pa-DTA mice. However, ablation of

Pa+ cells suppressed the increase in total myonuclei after tenot-

omy (Figure 2C). Likewise, newly formed EdU+ myonuclei were

reduced markedly in Pa-DTA compared with control mice (Fig-

ures 2D and 2E). M-cadherin (M-cad)+ and M-cad+EdU+ cells
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Figure 1. Mesenchymal progenitor cells become activated in overloaded muscle

(A) Experimental scheme for analyzing mesenchymal progenitors in PLAmuscle in Pa-EGFP on day 2 (n = 4; 2 male [M], 2 female [F]), 4 (n = 4; 2 M, 2 F), and 7 (n =

4; 2 M, 2 F) after tenotomy (Ope; R, right). The contralateral left PLA muscle was used as sham Cont (L, Sham).

(B) Immunostaining of EdU and Ki67 in Sham or Ope muscles on day 4 after tenotomy. Nuclei of Pdgfra+ cells were labeled with EGFP. Arrows indicate

EGFP+EdU+Ki67+ cells. Scale bar, 50 mm.

(C) Percentage of EGFP+EdU+ (left) or EGFP+Ki67+ (right) cells per EGFP+ cells in Sham and Ope muscles of Pa-EGFP on days 2, 4, and 7 after tenotomy. The

number in parentheses refer to the day of EdU injections.

(D) Number of EGFP+ cells per muscle section on days 2, 4, and 7 after tenotomy.

(E) FACS profiles of mesenchymal progenitors (top) orMuSCs (bottom) fromSham (left) or Ope (right) muscles of C57BL/6mice, respectively. All profiles show the

cell size (FSC) and cell granularity (SSC).

(F) Mean FSC and SSC of mesenchymal progenitors (n = 3–5) or MuSC (n = 3–5).

In all Figures excluding Figure 5G, one symbol means the result of one mouse. All data are presented as mean ± SD. N.S., not significant. Nuclei were coun-

terstained with DAPI. See also Figure S1.
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in loadedmuscles were also reduced in Pa-DTAmice (Figures 2F

and 2G). Because approximately 20% of Pa+ cells survive in

Pa-DTA mice (Figure S2A), we assume that the remaining Pa+

cells are sufficient to promote accretion of some MuSC-derived

EdU+ nuclei into myofibers.

To further investigate the effects caused by loss of Pa+ cells on

MuSCs in overloaded muscles, single myofibers were isolated

from overloaded PLA muscle, and Pax7+ cells numbers were

counted on day 4, 7, and 10 after tenotomy (Figure 2H). Consis-

tent with the results of myonuclear accretion, the numbers of
Pax7+ cells in the overloaded muscle of Pa-DTA mice were

reduced remarkably compared with the control 4–10 days after

tenotomy (Figure 2I). To elucidate the role of Pa+ cells in MuSC

activation, we compared the expression of Ki67 and MyoD be-

tween control and Pa-DTA mice. Our previous study indicated

that, uponMuSC activation, Ki67 expression occurs 2–4 days af-

ter tenotomy and that 60%–80%ofMuSCs are Ki67+ on day 4. In

addition, the majority of MuSCs proliferate without apparent

expression of MyoD (Fukuda et al., 2019). Therefore, we used

expression of Ki67, but not MyoD, as a marker for MuSC
Cell Stem Cell 29, 1–16, February 3, 2022 3
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activation 4 days after tenotomy. Notably, Ki67+Pax7+ numbers

were reduced markedly in Pa-DTA mice on day 4 after tenotomy

(Figures 2J and 2K). Although the frequency of MyoD+ or

myogenin+ cells per Pax7+ or M-cad+ cell in Pa-DTA mice was

comparable with those in the control (Figures 2K and 2L), sug-

gesting that loss of Pa+ cells did not influencemyogenic differen-

tiation of overloaded MuSCs.

Next we investigated the effect of Pa+ cell ablation 11–

12 weeks after synergistic ablation (SA), at a late stage of muscle

hypertrophy. Although the relative increases in PLA muscle

weight andmyofiber size in Pa-DTAmice 2weeks after tenotomy

were comparable with control mice (Figures S2C–S2E), these in-

creases were blunted markedly 11–12 weeks after SA (Figures

S2F–S2H). Importantly, blunted myonuclear accretion was

confirmed even within this period (Figure S2I). These results sug-

gest that Pa+ cells are essential for efficient muscle hypertrophy,

including regulation of MuSC expansion.

Yap1 target gene expression in overloaded
mesenchymal progenitors
To elucidate the mechanism by which Pa+ cells affect MuSCs

in overloaded muscles, we analyzed the transcriptomes of pu-

rified Pa+ cells in sham or overloaded muscles on day 2 after

tenotomy (Figure 3A). Volcano plot analyses revealed 904 and

638 upregulated and downregulated genes, respectively, in

Pa+ cells from overloaded muscles (Figure 3B). Gene Ontology

(GO) analyses suggested activation of Pa+ cells because cell

cycle-related gene sets were upregulated in overloaded Pa+

cells (Figure S3A). To further investigate the cell cycle-related

gene signature in overloaded Pa+ cells, gene set enrichment

analyses (GSEA) were performed using oncogenic signature

gene sets from the Molecular Signature Database (https://

www.gsea-msigdb.org/gsea/). The gene set ‘‘CORDENONSI

YAP CONSERVED SIGNATURE’’ was ranked as the top gene

signature in this analysis (Figures 3C and 3D), as evidenced

by upregulation of many prototypic Yap1 target genes in the

overloaded Pa+ cells (Figure 3E), including Ctgf. Consistent

with this finding, we observed nuclear localized Yap1, which

is associated with transcriptional activity, in Pa+ cells located
Figure 2. Depletion of mesenchymal progenitor cells reduces the num

(A) Experimental scheme for analyzing control (Cont) and Pa-DTA mice on day 7

(B) Ratio of PLA muscle weight (mg) per body weight (g) (left graph) or ratio of teno

Pa-DTA mice (n = 4).

(C) Total myonuclei number per myofiber in Sham and Ope muscles of Cont (n =

(D) Immunostaining of dystrophin (Dys; green) and EdU in Sham and Opemuscles

myonucleus, respectively.

(E) EdU+ myonuclei number in sections from Sham and Ope muscles of Cont (n

(F) Immunostaining of M-cadherin (M-cad; red), laminin a2 (green), and EdU in Op

cad+EdU+ or M-cad+EdU� cells, respectively.

(G) The number ofM-cad+ cells (left) orM-cad+EdU+ cells (right) in sections fromS

(H) Experimental scheme for analyzing isolated single myofibers from Sham and O

n = 4; 3 M, 1 F), 7 (Cont; n = 4 M, Pa-DTA; n = 6; 5 M, 1 F), and 10 (Cont; n = 4 F

(I) Number of Pax7+ cells on singlemyofiber fromSham (white bar) andOpe (dot ba

Pax7+ cell number was calculated by counting 18–30 myofibers per mouse.

(J) Immunostaining of MyoD and Ki67 in Pax7+ cells on freshly isolated myofiber

(K) Frequency of Ki67+ (left) or MyoD+ (right) cells in Pax7+ cells onmyofibers from

(n = 4; 3 M, 1 F) mice. Approximately 100 Pax7+ cells were observed per mouse

(L) Immunostaining of M-cad (red), myogenin (myog; green), and laminin a2 (LNa

dicates the frequency of myog+ cells in M-cad+ cells from Cont (n = 4; 1 M, 3 F)

Scale bars, 50 mm (D, F, and J) and 10 mm (L). See also Figure S2.
at the distal half of the PLA muscle on days 1 and 2 after tenot-

omy (Figures 3F and 3G). Nuclear localized Yap1 appeared to

be linked to increased mechanical load because Yap1 was

rarely observed in nuclei of corresponding regions in sham-

operated PLA muscle (Figures 3F and 3G). These results sug-

gest that increased mechanical load leads to activation of

Yap1 and induction of its downstream targets in Pa+ cells.

Yap1/Taz in mesenchymal progenitors are critical for
MuSC proliferation in overloaded muscles
To elucidate the relevance of Yap1 in Pa+ cells for MuSCs, we

generated Pa+ cell-specific Yap1 conditional knockout (cKO)

(Y-cKO; PdgfraCreERT/+::Yap1flox/flox) mice and induced overload

in PLA muscle by tenotomy (Figure 4A). We also generated Taz

cKO (T-cKO; PdgfraCreERT/+::Tazflox/flox) and Yap1/Taz double

cKO (cdKO; PdgfraCreERT/+::Yap1flox/flox::Tazflox/flox) mice, given

the known ability of Yap1 and Taz to compensate for each

other’s loss (Figure 4A). In contrast to Pa-DTA mice (Uezumi

et al., 2021), cdKO mice did not show reduced body weight,

muscle weight, or myofiber size in sham muscles (Figure 4B).

Seven days after tenotomy, no increase in Pa+ cells occurred

in cdKOmice, indicating that Yap1/Taz is necessary for themod-

erate increase in Pa+ cells (Figure 4C). The number of EdU-

labeled new myonuclei was significantly lower in cdKO than in

control (Cont) mice (PdgfraCreERT/+ or Yap1flox/flox::Tazflox/flox)

(Figure 4D). In contrast, no significant differences were scored

in Y-cKO and T-cKO mice, although both strains had a minor

reduction in EdU+ myonuclei (Figure 4D). These data suggest

partially redundant functions of Yap1 and Taz in overloaded

Pa+ cells.

