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Abstract: Despite a multitude of methods for the sample preparation, sequencing, and data analysis
of mitochondrial DNA (mtDNA), the demand for innovation remains, particularly in comparison
with nuclear DNA (nDNA) research. The Applied Biosystems™ Precision ID mtDNA Whole Genome
Panel (Thermo Fisher Scientific, USA) is an innovative library preparation kit suitable for degraded
samples and low DNA input. However, its bioinformatic processing occurs in the enterprise Ion
Torrent Suite™ Software (TSS), yielding BAM files aligned to an unorthodox version of the revised
Cambridge Reference Sequence (rCRS), with a heteroplasmy threshold level of 10%. Here, we
present an alternative customizable pipeline, the PrecisionCallerPipeline (PCP), for processing
samples with the correct rCRS output after Ion Torrent sequencing with the Precision ID library
kit. Using 18 samples (3 original samples and 15 mixtures) derived from the 1000 Genomes Project,
we achieved overall improved performance metrics in comparison with the proprietary TSS, with
optimal performance at a 2.5% heteroplasmy threshold. We further validated our findings with
50 samples from an ongoing independent cohort of stroke patients, with PCP finding 98.31% of TSS’s
variants (TSS found 57.92% of PCP’s variants), with a significant correlation between the variant
levels of variants found with both pipelines.

Keywords: mitochondrial DNA; next-generation sequencing; massively parallel sequencing; whole
genome sequencing; Precision ID; Thermo Fisher Scientific; variant calling; mixture;
performance metrics

1. Introduction

Mitochondria are the primary source of cellular ATP, while also prominently contribut-
ing to cell survival, differentiation, and apoptosis. They contain their own double-stranded
circular DNA (mtDNA), with 16,569 base pairs (bps) in humans, responsible for encoding
22 transfer RNAs, two ribosomal RNAs, and 13 essential proteins of the oxidative phos-
phorylation (OXPHOS) chain. In comparison with nuclear DNA (nDNA), mtDNA has a
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higher copy number per cell (polyploidy), replicating independently of the nuclear genome,
which allows for the existence of multiple genotypes within the same cell (heteroplasmy).
Additionally, mtDNA shows a higher mutation rate due to the absence of protective hi-
stones, exposure to reactive oxygen and nitrogen species, and more rudimentary repair
systems [1,2].

The peculiar nature of mtDNA has hindered the development of specific data analysis
guidelines, since the large majority of datasets, guidelines, and bioinformatic pipelines
for variant discovery analysis in next-generation sequencing (NGS)/massively parallel
sequencing (MPS) are primarily, and sometimes exclusively, focused on nDNA [3,4], with
mtDNA NGS analysis lagging years behind [5]. Out of the existing bioinformatic tools for
mtDNA, with quality control assessment, variant calling, and haplogroup assignment [6–21],
very few incorporate user accessibility, integrative data analysis, and regular updates. A
suitable option is mtDNA-Server [17], which allows for FASTQ and BAM files as input
and, considering the revised Cambridge Reference Sequence (rCRS) [22] as a reference,
identifies heteroplasmic and homoplasmic variants, assigns a haplogroup with HaploGrep
2 [18], based on PhyloTree Build 17 [23] with an updated algorithm [24], and performs a
contamination check and coverage analysis.

Recently, a novel approach to mtDNA NGS through whole genome sequencing (WGS)
has been developed with the Applied Biosystems™ Precision ID mtDNA Whole Genome
Panel (Thermo Fisher Scientific, USA) [25]. This library preparation kit, with 162 amplicons
that target the whole mtDNA, is mostly used for forensic samples, achieving reliable results
in often degraded samples [26–29] and with low DNA input (usually 0.1 ng of genomic
DNA, but 6.25 pg [30] and, very recently, 0.6 pg [31] have been reported). Despite its most
common use in forensic sciences, it has also been used in a range of other applications,
from worldwide lineage studies [32], to rare mtDNA differences in monozygotic twins [33].

A disadvantage of this approach, however, is its use of a modified mtDNA reference
with 16,649 bps, instead of the conventional 16,569 bps. Since the last amplicon corre-
sponds to the last 28 bps and the first 80 bps in the widely used rCRS, the Precision ID
mtDNA reference duplicates the first 80 bps of the rCRS at the end of the reference. Thus,
most of its bioinformatic processing must be done opaquely in the enterprise software,
Ion Torrent Suite™ Software (TSS), with the possible addition of other company-owned
software [31,34–36]. In addition to producing an unorthodox reference [37], which impedes
further processing in open-source bioinformatic tools, sensitivity analyses have set its
heteroplasmy threshold level to 10% [30,38,39].