To investigate the influence of Yap1/Taz in overloaded Pa+

cells on MuSC behavior, M-cad+ and EdU+M-cad+ cells were

counted in sham and overloaded muscles of Cont and cdKO

mice. The results indicated a blunted response to overload in

cdKO MuSCs compared with Cont MuSCs (Figures 4E and

4F). Next we investigated the effect of Yap1/Taz loss in over-

loaded Pa+ cells on MuSC activation. In contrast to Pa-DTA

mice, Ki67 expression in Pax7+ cells was not changed signifi-

cantly in Cont, cdKO, or Y-cKO mice, whereas expansion of
ber of MuSC-derived myonuclei in overloaded muscles

after tenotomy.

tomy (Ope) per Sham PLA muscle weight (right graph) of female Cont (n = 4) or

5; 1 M, 4 F) and Pa-DTA (n = 6; 2 M, 4 F) mice.

of Cont and Pa-DTAmice. Arrows or arrowheads indicate myonucleus or non-

= 5; 1 M, 4 F) and Pa-DTA (n = 6; 2 M, 4 F) mice.

e muscles of Cont and Pa-DTAmice. Yellow and white arrowheads indicate M-

ham andOpemuscles of Cont (n = 5; 1M, 4 F) and Pa-DTA (n = 5; 2M, 3 F)mice.

pe muscles of Cont and Pa-DTAmice on day 4 (Cont; n = 4; 3 M, 1 F, Pa-DTA ;

, Pa-DTA ; n = 7; 1 M, 6 F) after tenotomy.

r) muscles of Cont and Pa-DTAmice at the indicated time point after tenotomy.

s from Ope muscle on day 4 after tenotomy of Cont and Pa-DTA mice.

Sham (white bar) andOpe (dot bar) muscles of Cont (n = 4; 3M, 1 F) and Pa-DTA

.

2; white) in Sham and Ope muscles of Cont and Pa-DTA mice. The graph in-

and Pa-DTA (n = 5; 2 M, 3 F) mice.
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Figure 3. Mechanical overload increases expression of Yap1 target genes in mesenchymal progenitor cells

(A) Experimental scheme for transcriptome analyses in mesenchymal progenitors of Sham and Ope PLA muscle on day 2 after tenotomy in C57BL/6 mice.

(B) The red and blue dots in the volcano plot represent significantly upregulated or downregulated genes, respectively, inmesenchymal progenitors in response to

increased mechanical load (|log2FC| R 1 and p < 0.05).

(C) The top 10 upregulated GSEAs in the mesenchymal progenitors of Ope compared with Sham muscle.

(D) Enrichment plot of ‘‘CORDENONSI YAP CONSERVED SIGNATURE’’ in mesenchymal progenitors from Sham and Ope muscle.

(E) Heatmap of genes involved in Yap1 signature (differently expressed genes in mesenchymal progenitors from Sham (Cont1–Cont3) and Ope (Ope1–Ope3)

muscles (|log2FC| R 1 and p < 0.05) and annotated gene sets in MSigDB).

(F) Whole-mount immunostaining of Yap1, Pdgfra, and nuclei of Pdgfra+ cells in Sham and Ope PLA muscle on day 1 and 2 after tenotomy from Pa-EGFP. Scale

bar, 50 mm.

(G) Percentage of cells with Yap1 accumulation in the nuclei of Pdgfra+ (EGFP+) cells of Sham and Ope muscles of male Pa-EGFP (Ope 1 day, n = 4; Ope 2 day;

n = 5).

See also Figure S3.
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Figure 4. The activity of Yap1 and Taz in mesenchymal progenitor cells is critical for increasing myonuclei in overloaded muscles

(A) Experimental scheme for analyzing Cont, Y-cKO, T-cKO, and, cdKO mice on day 4 and 7 after tenotomy.

(B) Body weight, PLA muscle weight, or myofiber size (CSA) of male Cont (n = 4–6) or cdKO (n = 4–6) mice.

(legend continued on next page)
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Pax7+ cells was blunted in cdKO mice (Figure 4G). These results

indicate that Yap1/Taz activation in Pa+ cells is critical for prolif-

eration but not activation of MuSCs in overloaded muscle.

Consistent with the results in Pa-DTA mice (Figures 2K

and 2L), the frequency of MyoD+ or myogenin+ cells in Pax7+

or M-cad+ cells did not change in cdKO mice (Figures 4G and

4H), suggesting that Yap1/Taz in Pa+ cells do not govern

myogenic differentiation of MuSCs. We also examined the effect

of Yap1/Taz loss in muscle hypertrophy 12 weeks after SA and

determined that the increase in myofiber size and myonuclear

number was blunted in cdKO as well as in Pa-DTA mice (Figures

S4A–S4C), indicating that Yap1/Taz in Pa+ cells are critical for

substantial muscle hypertrophy.

To further elucidate the role of Yap1/Taz in Pa+ cells, RNA

sequencing (RNA-seq) analyses of Cont (PdgfraCreERT/+::

Yap1+/+::Taz+/+) and cdKO Pa+ cells were performed (Figure 4I).

The volcano plot analyses indicated that the increase in tenot-

omy-induced gene expression was attenuated in cdKO Pa+ cells

compared with Cont cells (Figure 4J; 987 versus 291 genes). In

addition to the expected decrease in Yap1 and Taz levels,

Yap1 target genes were also reduced in cdKO Pa+ cells

compared with Cont from overloaded muscles (Figures 4K–

4M). In addition, cell cycle-related GO terms, a signature of

loaded Pa+ cells, were not upregulated in cdKO Pa+ cells (Fig-

ure S3B). These results indicate that increased mechanical

load-induced gene expression and activation of Pa+ cells

strongly depend on Yap1/Taz.

Mesenchymal progenitor-derived Thrombospondin-1
promotes muscle stem cell proliferation
Bioinformatics analysis of corresponding ligand-receptor pairs in

Pa+ cells andMuSCs led us to focus on Thbs1 andCD47. Thbs1,

coding for Thrombospondin-1, was highly expressed in Pa+ cells

in response to overload (Figure S3C), whereas its receptor,

CD47, was detected in MuSCs 4 days after tenotomy in quies-

cent and proliferating MuSCs (Figure S3D). Moreover, Thbs1 is

a Yap1 target gene (Figure 3E), as indicated by reduced expres-

sion in Yap1/Taz-deficient Pa+ cells (Figures 4L and 4M).

We corroborated that expression of Thbs1 increased specif-

ically in Pa+ cells 2 days after tenotomy but not in MuSCs and

myofibers (Figure 5A). RNA-seq analyses also indicated non-

increased expression of Thbs1 in loaded MuSCs, although other
(C) Number of Pdgfra+ cells per section from Sham and Ope muscles of Cont (n

(D) Detection of EdU+ myonuclei (arrowheads) beneath Dys in Ope PLA muscle

number of EdU+ myonuclei in Sham and Ope muscles from Cont (n = 4; 3 M, 1 F),

(E) Immunostaining of M-cad (red), LNa2 (green), and EdU in sections of Ope-7 da

(F) Number of M-cad+ cells (left) and M-cad+EdU+ cells per section (right) in Sham

(G) Number of Pax7+ cells (left) and frequency of Ki67+ (center) and MyoD+ (right) i

M, 1 F), Y-cKO (n = 5; 4 M, 1 F), and cdKO (n = 4; 3 M, 1 F) mice. Pax7+ cell num

(H) The frequency of myog+ cells in M-cad+ cells from Ope muscles of Cont (n =

(I) Experimental scheme for transcriptome analyses of mesenchymal progenitors

(J) The red and blue dots in the volcano plot represent significantly upregulated an

to increased mechanical load (|log2FC| R 1 and p < 0.05). Left: comparison in C

(K) Enrichment plot of ‘‘CORDENONSI YAP CONSERVED SIGNATURE’’ in overlo

(L) Heatmap of genes involved in Yap1 signature (differently expressed genes in

(dKO; Ope1–Ope3) mice (|log2FC| > 0.5 and p < 0.05) and annotated gene sets

(M) Relative gene expression of Yap1, Taz, and Thbs1 in overloaded mesenchyma

were used for negative Cont for Yap1 and Taz depletion. The y axis indicates the

Scale bars, 50 mm. See also Figures S3 and S4.
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Yap1 target genes were increased (Figure S3E). Furthermore, we

determined Thbs1 protein levels in response to overload in mus-

cles and blood by ELISA, which unveiled increased Thbs1 pro-

tein concentrations in PLA muscle but not in blood (Figure 5B).

Likewise, Pdgfra+Thbs1+ cells and Thbs1+ areas were frequently

detected in overloaded PLA muscle of wild-type (WT) mice but

not in sham and overloaded PLA muscle of Pa-DTA and cdKO

mice (Figures 5C, 5D, and S4D–S4F). The analyses of Thbs1

mRNA expression in the PLA muscle also suggested that Pa+

cells were the main cell source in loaded muscles because

Thbs1 mRNA was reduced in Pa-DTA and cdKO mice (Figures

5D and S4G). In particular, we noticed that a part of Thbs1 was

involved in the basal lamina surrounding myofibers and MuSCs,

suggesting that Thbs1 may directly affect MuSC behavior in

loaded muscles (Figure 5E). These results indicate that Thbs1

is secreted by Pa+ cells from overloaded muscles in a Yap1/

Taz-dependent manner and acts locally in muscles undergoing

hypertrophy.

Thbs1 is a matricellular protein that can interact with a variety

of molecules, including the extracellular matrix, cytokines, re-

ceptors, and proteases (Resovi et al., 2014). Thbs1-KOmice ex-

hibited some abnormalities, including increased heart weight in

males and a decline in muscle weight normalized to body weight

in males and females, as reported previously (Figure S5A; Malek

and Olfert, 2009). Therefore, to investigate the effect of Thbs1

derived from Pa+ cells on MuSCs, Pa+ cells were isolated from

WT or Thbs1-KOmice and cultured because nuclear localization

of Yap1 and Thbs1 expression are detected in cultured Pa+ cells

(Figure S5B). Importantly, supernatants from Thbs1-KO Pa+

cells exhibited lower MuSC proliferation on isolated myofibers

compared with supernatants from WT Pa+ cells at 72 h (Fig-

ure 5F). Proliferation of Thbs1-KO Pa+ cells was similar to that

of WT Pa+ cells (Figure S5C). These results strongly indicate

that Pa+ cell-derived Thbs1 accelerates MuSCs proliferation in

loaded muscles.

Several integrins (integrins aVb3, a3b1, a4b1, a6b1, and a9b1),

CD36, and CD47 are well-characterized receptors of Thbs1.

Because MuSCs express substantial levels of the Cd47 tran-

script, but not Cd36 or the indicated integrins (Figure S3D),

and the CD47 agonist PKHB1 (a peptide derived from the

Thbs1 C-terminal domain) promoted myoblast proliferation (Fig-

ure 5G), we focused on CD47. To examine the importance of
= 5; 4 M, 1 F) and cdKO mice (n = 5; 4 M, 1 F) on day 7 after tenotomy.

from Cont and cdKO mice on day 7 after tenotomy. The graph indicates the

Y-cKO (n = 6; 2 M, 4 F), T-cKO (n = 4; 3 M, 1 F), and cdKO (n = 5; 3 M, 2 F) mice.

y muscles from Cont and cdKOmice. Arrowheads indicate M-cad+EdU+ cells.

and Ope muscles from Cont (n = 4; 3 M, 1 F) and cdKO (n = 5; 4 M, 1 F) mice.

n Pax7+ cells on single myofibers from Sham and Opemuscles of Cont (n = 7; 6

ber was calculated by counting 16–30 myofibers per mouse.

4, 3 M, 1 F) and cdKO (n = 4, 2 M, 2 F) mice.

in Sham and Ope PLA muscle on day 2 after tenotomy of Cont and cdKOmice.

d downregulated genes, respectively, in mesenchymal progenitors in response

ont mice. Right: comparison in cdKO mice.

aded mesenchymal progenitors of Cont or cdKO mice.

overloaded mesenchymal progenitors) of Cont (Cont; Ope1–Ope3) or cdKO

in MSigDB.

l progenitors of cdKO (n = 3) compared with those of Cont mice (n = 3). MuSCs

fold change of indicated genes.
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Figure 5. The Thbs1-CD47 axis is indispensable for MuSC proliferation in overloaded muscle

(A) Relative expression of Thbs1 mRNA in mesenchymal progenitors (Pa+ cells, n = 3), MuSCs (n = 3), and isolated myofibers (n = 3) from Sham and Ope 2 day

muscle of C57BL/6 mice.

(B) Protein concentration of Thbs1 in Sham (n = 6), Ope 4 day (n = 6), and blood (n = 4, each) of C57BL/6 mice on the indicated day after tenotomy.

(C) Immunostaining of Thbs1, LNa2, and nuclei of Pdgfra+ cells in sections of Sham and Ope 4 day muscle of Pa-EGFP. Scale bar, 25 mm.

(D) The top graph indicates Thbs1+ area in Ope 4 day muscle compared with that in Shammuscle from Cont (n = 3; 2 M, 1 F) or Pa-DTA (n = 3; 1 M, 2 F) mice. The

bottom graph indicates Thbs1 mRNA expression in Ope 4 day muscle compared with that in Sham muscle from Cont (n = 3 F) or Pa-DTA (n = 4 F) mice.

(E) Immunostaining of M-cad, Thbs1, and LNa2 in sections of Ope 4 day muscle. Scale bar, 3 mm.

(legend continued on next page)
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CD47 signaling in overloaded muscle, mice were first treated

with a monoclonal antibody (mAb) against CD47 (Figure 6A).

Intriguingly, the numbers of EdU+ myonuclei were reduced

significantly in CD47 mAb-treated mice compared with PBS-

or immunoglobulin G (IgG)-treated Cont mice (Figure 6B). In

contrast, PKHB1 increased the number of EdU+ new myonuclei

in overloaded muscles (Figures 6C and 6D), suggesting that

CD47 signaling is critical for MuSC proliferation in overloaded

muscle.

To further examine the importance of Thbs1-CD47 signaling in

MuSCs, we generated MuSC-specific CD47 cKO mice (CD47-

cKO; Pax7CreERT2::Cd47flox/flox) (Figure 6E). As expected, CD47

expression detected in Cont MuSC from sham or loaded mus-

cles was absent in MuSCs from CD47-cKO muscles but not in

other cell types, demonstrating efficient cell-type-specific dele-

tion of CD47 (Figures S5D and S5E). CD47-cKO mice revealed

a remarkable reduction in EdU-labeled new myonuclei (Figures

6F and 6G), and we observed fewer M-cad+ and M-cad+EdU+

cells in CD47-cKO than in Cont mice (Figures 6H and 6I).

Although increased Pax7+ cell numbers were not observed in

Cont or CD47-cKO mice 4 days after tenotomy, loss of CD47

in MuSCs did not affect Ki67, MyoD, and myogenin expression

(Figures 6J and 6K). The non-increased number of MuSCs likely

results from delayed MuSC proliferation in Pax7CreERT2 mice

possessing only one Pax7 allele. Muscle hypertrophy was

blunted 12 weeks after SA but not over 7 days after tenotomy

(Figure S6). Further, the effect of PKHB1 disappeared in CD47-

cKO mice (Figure 6D), indicating that direct stimulation of

CD47 signaling induces MuSC proliferation in loaded muscle.

These findings indicate that the Thbs1-CD47 axis is critical for

proliferation of MuSCs in overloaded muscle.

The CD47 agonist induces MuSC expansion in CalcR
mutant mice
To further corroborate a critical role of CD47 signaling for MuSC

expansion, C57BL/6 mice were treated with PKHB1, followed by

assessment of MuSC numbers. Interestingly, PKHB1 treatment

alone was insufficient to activate quiescent MuSCs and induce

their expansion (Figure 7A, 7B, S7A, and S7B), suggesting that

additional factors are required for overload-mediated MuSCs

proliferation.

Re-analysis of RNA-seq data of overloaded MuSCs (Fukuda

et al., 2019) indicated decreased expression of the quies-

cence-specific genes Calcr, Tenm4, and Chrdl2 in MuSCs

from overloaded muscles (Figure S3D). We focused our further

analysis on CalcR for the following reasons. First, CalcR

signaling is an important pathway for maintaining the quiescent

state in MuSCs. Although approximately 15%–20% of MuSCs

express Ki67, they do not show substantial cell division in

Calcr-cKO mice (Yamaguchi et al., 2015). Second, we observed

decreased CalcR protein levels in MuSCs from overloaded mus-

cles (Figures 7C and 7D). Moreover, we found an inverse rela-
(F) Experimental scheme for analyzing the effect of Pa+ cell-derived Thbs1 on Pax

or on myofibers cultured for 72 h with the supernatant of WT or Thbs1-KO Pa+ cel

cell number was calculated by counting more than 14 myofibers per one mouse

(G) Effect of PKHB1 on myoblast proliferation. The y axis indicates the relative

cultivation. **p < 0.01, PKHB1 30 mM versus Cont; #p < 0.05, PKHB1 10 mM vers

See also Figures S4 and S5.
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tionship between CalcR and Ki67 expression in MuSCs from

overloaded muscles (Figure 7E). Similarly, CalcR expression

was retained in Pa-DTA-derived MuSCs without an increase in

Ki67 expression, whereas CalcR expression was decreased in

cdKO MuSCs showing increased Ki67 expression (Figures 7F

and S7C). We therefore investigated whether downregulation

of CalcR might enable expansion of MuSCs in response to

PKHB1. We treated MuSC-specific CalcR mutant mice (Calcr-

cKO)with PKHB1and counted the number ofMuSCs (Figure 7G).

Strikingly, PKHB1 administration increased the number of

MuSCs in Calcr-cKO mice (Figure 7H) and led to detection of

increased numbers of new EdU+ myonuclei and EdU+M-cad+

cells in Calcr-cKO mice (Figures 7I and 7J). These results

demonstrate that the coordinated regulation of Thbs1/CD47

and CalcR signaling observed in response to increasedmechan-

ical load is sufficient to induce MuSC proliferation.

DISCUSSION

In this study, we demonstrated an essential role of mesenchymal

progenitors in regulating MuSC expansion during muscle hyper-

trophy. We show that increased mechanical load induces tran-

scriptional activation of Yap1/Taz in mesenchymal progenitors,

leading to expression of their target genes, including Thbs1.

We establish that Thbs1 promotes MuSC proliferation via activa-

tion of its receptor CD47 and requires concomitant downregula-

tion of CalcR. Our results identified a Yap1/Taz-Thbs1-CD47

signaling axis that enables mesenchymal progenitors to instruct

MuSC expansion during mechanical overload. In addition, our

study uncovers a conceptually unexpected paradigm: mesen-

chymal progenitors respond to mechanical cues and steer

MuSC proliferation in overloaded muscle via paracrine Thbs1.