In this study, we aimed to establish an alternative fully customizable pipeline—
PrecisionCallerPipeline (PCP)—for the Precision ID mtDNA Whole Genome Panel, which
(I) Produced BAMs accurately mapped to the rCRS, allowing complete integration with
existing open-source mtDNA pipelines; and (II) Revisited the TSS’s heteroplasmy thresh-
old of 10%. Our approach yielded improved performance metrics in comparison with TSS,
additionally enabling the detection of heteroplasmic variants at the 2.5% threshold.

On the basis of this extensive validation process, we compared our pipeline to TSS by
investigating 50 clinical samples from an ongoing stroke cohort, where we further validated
our approach.

2. Results
2.1. Pipeline Validation with Samples from the 1000 Genomes Project

We acquired three DNA samples previously sequenced within the 1000 Genomes
Project [4] on Illumina HiSeq (Illumina, Inc., USA), with three different sequencing runs
(more details in Section 4.1. Sample acquisition/collection): (I) Exome sequencing—exome
(mean coverage: 420.59 reads/base pair); (II) Low-coverage sequencing—lowCov (mean
coverage 3863.37 reads/base pair); and (III) High-coverage sequencing—highCov (mean
coverage: 15079.28 reads/base pair). Samples were then processed and mixed at five differ-
ent mixtures levels, ranging from 1 to 25% (Figure 1A), and sequenced on Ion Torrent™ Ion
S5™ (Thermo Fisher Scientific, USA). The original sequenced samples and their mixtures
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then underwent bioinformatic analysis with our pipeline, the PrecisionCallerPipeline (PCP)
(Figure 1B). For that, we aimed to optimize the protocol for the heteroplasmy threshold
and the removal of nuclear insertions of mitochondrial DNA (NUMTs). Correspondingly,
we ran the samples with three different NUMT removal approaches and 21 thresholds,
ranging from 0.4% to 10% (Figure 1C), through the mutserve variant caller, an offline
and command-line version of mtDNA-Server [17,40]. After data analysis and variant
classification for primary and mixture samples (Table S1), we determined the performance
metrics (Figure S1) considering both Grade A variants, which were homoplasmic in the
three independent sequencing runs, and Grade B variants, which were heteroplasmic in
the same three sequencing runs (more details in Section 4.4. Data analysis). Our primary
outcome was the highest possible F1 score.

NUMT removal immediately after the first alignment and before merging the BAM
files (Figure 1B) was superior to the other NUMT removal approaches (Table S2), while
the 2.5% heteroplasmy threshold with NUMT removal before merging yielded the highest
mean F1 score between the four different datasets—Primary Grade A, Mixture Grade A,
Primary Grade B, and Mixture Grade B—(Table S3).

Correspondingly, all BAM files were then run through the mutserve variant caller with
a 2.5% threshold and NUMT removal before merging (Figure 1B). For simplicity, we denote
samples by their simplified haplogroup identifier. Thus, HG00256 as H, HG01626 as T,
and HG01757 as U. Similarly, names for mixtures follow an analogous pattern with the
minor component being followed by its absolute mixture level and the major component.
Therefore, U0.01H is sample HG01757 (U) at 1% mixed with sample HG00256 (H) at 99%.

Genome coverage and mappability, defined as the ability to read a base pair (bp)
above a certain coverage threshold, were adequate in comparison to other sequencing runs
in the primary analysis. Haplogroup assignment was also homogeneous for both PCP and
the output from Ion Torrent Suite™ Software (TSS) (Table S4 and Figure 2).

Interestingly, PCP had an increased number of mutations in comparison with TSS
(Figure 2B), despite a reduction in the mean coverage in PCP (Figure 2A). To better under-
stand this phenomenon, we considered all samples analyzed on the Ion Torrent (Table S5
and Figure 3).

In PCP, coverage and mappability were uniform, haplogroup assignment was success-
ful for mixtures up to 10%, and sample contamination was correctly detected, with 5% as
the lowest detection limit (Table S5 and Figure S2). TSS correctly identified haplogroups
up to 10% as well, albeit with errors in the contamination detection for unmixed samples U
and T (lower than TSS’s own limit of ~10%), and a higher contamination detection limit of
10% (Table S5).