Thbs1 is a large, 150-kDa glycoprotein identified as a major

secretory product of thrombin-stimulated platelets. Each

domain of Thbs1 interacts with different molecules, resulting in

multiple functions, including cell adhesion, motility, proliferation,

and survival. The C-terminal domain of Thbs1 is necessary for

binding to CD47. We used PKHB1, the first-described serum-

stable, soluble CD47-agonist peptide, to activate CD47 in

MuSCs, and PKHB1 is a potential therapeutic tool against leuke-

mia (Martinez-Torres et al., 2015). CD47 also functions as a

ligand for SIRPa, and blockade of CD47-SIRPa interaction stim-

ulates activation of the immune system, which is considered a

potential therapeutic strategy against cancer (Chao et al.,

2012). Because infiltration of macrophages, representative SIR-

Pa-expressing cells, is limited in overloadedmuscles, our results

suggest that Thbs1 is the predominant ligand involved in activa-

tion of CD47 signaling in MuSCs. Further studies are required to

determine the potential effect of PKHB1 on muscle regeneration

by promoting MuSC proliferation in muscular dystrophies.

Consistent with our findings, it has been reported that Thbs1

expression is increased greatly in skeletal muscle following
7+ cell expansion. Images show Pax7+ cells on freshly isolated myofibers (t = 0)

ls. The graph indicates the average number of Pax7+ cells on myofibers. Pax7+

. Scale bar, 50 mm.

intensity of luminescence with respect to the beginning (2 h after seeding) of

us Cont.
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active training in mice and humans (Hoier et al., 2013; Olfert

et al., 2006). The functions of Thbs1 related to skeletal muscle

biology, in particular activation of transforming growth factor b

(TGF-b) and anti-angiogenesis, are relatively well investigated.

Thbs1 is required for release of TGF-b activation from its latent

form, which occurs independent of CD47, and promotes fibrosis

in dystrophic muscles (Cohn et al., 2007). In line with this, func-

tional expression of Col1a1, a target of TGF-b, increases in

mesenchymal progenitors during overload, indicating additional

functions of Thbs1 in skeletal muscle hypertrophy. Stimulation of

TGF-b activity by Thbs1 also suggests that therapeutic applica-

tion of Thbs1 needs to donewith care to avoid excessive fibrosis.

It has been also demonstrated that Thbs1 inhibits cGMP

signaling by binding to CD36 and CD47, which suppresses

angiogenesis. Increased capillary numbers in Thbs1-null skeletal

muscle argue for a physiological role of Thbs1 in inhibition of

angiogenesis (Malek and Olfert, 2009). However, the role of

Thbs1 upregulation in exercise-triggered angiogenesis is not

well understood (Hoier et al., 2013), although induction of

angiogenesis by exercise training has been well documented

(Olfert et al., 2006). Moreover, the cellular source of Thbs1 re-

mains unidentified. Despite these limitations, our data reveal

that mesenchymal progenitors are an important cellular source

of Thbs1 and demonstrate an unexpected role of Thbs1 in

expansion of MuSCs during muscle hypertrophy.

The signaling processes downstream of CD47 in MuSCs are

still unclear. CD47 acts via Gi-cyclic AMP (cAMP) signaling in

several cell types (Frazier et al., 1999; Manna and Frazier,

2004; Yao et al., 2011), which corresponds to increased MuSC

proliferation and differentiation upon constitutive activation of

Gai2 (Q205L) (Minetti et al., 2014). In our study, however, neither

recombinant Thbs1 nor PKHB1 reduced intracellular cAMP

levels in forskolin-stimulated C2C12 cells (data not shown). In

addition, PKHB1 alone did not induce exit from quiescence,

which is secured by CalcR-cAMP-protein kinase A (PKA)

signaling in MuSCs (Zhang et al., 2019), suggesting that CD47

signaling in MuSCs does not prevent cAMP accumulation via Gi.

Localization of mesenchymal progenitors within the interstitium

can be separated into three regions: endomysium, perimysium,

and epimysium. Using single-cell RNA-seq analyses, Muhl et al.

(2020) identified Thbs1+Thbs4+Pdgfralow and Thbs1lowThbs4+

Pdgfra+ cells in the perimysium and the interface between the
Figure 6. The Thbs1-CD47 axis is indispensable for MuSC proliferation

(A) Experimental scheme for analyzing the effect of anti-CD47 inhibitory antibodi

(B) Immunostaining of Dys and EdU in Ope 7 daymuscle of C57BL/6 mice injected

myonuclei in Sham and Ope muscles in the PBS (n = 6), Cont IgG (n = 6), or anti

(C) Experimental scheme for analyzing the effect of CD47 agonist (PKHB1) on m

(D) Immunostaining of Dys and EdU in Ope 7 daymuscle of C57BL/6mice injected

in Sham andOpemuscles in Cont and PKHB1 groups of C57BL/6 (left; Cont, n = 9

mice. CD47-cKO mice were treated with tamoxifen 5 days before tenotomy.

(E) Experimental scheme for analyzing the effect of MuSC-specific CD47 depleti

(F) Immunostaining of Dys and EdU in Ope 7 day muscle of Cont and CD47-cKO

(G) The number of EdU+ myonuclei in Sham or Ope muscles from Cont (n = 8; 3

(H) Immunostaining of M-cad (red), LNa2 (green) and EdU in Ope 7 day muscle o

(I) The number of M-cad+ cells (left) or M-cad+EdU+ cells per section (right) in Sham

(J) Number of Pax7+ cells and frequency of Ki67+ and MyoD+ cells in Pax7+ cells o

Pax7+ and Ki67+; n = 3; 1 M, 2 F for MyoD+) and CD47-cKO (n = 6; 2 M, 4 F for Pax

were calculated by counting 14–30 myofibers per mouse.

(K) The frequency of myog+ cells in M-cad+ cells from Ope muscles of Cont (n =

Arrowheads indicate EdU+ myonuclei or M-cad+ cells. Scale bar, 50 mm. See als
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perimysium and endomysium, respectively (Muhl et al., 2020).

However, the majority of Pdgfra+ cells in skeletal muscle do not

express Thbs1 or Thbs4 or, if at all, then at low levels. Our own

RNA-seq analyses in this study indicate that expression of

Thbs1 and Thbs4 in mesenchymal progenitors is only low or

negative in PLA muscle under baseline conditions but increases

dramatically during overload. This finding is in line with immuno-

staining showing the presence of Thbs1 in the endomysium sur-

rounding myofibers in overloaded muscles. Our results suggest

that Pdgfra+ cells in the endomysium start to express Thbs1

and Thbs4 in response to increased mechanical load.

Pdgfra is specific to mesenchymal progenitors in skeletal

muscle, although Pdgfra+ cells are present in several other tis-

sues (Uezumi et al., 2010). Hence, ablation of skeletal muscle-

resident Pdgfra+ cells or inactivation of Yap1/Taz were not

restricted to skeletal muscle. Thus, we cannot completely

exclude an influence of non-muscle Pdgfra+ cells. However,

we compared overloaded muscle with contralateral sham mus-

cle in all experiments, confirming that effects on MuSCs depend

on the local overload. In addition, the absence of any abnormality

in cdKO mice under steady-state conditions and the unaltered

levels of Thbs1 protein in the blood suggest that inactivation of

Yap1/Taz or ablation of Pdgfra+ cells in non-muscle tissues do

not have a substantial effect on muscle physiology.

The discovery that MuSC can be expanded in non-injured and

non-exercised muscles by CD47 signaling when CalcR

expression is downregulated has important implications: First,

it indicates that MuSC activation and proliferation during muscle

hypertrophy do not require myofiber damage. Second, it pro-

vides a new approach to expand endogenous MuSCs in vivo

for therapeutic purposes. Because MuSCs supply nuclei and

mitochondria that are affected during aging, artificial expansion

of MuSCs may have therapeutic potential for several disorders.

Similarly, therapeutic expansion of MuSC might improve the

chance of successful gene delivery into MuSCs for treatment

of human muscle dystrophies.

Limitations of the study
Yap1/Taz are knownmechanosensors that respond to increased

mechanical load and induce transcription of their target genes

(Dupont et al., 2011). However, in addition to mechanical cues,

alternative pathways might also be responsible for nuclear
in overloaded muscle

es on myonuclear accretion in C57BL/6 mice.

with Cont IgG or anti-CD47 antibody. The graph indicates the number of EdU+

-CD47 antibody (n = 11) groups.

yonuclear accretion in C57BL/6 or CD47-cKO mice.

with PBS (Cont) or PKHB1. The graphs indicate the number of EdU+myonuclei

; PKHB1, n = 8) or CD47-cKO (right; Cont, n = 4, 2M, 2 F; PKHB1, n = 5, 3M, 2 F)

on on myonuclear accretion in overloaded PLA muscle.

mice.