In comparison with TSS, samples processed with PCP have a reduced total number of
sequences (Table S5 and Figure 3A)—mean difference of 16.94%, 95% CI [15.98%–17.89%],
an adjusted p-value of 1.43 × 10−17, and a significantly lower mean coverage (Table S5
and Figure 3B)—mean difference of 25.83%, 95% [24.97%–26.70%], an adjusted p-value of
3.87 × 10−21; paired t-tests adjusted with false discovery rate (FDR). This arises from our
read trimming, NUMT removal, and quality control protocol, since, in comparison to the
unaltered FASTQ files, the BAM files from TSS have the exact same number of reads and
Phred score patterns (Figures 3D and 3F).

In comparison with PCP, these results indicate that TSS achieves a higher coverage
at the expense of a lack of read selection from the initial FASTQ files. Despite having
significantly reduced coverage and fewer reads, more variants are called with PCP than
with TSS (Table S5 and Figure 3C)—mean difference of 5.83, 95% CI [1.95–9.72], an adjusted
p-value of 5.60 × 10−3; paired t-tests with FDR.
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Figure 1. Schematic representation of our workflow. (A) Wet lab approach to performing the 15 
mixtures from the Coriell Institute for Medical Research’s samples, which have been analyzed 
within the 1000 Genomes Project—templates from Servier Medical Art (CC BY 3.0) were adapted, 
and are freely available at https://smart.servier.com; (B) Visual representation of the PrecisionCall-
erPipeline (PCP); (C) Visual representation of the optimization approach to NUMT removal and 
heteroplasmy threshold. Abbreviations: NUMTs—nuclear insertions of mitochondrial DNA. 

Figure 1. Schematic representation of our workflow. (A) Wet lab approach to performing the 15 mixtures from the Coriell
Institute for Medical Research’s samples, which have been analyzed within the 1000 Genomes Project—templates from
Servier Medical Art (CC BY 3.0) were adapted, and are freely available at https://smart.servier.com (accessed on 1 November
2021); (B) Visual representation of the PrecisionCallerPipeline (PCP); (C) Visual representation of the optimization approach
to NUMT removal and heteroplasmy threshold. Abbreviations: NUMTs—nuclear insertions of mitochondrial DNA.
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Figure 2. Primary analysis: Overall look; variant threshold was set at 0.4% for exome, lowCov, and 
highCov, and 2.5% for PCP. (A) Mean coverage per sample and per sequencing run/pipeline; (B) 
Number of variants per sequencing run/pipeline; (C) Mappability and haplogroup assignment per 
sequencing run/pipeline (TSS is not shown since it does not output raw data). Error bars denote 
standard error of the mean (SEM). Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent 
Suite™ Software. 

 
Figure 3. Ion Torrent sequencing: Overall look at differences between PCP and TSS; a 0% mixture 
level denotes unmixed samples. (A) Total number of sequences per pipeline and major sample 
contributor; (B) Mean coverage per pipeline and major sample contributor; (C) Number of vari-
ants per pipeline and major sample contributor; (D–F) MultiQC’s Phred score per base pair in the 

Figure 2. Primary analysis: Overall look; variant threshold was set at 0.4% for exome, lowCov, and highCov, and 2.5% for
PCP. (A) Mean coverage per sample and per sequencing run/pipeline; (B) Number of variants per sequencing run/pipeline;
(C) Mappability and haplogroup assignment per sequencing run/pipeline (TSS is not shown since it does not output raw
data). Error bars denote standard error of the mean (SEM). Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent
Suite™ Software.
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Figure 3. Ion Torrent sequencing: Overall look at differences between PCP and TSS; a 0% mixture level denotes unmixed
samples. (A) Total number of sequences per pipeline and major sample contributor; (B) Mean coverage per pipeline and
major sample contributor; (C) Number of variants per pipeline and major sample contributor; (D–F) MultiQC’s Phred score
per base pair in the unprocessed FASTQ files, PCP’s BAM to FASTQ files, and TSS’s BAM to FASTQ files, respectively.
Abbreviations: bp—base pair; PCP—PrecisionCallerPipeline; TSS—Ion Torrent Suite™ Software.
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To further dissect this difference in the number of variants, we first looked at the
variants in the primary analysis (Table A1, Figure S3A, and Tables S6–S8).