M, 5 F) or CD47-cKO (n = 10; 3 M, 7 F) mice.

f Cont or CD47-cKO mice.

or Ope muscles of Cont (n = 8; 3 M, 5 F) or CD47-cKO (n = 10; 3 M, 7 F) mice.

n a single myofiber of Sham or Ope 4 day muscle from Cont (n = 6; 3 M, 3 F for

7+ and Ki67+, n = 3; 2 M, 1 F for MyoD+) mice. Pax7+ cell number and frequency

4; 3 M, 1 F) and CD47-cKO (n = 4; 3 M, 1 F) mice.

o Figures S5 and S6.
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Figure 7. Treatment with a CD47 agonist increases MuSC numbers in CalcR-deficient mice

(A) Experimental scheme for analyzing MuSCs in C57BL/6 mice injected with PBS (Cont) or PKHB1.

(B) Detection of Pax7+ cells (arrowheads) on freshly isolated myofibers. The graph indicates the average number of Pax7+ cells on a single myofiber (left) and the

frequency ofmyofibers harboringmore than 10 Pax7+ cells (right) fromCont (n = 3) and PKHB1-treated (n = 3)mice. Pax7+ cell number was calculated by counting

29 myofibers per mouse.

(C) Immunostaining of Pax7 and CalcR in MuSCs on myofibers of Sham or Ope 4 day mice. Arrowheads indicate Pax7+CalcR� cells.

(D) Frequency of Pax7+CalcR+ cells in Sham and Ope muscle on days 2 (n = 4), 3 (n = 3), and 4 (n = 3) after tenotomy. More than 20 MuSCs were observed

per mouse.

(E) Association between CalcR and Ki67 expression in MuSCs from Sham and Ope 4 day muscles. Data indicate the average of two independent experiments.

More than 50 MuSCs were observed per mouse.

(F) Graph indicating CalcR expression in Ope 4 daymuscle compared with that in Shammuscle from Pa-DTA (n = 3; 2 M, 1 F) or Pa-Yap1/Taz-cdKO (n = 3M)mice.

(G) Experimental scheme for analyzing MuSCs in Calcr-cKO mice injected with PBS (Cont) or PKHB1.

(legend continued on next page)
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translocation of Yap1/Taz. It seems possible that mechanical

forces lead to release of growth factors retained in the extracel-

lular matrix, which then induce Yap1/Taz activation. In fact, me-

chanical overload-dependent release of hepatocyte growth fac-

tor (HGF) from the extracellular matrix has been reported

(Tatsumi, 2010). Another possibility is that myofibers activate

mesenchymal progenitors in response to overload; Reddy

et al. (2020) demonstrated that myofiber-secreted succinate

acts on mesenchymal progenitors upon exercise (Reddy et al.,

2020). Considering the early nuclear translocation of Yap1 in

overloaded mesenchymal progenitors, mechanical cue-depen-

dent Yap1/Taz activation seems to be themost likely mechanism

for mesenchymal progenitor-mediated MuSC proliferation in

overloaded muscle. However, the lack of appropriate tools has

limited our ability to prove that mechanical cues directly activate

Yap1/Taz in mesenchymal progenitor cells in vivo.

Increasing evidence suggests that biological sex has an

important effect on several biological processes, including regu-

lation of muscle stem cells. Although we did not find obvious

differences among different biological sexes, our study lacks

the statistical power to make conclusive statements regarding

potential effects of biological sex on the mesenchymal progeni-

tor-Thbs1-CD47 axis in loaded muscles.
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Thermo Fisher Scientific Cat# SA5-10026; RRID:AB_2556606

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma-Aldrich Cat# T5648-1G

Sunflower seed oil Sigma-Aldrich Cat# S5007

Collagenase Type I Worthington Biochemical Cat# LS004197

(Continued on next page)
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Collagenase Type II Worthington Biochemical Cat# LS004204

EdU Thermo Fisher Scientific Cat# A10044

VECTASHIELD Mounting Medium with DAPI Vector Cat# H1200

Trizol LS reagent Thermo Fisher Scientific Cat# 10296028

PKHB1 (NH2-kRFYVVMWKk-COOH) GenScript Biotech N/A

Streptavidin-Allophycocyanin BD Biosciences Cat# 554067; RRID:AB_10050396

Propidium iodide staining solution BD Biosciences Cat# 556463, RRID:AB_2869075

Extraction Buffer 5X PTR Abcam Cat# ab193970

Extraction Enhancer Buffer 50X Abcam Cat# ab193971

DAPI Dojindo Cat# 340-07971

SlowFade Gold Antifade Mountant Thermo Fisher Scientific Cat# S36936

Critical commercial assays

Click-iT(TM) EdU Alexa Fluor 647 Imaging Kit Thermo Fisher Scientific Cat# C10340

Mouse THBS1 / Thrombospondin-1

ELISA Kit (Sandwich ELISA)

LSBio Cat# LS-F4336-1

QIAGEN RNeasy Micro Kit QIAGEN Cat# 74004

QIAGEN miRNeasy Mini Kit QIAGEN Cat# 217004

QuantiTect Reverse Transcription Kit QIAGEN Cat# 205313

TB Green� Premix Ex Taq II Takara Cat# RR820

Direct-zol RNA MicroPrep (50 Preps) w/

Zymo-Spin ICColumns (Capped) (Product

Supplied w/ 50 mL TRI Reag

ZYMO RESEARCH Cat# ZYR-R2061-1

Pierce BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23227

RealTime-Glo(TM) MT Cell Viability Assay Promega Cat# G9711

ApopTag Red In Situ Apoptosis Detection Kit Merck Cat# S7165

MidiMACS Starting Kit Miltenyi Biotec Cat# 130-090-329

Deposited data

RNA-seq data Fukuda et al., 2019 GEO: GSE135903

RNA-seq data This paper GEO: GSE159082

RNA-seq data This paper GEO: GSE162827

Experimental models: Organisms/strains

Mouse: B6;129-Pax7tm2.1(cre/ERT2)Fan/J The Jackson Laboratory JAX:# 012476; RRID:IMSR_JAX:012476

Mouse: B6.Cg-Calcrtm1c(KOMP)Sfuk Yamaguchi et al., 2015 RRID:IMSR_RBRC09861

Mouse: B6;129-Gt(ROSA)26Sortm1(DTA)Mrc/J The Jackson Laboratory JAX:# 010527; RRID:IMSR_JAX:010527

Mouse: Cd47-floxed Saito et al., 2017 CDB1078K http://www2.clst.riken.jp/

arg/mutant%20mice%20list.html

Mouse: B6N.Cg-Tg(Pdgfra-cre/ERT)467Dbe/J The Jackson Laboratory JAX:# 018280; RRID:IMSR_JAX:018280

Mouse: Yap1tm1.1Dupa/J The Jackson Laboratory JAX:# 027929; RRID:IMSR_JAX:027929

Mouse: Taz-floxed Azzolin et al., 2014 N/A

Mouse: B6.129S4-Pdgfratm11(EGFP)Sor/J The Jackson Laboratory JAX:# 007669; RRID:IMSR_JAX:007669

Mouse: B6.129X1-Gt(ROSA)

26Sortm1(EYFP)Cos/J

The Jackson Laboratory JAX:# 006148; RRID:IMSR_JAX:006148

Mouse: B6.129S2-Thbs1tm1Hyn/J The Jackson Laboratory Cat# JAX:006141, RRID:IMSR_JAX:006141

Oligonucleotides

Primers for genotyping, see Table S1 Eurofins N/A

Primer: Thbs1 Forward: AACTG

TGACCCTGGACTTGC

Eurofins N/A

Primer: Thbs1 Reverse: CTGGT

AGCCGAAAACAAAGC

Eurofins N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: Yap1 Forward: GCCAT

GCTTTCGCAACTGAA

Eurofins N/A

Primer: Yap1 Reverse: AGTCAT

GGCTTGCTCCCATC

Eurofins N/A

Primer: Taz/Wwtr1 Forward: CTCCCC

ATGGAAACCGAGAC

Eurofins N/A

Primer: Taz/Wwtr1 Reverse: GCTCTG

CTCCCGTGAATGAT

Eurofins N/A

Primer: 18S ribosomal RNA Forward: CAGT

AAGTGCGGGTCATAAGC

Eurofins N/A

Primer: 18S ribosomal RNA Reverse: AGTTC

GACCGTCTTCTCAGC

Eurofins N/A

Software and algorithms

FACSDivaTM BD Biosciences RRID:SCR_001456

Hybrid Cell count https://www.keyence.com/

ss/products/microscope/bz-

x/products-info/quantify.jsp

N/A

Adobe Illustrator https://www.adobe.com/

products/illustrator.html

RRID:SCR_010279

Photoshop CC https://www.adobe.com/

products/photoshop.html

RRID:SCR_014199

Prism 8 https://www.graphpad.com/

scientific-software/prism/

RRID:SCR_005375

iGEAK https://sites.google.com/

view/igeak/manual

N/A

GSEA https://www.broadinstitute.

org/gsea/

RRID:SCR_003199

Leica Application Suite X https://www.leica-microsystems.

com/products/microscope-

software/p/leica-las-x-ls/

RRID:SCR_013673

featureCounts (v.2.0.1) https://bioinf.wehi.edu.au/

featureCounts/

RRID:SCR_012919

DESeq2 (v.1.26.0) https://bioconductor.org/

packages/release/bioc/

html/DESeq2.html

RRID:SCR_015687

HISAT2 (v.2.2.1) http://ccb.jhu.edu/software/

hisat2/index.shtml

RRID:SCR_015530

Other

BD FACSAria II Flow Cytometer BD Biosciences N/A

All-in-one Fluorescence Microscope BZ-X700 Keyence N/A

Applied Biosystems Step plus qPCR cycler Thermo Fisher Scientific N/A

TCS SP8 confocal laser scanning

microscope system

Leica N/A

Illumina HiSeq 1500 system Illumina N/A

ShakeMan bms N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, So-ichiro

Fukada (fukada@phs.osaka-u.ac.jp).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
RNA-sequencing datasets generated during this study are available at Gene Expression

Omnibus (GEO), accession number GEO: GSE159082 and GEO: GSE162827.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6J mice were purchased from Charles River Laboratories (Yokohama, Kanagawa, Japan). Calcr-floxed mice were generated

as reported previously (Yamaguchi et al., 2015). Cd47-floxed mice were generated at the RIKEN Center for Biosystems Dynamics

Research, Kobe, Japan) (association no. CDB1078K) (Saito et al., 2017). Pax7CreERT2 mice (Stock No: 012476), PdgfraCreERT mice

(Stock No: 018280), Pdgfra-H2B-eGFP (Stock No: 007669), Yap1-floxed (Stock No: 027929), Rosa26DTA/+ mice (Stock No:

010527), Thbs1-knockout (Stock No: 006141), and Rosa26EYFP/+mice (Stock No: 006148) were obtained from Jackson Laboratories

(Bar Harbor, ME; Farmington, CT; or Sacramento, CA, USA). Taz-floxed mice were kindly provided by Stefano Piccolo (Azzolin et al.,

2014). Mice carrying Pax7CreERT2 or PdgfraCreERTwere injected intraperitoneally two or five times (24 h apart) with 200–300 mL tamox-

ifen (20 mg/mL; Sigma-Aldrich, St. Louis, MO, #T5648) dissolved in sunflower seed oil (Sigma-Aldrich #S5007) and 5% ethanol, and

themiceweremaintained in a controlled environment (temperature, 24 ± 2�C; humidity, 50%± 10%) under a 12/12-h light/dark cycle.

The mice received sterilized standard chow (DC-8; Nihon Clea, Tokyo, Japan) and water ad libitum. All procedures used for exper-

imental animals were approved by the Experimental Animal Care and Use Committee of Osaka University (approval number: 25-9-3,

30-15, R02-3) or Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (approval number: 20003). Male C57BL/6J mice

aged 10-15 weeks were used in all in vivo experiments and female mice aged 10-15 weeks were used in all in vitro experiments. In

experiments using mutant mice, approximately equal numbers of age-matched 10-15 weeks old male and female mice were used.

Primer pairs for genotyping were listed in Table S1.

Muscle overload model
Mice were anesthetized with isoflurane. Functional overloading of plantaris muscle (PLA) was induced as described previously (Ito

et al., 2013). Under anesthesia, a midline incision was made on the hindlimbs, and the distal tendons of both gastrocnemius and so-

leus muscles were transected (tenotomy) (Fukuda et al., 2019). The plantaris muscles were isolated at the indicated time points. As

themuscle weight no longer increased 2–3 weeks after tenotomy, synergistic ablation (SA) was used to induce long-term and intense

overloading in the plantaris muscle. The difference between SA and tenotomy is whether or not the distal half of both the gastroc-

nemius and the soleus were excised (Fukada et al., 2020). The incision was closed using 6-0 nylon suture with a needle (Natusme

Seisakusho, Tokyo, Japan). For the sham-operated group, similar incisions were made, but tenotomy or SA were not performed.

METHOD DETAILS

Muscle fixation and histological analysis
Plantaris and tibialis anterior (TA) muscles were isolated, placed on cork using kneaded Tragacanth Gum (Wako Pure Chemicals In-

dustries, Osaka, Japan) and then frozen in liquid nitrogen-cooled isopentane (Wako Pure Chemicals Industries) for 1 min. After

placing the muscles on dry ice for 1 h to vaporize the isopentane, the muscles were stored in closed containers at �80�C.
For immunohistochemical analyses, transverse cryosections (6-mm thick) were fixed with 4% paraformaldehyde (PFA) for 10 min.

Detailed information on all antibodies used in this study is listed in the Key resources table. The signals were recorded photograph-

ically using a BZ-X700 fluorescence microscope (Keyence, Osaka, Japan).

Whole-mount immunofluorescence staining
Plantaris muscles were fixed with 4% PFA for 30 min. After washing with PBS, muscles were blocked with blocking solution consist-

ing of 1% Triton X-100 and 4% BSA in PBS at 4�C overnight, followed by incubation with primary antibodies diluted in blocking so-

lution at 4�C for one day. Then, muscles were incubated with secondary antibodies diluted in blocking solution at 4�C for one day.

Stained muscles were counterstained with DAPI (Dojindo, Kumamoto, Japan) and mounted with SlowFade Gold anti-fade reagent

(Thermo Fisher Scientific, Waltham, MA). Z stack images were captured using a TCS SP8 confocal laser scanning microscope sys-

tem (Leica, Heerbrugg, Switzerland) and reconstructed images were displayed by maximum intensity projection using LAS X soft-

ware (Leica). As nuclear Yap1 was mainly observed in distal half of overloaded plantaris muscle, 3–4 fields/muscle were captured

from the distal half of sham or operated plantaris muscles.

In vivo EdU labeling and detection
EdU (5- ethynyl �20-deoxyuridine; Thermo Fisher, #A10044) was dissolved in sterilized PBS at 2.5 mg/mL and stored at �20�C. The
stock EdU solution was diluted with PBS (0.5 mg/mL) and injected intraperitoneally into mice at 5 mg/kg body weight daily until the

day before euthanization. EdU+ nuclei were detected using Click-iT EdU Cell Proliferation Kit for Imaging, Alexa Fluor 647 dye

(Thermo Fisher, #C10340). For all data, peripheral myonuclei were counted.
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Anti-CD47 antibody or PKHB1 administration
Anti-CD47 inhibitory and control antibodies were purchased from Bio X Cell (Lebanon, NH, USA). The antibody solution, diluted to

2.0mg/mLwith sterilized PBS (Tesque, Kyoto, Japan), were intraperitoneally injected into C57BL/6mice (200 mL per head) at one day

before tenotomy and every two days from the day of the surgery (total five times) in accordance with a to previous study (Liu et al.,

2015). A CD47 agonist, PKHB1, was purchased from GenScript Biotech (Piscataway, NJ, USA). The peptide (20 or 60 mg/kg) was

dissolved in sterilized PBS (Nacalai) and injected intraperitoneally into C57BL/6, CD47-cKO, or CalcR-cKO mice.

Measurement of Thbs1
Lysis buffer was prepared by mixing Extraction Buffer 5X PTR (Abcam, Cambridge, UK, ab193970), Extraction Enhancer Buffer 50X

(Abcam, ab193971), and sterilized water. After adding the lysis buffer into the tube containing frozen plantaris muscle according to

the muscle weight (100 mL/10 mg), the plantaris muscle was rapidly homogenized using TissueRuptor (QIAGEN, Hilden, Germany).

Muscle homogenate was incubated on ice for 20 min, followed by centrifugation at 14,0003 g for 20 min. Supernatant was used as

muscle sample for further analyses. Bloodwas collected from the tail vein and treated with heparin, then centrifuged at 14,0003 g for

5 min to prepare plasma sample. Protein concentrations in muscle and plasma samples were approximately 4–8 mg/mL and 55–

65 mg/mL, respectively. Thbs1 protein was detected by mouse THBS1/Thrombospondin-1 (Sandwich ELISA) ELISA Kit-LS-

F4336-1) (LSBio, Seattle, WA) and Glomax Microplate Reader (Promega, Madison, WI) according to the manufacturer’s protocol.

Dilution ratios for muscle and plasma were 1:2 and 1:3, respectively.

Single myofiber isolation and staining
Single myofibers were isolated from plantaris and EDL muscles using collagenase type I (Worthington Biochemical, Lakewood, NJ)

using a previously described protocol (Rosenblatt et al., 1995). The isolated myofibers were immediately fixed in 2% PFA for 10 min.

After washing the myofibers with PBS, they were permeabilized with a solution containing 20 mM HEPES, 300 mM sucrose, 50 mM

NaCl, 3 mM MgCl2, and 0.5% Triton X-100. They were washed with PBS and treated with blocking buffer (PBS containing 5% FCS

and 0.01%Triton X-100), followed by incubation with primary antibodies overnight at 4�C. The next day, myofibers were washedwith

PBS and reacted with secondary antibodies (Collins-Hooper et al., 2012; Shinin et al., 2009). The stained myofibers were placed on

glass slide, sealed with VECTASHIELDMounting Medium with DAPI (Vector Laboratories, Burlingame, CA), and then recorded using

a BZ-X700 fluorescence microscope (Keyence).

Isolation of muscle-derived mononuclear cell
Sham or overloaded plantaris muscles were digested using 0.2% collagenase type II (Worthington Biochemical). Mononuclear cells

derived from plantaris muscles were stained with FITC-conjugated anti-CD31 and anti-CD45, PE-conjugated anti-Sca-1, and bio-

tinylated-SM/C-2.6 antibodies (Fukada et al., 2004) on ice for 30 min. After washing the cells with PBS containing 2% FBS (washing

buffer), the cells were incubated with streptavidin-labeled allophycocyanin (BD Biosciences, Franklin Lakes, NJ) on ice for 30 min.

After washing the cells with the washing buffer, the cells were resuspended in washing buffer containing 2 mg/mL propidium iodide

(BD Biosciences). Cell sorting was performed using a FACS Aria II flow cytometer (BD Immunocytometry Systems, San Jose, CA).