When comparing variants found with the Ion Torrent sequencing method to the ones
previously found on the other three Illumina runs, we observe that: (I) PCP significantly
increases the proportion of correctly found Grade A/B variants (true positives) in contrast
to lost Grade A/B variants (false negatives), while no Grade A/B lost variant with PCP was
picked up by TSS (Table S6); (II) TSS significantly overestimates the variant level (VL) in
found Grade A/B variants in comparison with PCP (Table S7); (III) Despite PCP picking up
more variants than TSS, the difference in the proportion of “novel” variants (false positives)
was not statistically significant between the two pipelines (Table S8).

We then looked at the variants in the mixture analysis (Figure 4, Table A2, Figure
S3B–H, Tables S9–S14, Figure S4, Tables S15–S22). Samples with a macro classification of
“Mixed status” (more details in Table S1) were excluded because of the impossibility of
determining their origin.
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variant grade. Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent Suite™ Software.

Similar to the primary analysis, Grade A/B variants were best retrieved with PCP,
in comparison with TSS, with a single variant found by TSS and lost with PCP (Table S9).
Moreover, true positive variants below 11% are completely absent in TSS, while PCP
correctly picks up variants until its threshold of 2.5% (Figure 4 and Table A2).

Regarding the difference between the expected and the observed VL, we defined two
different approaches:

• External comparison—the difference to the other Illumina sequencing methods (ex-
ome, lowCov, and highCov);

• Internal comparison—the difference within Ion Torrent, taking the primary sequencing
as a reference.

Consequently, we also considered two different relative differences, where we di-
vided each difference by its expected level in order to observe a percent variance per VL
(Figure 4A, Figure S3C–H). When performing a paired comparison regarding differences
for Grade A/B variants (Table S10), we observed no significant differences between TSS
and PCP for raw VL differences taking found variants into consideration. However, when
we considered lost variants, TSS performed worse in the external comparison (Table S10).
Regarding relative differences (Table S11), we found no statistically significant differences
between PCP and TSS.

In order to assess the similarity between the expected and the observed VLs (internal
and external), we also performed linear models per mixture, considering Grade A/B
variants for each pipeline, for each comparison (internal and external), and for each grade
variant classification (A or B), as they might have varied between them. After extracting
the adjusted R2 and the adjusted p-value with FDR, we created an indicator for correlation
strength determined by the log10 of the ratio between the adjusted R2 and the adjusted
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p-value. Thus, a greater value would indicate a stronger correlation between both variables.
PCP showed a significantly increased correlation indicator in both comparisons (internal
and external) for Grade B variants, while no significant differences for Grade A variants
were found (Figure 4B and Table S12).

Since PCP appeared to have increased sensitivity in comparison with TSS, we then
looked at the prevalence of novel variants (false positives). Interestingly, no differences
were found (Table S13), albeit with TSS showing novel variants at a higher VL, namely,
novel variants already present in the primary analysis (Table S14).

When we looked at the location of these novel variants in both analyses (primary and
mixture), PCP had one mutation in 10/18 samples (4318T), one mutation in 8/18 samples
(8649C), while the remaining four were isolated (2463G, 5752G, 6698G, 8152A). TSS had two
mutations shared in 10/18 samples (310C, 10958C), one shared in 4/18 samples (14777C),
one shared in 3/18 samples (8249C), and one shared in 2/18 samples (318C).

Looking into the different variant classifications (found, lost, novel, and primary
novel variants), we noticed that: (I) PCP showed an increased rate (adjusted to the size
of each region) of found variants throughout the genome, while maintaining a lower rate
of lost variants (Figure S4A–B and Tables S15 and S16); (II) Novel variants (primary and
mixture) showed the lowest normalized coverage (normalized for the mean coverage
of each sample in Tables S4–S5) for both PCP and TSS, while the highest strand bias,
calculated as a coverage ratio (forward vs. reverse), was observed in mixture novel variants
for PCP, and in primary novel variants for TSS (Figure S4C–E and Tables S17 and S18); (III)
Since false variants might arise from NUMTs, we calculated the mean value of reported
NUMTs based on two different databases [17,41] for each position—the highest rate of
NUMTs was observed in primary novel variants for PCP, and in found variants for TSS
(Figure S4F and Table S19); (IV) Regarding the proportion of variants in positions classified
as a low-complexity region (LCR) [17], lost variants showed the highest proportion of LCR
variants for PCP, while the same was true in primary novel variants for TSS (Figure S4G
and Table S20); (IV) Finally, we tested the hypothesis that the distance to the “callable”
extremity of each amplicon might be significantly different, depending on each variant
class. The lowest distance was observed in primary and mixture novel variants for PCP,
while the same was true for primary novel variants alone for TSS, although less consistently
(Figure S4H and Table S21). Table 1 offers a summary for novel variants (false positives).