SM/C-2.6+Sca-1�CD31�CD45� and Sca-1+CD31�CD45� fractions were used asmyogenic cells andmesenchymal progenitor frac-

tion, respectively (Fukada et al., 2007; Joe et al., 2010).

For in vitro experiments, MuSCs were isolated using the MACS system. Hindlimb muscles of C57BL/6 female mice were digested

with 0.2% collagenase type II, and then mononuclear cells were stained with anti-CD31-PE, CD45-PE, Sca1-PE, and Integrin a7.

After washing, the cells were reacted with anti-PE MicroBeads, then CD31, CD45, or Sca1-positve cells were removed using

MACS Staring Kit (Miltenyi Biotec Inc.). The CD31/CD45/Sca1 negative cells were reacted with anti-mouse IgG MicroBeads, and

Integrin a7-positive cells were isolated. For the preparation of cultured mesenchymal progenitors, mononuclear cells were isolated

fromWT or Thbs1-KOmice and were cultured for 3 days. Mesenchymal progenitors were purified from crude mononuclear cells us-

ing anti-CD31-FITC, CD45-FITC, and Pdgfra-PE, and Pdgfra+CD31-CD45- cells were purified by Aria II. The purified cells within three

passageswere used for their proliferation assay, and their supernatant experiments withmyoblasts. DMEM-LG containing 20%FCS,

penicillin-streptomycin, and 5 ng/mL bFGF were used for the expansion of both myoblasts and mesenchymal progenitors.

RNA-seq and analyses
The mesenchymal progenitors were isolated from sham or tenotomy plantaris muscles from six C57BL/6, two control (PdgfraCreERT/+::

Yap1+/+::Taz+/+), and two cdKO (PdgfraCreERT/+::Yap1flox/flox::Tazflox/flox) mice. The same experiment was repeated to prepare three

samples for each group. Cells were sorted into tubes containing Trizol-LS reagent (Thermo Fisher Scientific) at 10,000 cells/tube using

a cell sorter (Aria II). RNA was isolated by Direct-zol RNA Microprep (Zymo Research, Irvine, CA, USA).

Libraries were constructed according to the CEL-Seq2 protocol (Hashimshony et al., 2016) for each tube separately and

sequenced using an Illumina HiSeq 1500 system (Illumina, San Diego, CA, USA). The obtained single-end reads were mapped to

the reference genome (GRCm38) using HISAT2 (v.2.2.1) (Kim et al., 2019). Read counts per gene were determined using feature-

Counts (v.2.0.1) (Liao et al., 2014). For downstream analyses, including GO analysis, differentially expressed gene analysis, volcano

plot, and heatmap visualization, the iGEAK tool kit was leveraged (Choi and Ratner, 2019). The GSEA analysis with the Molecular

Signature Database (v.7.2) was performed using the GSEA software (v.4.1.0) (Subramanian et al., 2005). Data were deposited
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with the accession number GSE159082 and GSE162827. Gene expression data for myogenic cells at day 4 after tenotomy are

available under accession number GSE135903 (Fukuda et al., 2019).

RT-PCR analysis
Total RNA was extracted from sorted cells by using Trizol LS and a QIAGEN RNeasy Micro Kit (QIAGEN) according to the manufac-

turer’s instructions and then reverse-transcribed to cDNA by using a QuantiTect Reverse Transcription Kit (QIAGEN). Total RNA of

plantaris muscle was extracted usingmiRNeasy Mini Kit (QIAGEN) after crushing by Shakeman (BMS, Bio medical science). Specific

forward and reverse primers used for optimal amplification of the reverse-transcribed cDNAs using real-time PCR were listed in Key

resources table.

Proliferation assay
Two thousandmyoblasts or mesenchymal progenitors were seeded in 96-well plate and were cultured in DMEM-LG containing 10%

FCS, and penicillin-streptomycin. Proliferation assays were performed using Real-time Glo (Promega) and the luminescence were

measured by a Glomax Microplate Reader.

Single myofiber culture with supernatant experiments from mesenchymal progenitors
Pdgfra+CD31�CD45� cells from wild-type or Thbs1-KO mice were cultured on a collagen-coated dish (Iwaki, #4020-010) for 72 h in

DMEM-LG containing 10% FCS, and penicillin-streptomycin. Freshly isolated EDLmyofibers from female C57BL/6 mice were main-

tained in a 1:1mixture of culture supernatant and fresh culturemedium (DMEM-LG containing 10%FCS, and penicillin-streptomycin)

that was not refreshed during the cultivation. The myofibers were fixed with 2% PFA at 48 and 72 h after the cultivation. Finally, the

number of Pax7-positive cells was counted.

QUANTIFICATION AND STATISTICAL ANALYSIS

Values are expressed asmeans ± SD. Statistical comparison between two groups was performed by two-sided unpaired Student’s t

test. For comparison of more than two groups, one-way ANOVA and Tukey-Kramer test (excluding Figure 5G) or Dunnett test (Fig-

ure 5G) were used. A p value less than 0.05 was considered to be statistically significant.
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Figure S1. Behaviors of Pα+ cells in overloaded muscles; Related to Figure 1 



(A) Immunostaining of Pdgfrα (red), laminin α2 (green), and EdU in Sham or Ope 

muscles on day 4 after tenotomy. Arrows and arrowheads indicate Pdgfrα+EdU+ and 

Pdgfrα+EdU- cells, respectively. Nuclei were counterstained with DAPI. Scale bar: 25 µm 

(B) Experimental scheme for analyzing Pdgfrα+ cells in plantaris muscle in C57BL/6 

mice on day 2, 4, and 7 after tenotomy (Ope; R: right). Contralateral left plantaris muscle 

was used as sham control (L: Sham). Graph indicates the percentage of EdU+ Pdgfrα+ 

cells in Sham and Ope muscles on day 2 (n=3), 4 (n=4), and 7 (n=5) after tenotomy. The 

number in parentheses refer to the duration of EdU injections. 

(C) Number of Pdgfrα+ cells per muscle section on day 2, 4, and 7 after tenotomy.  

(D) FACS profiles for detecting MuSCs and mesenchymal fractions. The upper left panel 

shows the gate for the following analyses. The lower left panel shows the gate for CD31-

CD45- fraction. The right two panels show MuSCs (SM/C-2.6+Sca-1-) and mesenchymal 

progenitor fractions (Sca-1+) in CD31-CD45- fraction.  

(E) Frequency of MuSC (left) or mesenchymal progenitors (right) in CD31-CD45- 

fraction in sham or overloaded muscles. 

(F) TUNEL staining in sections of Sham and Ope muscles of PdfgraH2BeGFP mice on 

day 2-7 after tenotomy. DNase was used as a positive control of TUNEL staining. Scale 

bar: 75 µm 

 

  



 

Figure S2. Ablation of Pα cells blunts muscle hypertrophy at 11–12 weeks after 

synergist ablation (SA); Related to Figure 2 

(A) Immunostaining of Pdgfrα (red) in plantaris muscles of Cont and Pα-DTA mice. 

Arrowheads indicate Pdgfrα+ cells. Scale bar: 10 µm. The graph shows the number of 



Pdgfrα+ cells per section of plantaris muscles of female Cont (n=4) and Pα-DTA (n=4) 

mice. 

(B) Plantaris muscle weight of sham or overloaded muscle on day 7 after tenotomy of 

female Cont (n=4) and Pα-DTA (n=4) mice. 

(C) Experimental scheme for analyzing the effects of Pα+ cell-depletion on muscle 

hypertrophy in plantaris muscle two weeks after tenotomy (Ope; R: right). Contralateral 

left plantaris muscle was used as sham control (L: Sham). 

(D) Body weight, plantaris muscle weight, plantaris muscle weight per body weight, or 

increased ratio of plantaris muscle weight (Ope/Sham) of male control (n=5) or Pα-DTA 

mice (n=7)  

(E) Representative muscle sections stained with anti-laminin α2 (green) antibody for 

calculating CSA. The graphs show CSA (left) or increased ratio of CSA (Ope/Sham, 

right) of male control (n=5) or Pα-DTA (n=7) mice. Scale bar: 50 µm  

(F) Experimental scheme for analyzing the effects of Pα+ cell-depletion on muscle 

hypertrophy in plantaris muscle 11–12 weeks after SA (R: SA). Contralateral left 

plantaris muscle was used as sham control (L: Sham). 

(G) Body wight, plantaris muscle weight, plantaris muscle weight per body weight, or 

increased ratio of plantaris muscle weight (SA/Sham) of male control (n=11) or Pα-

DTA (n=8) mice.  

(H) Representative muscle sections stained with anti-laminin α2 (green) antibody for 

calculating CSA. The graphs indicate CSA (left) or increased ratio of CSA (SA/Sham, 

right) of male control (n=11) mice or Pα-DTA (n=8) mice. Scale bar: 50 µm 

(I) Myonuclear number/myofiber in Sham or SA plantaris muscles of male control 

(n=11) or Pα-DTA (n=8) mice.   



 

 



Figure S3. RNA-seq analyses of overloaded mesenchymal progenitors and muscle 

satellite cells (MuSCs); Related to Figure 3 and 4 

(A) Upregulated Biological Process categories (|log2FC| ≥1 and p<0.05) in mesenchymal 

progenitors from overloaded muscle on day 2 after tenotomy compared to those from 

sham muscle. 

(B) Upregulated Biological Process categories (|log2FC| ≥1 and p<0.05) in mesenchymal 

progenitors from overloaded muscle of Cont (upper) or cdKO (lower) mice on day 2 after 

tenotomy compared to those from sham muscle. 

(C) Heatmap of genes encoding secreted proteins that were highly expressed (|log2FC| 

≥2 and p<0.05) in mesenchymal progenitors from overloaded plantaris muscle. Ope1–3: 

mesenchymal progenitors derived from overloaded plantaris muscles, Sham1–3: 

mesenchymal progenitors derived from sham plantaris muscles.  

(D) Heatmap of genes encoding receptors related to (C), quiescence genes (Spry1, Chrdl2, 

Tenm4, Calcr), or integrins (Itga7 and Itgb1: positive controls) in MuSCs from 

overloaded muscle on day 4 after tenotomy (Ope1-2) and sham muscle (Sham1–2). Data 

deposited with accession number GSE135903 were used in these analyses. 

(E) Heatmap of genes involved in Yap1 signature (annotated gene sets in MSigDB) in 

MuSCs from overloaded muscle on day 4 after tenotomy (Ope1-2) and sham muscle 

(Sham1–2).  

 



 

Figure S4. Blunted muscle hypertrophy and reduced expression of Thbs1 in 

mesenchymal progenitor-specific inactivation of Yap1/Taz; Related to Figure 4 and 

5 



(A) Experimental scheme for analyzing effects of Pdgfrα-specific Yap1/Taz-depletion on 

plantaris muscle hypertrophy 12 weeks after SA (R: SA). Contralateral left plantaris 

muscle was used as sham control (L: Sham). 

(B) Body wight, plantaris muscle weight, plantaris muscle weight per body weight, or 

increased ratio of plantaris muscle weight (SA/Sham) of male control (n=7) or cdKO 

(n=4) mice. 

(C) Representative muscle sections stained with anti-laminin α2 (green) antibody for 

calculating CSA. The graphs indicate CSA (left) or myonuclear number/myofiber 

(right) of male control (n=7) or cdKO (n=4) mice. Scale bar: 50 µm 

(D) Immunostaining of Pdgfrα (red) and Thbs1 (green) in sections of Sham and 

overloaded plantaris muscle 4 days after tenotomy (Ope 4d) of control mice (Cont: 

PdgfraCreERT/+). Scale bar: 50 µm 

(E) Immunostaining of Pdgfrα (red) and Thbs1 (green) in sections of sham or overloaded 

plantaris muscles in Pα-DTA mice on day 4 after tenotomy (Ope 4d). Nuclei were 

counterstained with DAPI. Scale bar: 50 µm 

(F) Immunostaining of Thbs1 (green) in sections of sham and overloaded plantaris muscle 

7 days after tenotomy (Ope 7d) from control (Cont, PdgfraCreERT) and cdKO mice. Scale 

bar: 100 µm. The graph indicates Thbs1+ area in sham per Ope 7d muscle of Cont (n=6; 

five male and one female) and cdKO (n=6; four male and two female) mice.  

(G) The graph indicates Thbs1 mRNA expression in Ope 4d muscle per that in Sham 

muscle from Cont (n=4; two male and two female) or cdKO (n=5; two male and three 

female). 

 

 



 

Figure S5. Validation of Thbs1-KO Pα+ cells proliferation and expression of CD47 

in MuSCs; Related to Figure 5 and 6 



(A) Body weight, heart weight or normalized muscle weight of Thbs1-KO mice. 

(B) Immunostaining of Yap1 (left) or Thbs1 (right) in cultured Pdfgrα+ cells from WT or 

Thbs1-KO. Nuclei were counterstained with DAPI. Scale bar: 50 µm 

(C) Proliferation of mesenchymal progenitors in vitro. The Y‐axis indicates the relative 

intensity of luminescence with respect to the beginning (2 hours after seeding) of the 

cultivation. 

(D) CD47 expression in MuSCs of control (Pax7CreERT2::Cd47+/+::Rosa-YFP) (upper) or 

CD47-cKO (Pax7CreERT2::Cd47flox/flox::Rosa-YFP) mice (lower). CD47 expression was 

detected in control MuSC fraction gated R1 (FCS/SSC plot) & R2 (YFP+ fraction), but 

not in CD47-cKO MuSCs. Other CD47+ cells (green dots) were detected in both control 

and CD47-cKO MuSCs, indicating MuSC-specific deletion of CD47 in CD47-cKO mice. 

Blue dots show MuSC fraction in all panels. 

(E) The histograms show CD47 expression in MuSCs from Sham or loaded plantaris 

muscle 4 or 7 days after tenotomy of control (Pax7CreERT2::Cd47+/+::Rosa-YFP) mice. 

  



 
Figure S6. Loss of CD47 in MuSC blunts muscle hypertrophy at 12 weeks after 

synergist ablation (SA); Related to Figure 6 

(A) Experimental scheme for analyzing effects of MuSC specific CD47-depletion on  



plantaris muscle hypertrophy 7 days after tenotomy (R: Ope). Contralateral left plantaris 

muscle was used as sham control (L: Sham). 

(B) Body weight (left), plantaris muscle weight (middle), or plantaris muscle weight per 

body weight (right) of female control (n=5) or CD47-cKO (n=7) mice.  

(C) Myofiber size (CSA: cross sectional area) of female control (n=5) or CD47-cKO 

(n=7) mice. 

(D) Experimental scheme for analyzing effects of MuSC specific CD47-depletion on  

plantaris muscle hypertrophy 12 weeks after SA (R: SA). Contralateral left plantaris 

muscle was used as sham control (L: Sham). 

(E) Body wight, plantaris muscle weight, plantaris muscle weight per body weight, or 

increased ratio of plantaris muscle weight (SA/Sham) of male control (n=4) or CD47-

cKO (n=4) mice.  

(F) Representative muscle sections stained with anti-laminin α2 (green) antibody for 

calculating CSA. Scale bar: 50 µm. The graphs indicate CSA (left) or myonuclear 

number/myofiber (right) of male control (n=4) or CD47-cKO (n=4) mice.  

 

 

  



 

Figure S7. Function of PKHB1 in sedentary C57BL/6 or expression of CalcR in Pα-

DTA or Pα-Yap1/Taz -cdKO mice; Related to Figure 7 

(A) Experimental scheme for analyzing the effect of CD47 agonist (PKHB1) on 

myonuclear accretion in sedentary C57BL/6 mice.  

(B) The graph indicates the average number of MuSCs on single myofiber of control 

(PBS-treated, open circle, n=7) and PKHB1-treated mice (20 mg/kg, n=3; 60 mg/kg, n=3). 

Data are presented as mean ± S.D.; ANOVA. N.S., not significant. 26-30 myofibers were 

observed per mouse. 

(C) Frequency of Pax7+CalcR+ MuSC in Sham and Ope muscle of Pα-DTA (left, n=3; 

two male, one female) or cdKO (right, n=3; three male) mice. Rosa-DTA (n=3; two male, 



one female) or Yap1flox/floxTazflox/flox mice (n=3; three male) were used for each control. 

18-30 myofibers were observed for calculating the frequency of CalcR+ cell in Pax7 cells 

per mouse. 

  



Supplementary Table S1: List of genotyping primers used in this study, related 
to STAR Methods.  

 

 

 

Strain Primer name Primer sequence
Pax7-CE Fwd ACT AGG CTC CAC TCT GTC CTT C
Pax7-CE Rev GCA GAT GTA GGG ACA TTC CAG TG
Calcr loxp Fwd CAA CTA TAC TCT GTG CAA CGC
Calcr loxp Rev TAA TAC GCT TCA GAA ACC
oIMR8052 GCG AAG AGT TTG TCC TCA ACC
oIMR8545 AAA GTC GCT CTG AGT TGT TAT
oIMR8546 GGA GCG GGA GAA ATG GAT ATG
CD47-F AGA TAA GGA GGT CCA CTT CT 
CD47-F4 TGA AGC TCC TCA CTC TCC AGT G
CD47-R2 TGT TCT CTC TGC TCC AGT GCT TAC
pdgfra ex2 (forward) TCA GCC TTA AGC TGG GAC AT 
cre (reverse) ATG TTT AGC TGG CCC AAA TG
Yap1Fwd-29878 AGG ACA GCC AGG ACT ACA CAG
Yap1Rev-29879 CAC CAG CCT TTA AAT TGA GAA C
SWg0005 Taz GGG CAA AGT TGT GAT GCC CTG GAC
SWg0006 Taz CCA ATG GCC TGG ATC TCT TAG GGC
oIMR7801 CCC TTG TGG TCA TGC CAA AC
oIMR7802 GCT TTT GCC TCC ATT ACA CTG G
oIMR7919 ACG AAG TTA TTA GGT CCC TCG AC
olMR8545 AAA GTC GCT CTG AGT TGT TAT 
olMR4982 AAG ACC GCG AAG AGT TTG TC
olMR8546 GGA GCG GGA GAA ATG GAT ATG
oIMR5186 GAG TTT GCT TGT GGT GAA CGC TCA G
oIMR5187 AGG GCT ATG TGG AAT TAA TAT CGG 
oIMR5188 TGC TGT CCA TCT GCA CGA GAC TAG 

Pax7-CreERT2

Rosa-YFP

Calcr-floxed

Rosa-DTA

CD47-floxed

Pdgfra-CreERT

Yap1-floxed

Thbs1-KO

Taz-floxed

Pdgfra-H2B-eGFP
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