Table 1. Novel variants (false positives): Summary characteristics in the mutserve variant calling
method (VCM).

Variable

PCP TSS

Primary Novel
Variants

Mixture Novel
Variants

Primary Novel
Variants

Mixture Novel
Variants

Normalized
coverage ↓ ↓↓ ↓↓↓ ↓↓

Coverage ratio - ↑↑↑ ↑↑↑ ↑
Number of

NUMTs ↑↑↑ ↓ - ↓↓

LCR prevalence ↓↓↓ ↓↓↓ ↑↑↑ -

Distance to
amplicon edge ↓↓↓ ↓↓ ↓ -

Using found variants (true positives) as a reference: “-“ denotes nonsignificant changes; “↑” or “↓” denote signifi-
cant changes in the 25–50% range; “↑↑” or “↓↓” denote significant changes in the 51–75% range; and “↑↑↑” or “↓↓↓”
denote significant changes > 75% (more details in Tables S17–S21). Abbreviations: PCP—PrecisionCallerPipeline;
TSS—Ion Torrent Suite™ Software; NUMTs—nuclear insertions of mitochondrial DNA; LCR—low-complexity
region.
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Ultimately, we performed a performance analysis for four different datasets: Primary
Grade A, Mixture Grade A, Primary Grade B, and Mixture Grade B, with separate paired
statistical tests for each dataset (Figure A1 and Table S22). PCP achieved a higher sensitivity
and F1 score in both the primary and mixture analyses for Grade B variants, without
performing worse than TSS in the other indicators or in the other datasets (Table S22).

In order to further validate our findings, we performed the same analyses with two
other variant callers (freebayes [42] and varscan 2 [43]), which yielded overall overlapping
results (Tables S6–S24).

2.2. Pipeline Comparison with An Independent Set of 50 Clinical Samples

As a way of demonstrating the added value of our pipeline, we selected 50 indepen-
dent samples from a prospective study in patients with ischemic stroke (more details in
Section 4.1. Sample acquisition/collection) and analyzed them in parallel with TSS and
PCP.

In PCP, genome coverage followed a similar pattern in all samples (Figure 5A), with
an overall uniform mappability (Table S25). The genome coverage was also in accordance
with what is typical in Ion Torrent™ sequencing with the Precision ID mtDNA Whole
Genome Panel [35]. The haplogroup was identical for both pipelines in 45/50 samples
(Table S25). In PCP, 3 samples were flagged for contamination in contrast to TSS, which
had 11 samples, 10/11 were well below its ~10% threshold (Table S25). In PCP, the number
of variants varied extremely, from 12 to 503, while in TSS, they ranged from 10 to 80
(Table S25). Thus, we eliminated Samples #21, #37, and #44 because of their contamination
status, and Samples #2 and #3 because of their extremely high number of variants in PCP,
from our subsequent analysis.
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Consistent with what we described previously, while mean coverage was significantly
decreased in PCP (Figure 5B)—mean difference of 30.87%, 95% CI [29.17%–32.58%], an
adjusted p-value of 3.01 × 10−34, we still observed a higher number of variants with our
pipeline (Figure 5D)—mean difference of 15.11%, 95% [10.07–20.16], an adjusted p-value of
2.97 × 10−7; paired t-tests adjusted with FDR.

This difference mostly derives from an increase in variants below TSS’s heteroplasmy
threshold (Figure 5C): variants only present in PCP have a mean VL of 7.45%, while variants
only present in TSS have a mean VL of 22.5%. Interestingly, PCP finds 98.31% of TSS’s
variants, while TSS only finds 57.92% of PCP’s variants. Although not exclusively, when
we consider discordant variants (variants not present in both pipelines) with more than
one occurrence (Table S26), we observe similar patterns as false positives in the previous
analyses (Figure S4C–H and Tables S17–21). In PCP, for example, we encounter the same
variants seen in the previous analysis: 8649C (present in 25/45 samples) and 4318T (present
in 20/45 samples). These two samples have a mean VL <5%, a low mean normalized
coverage, and a small distance to the amplicon’s “callable” edge. Similarly, in TSS, we
observe variants that were also previously found: 10958C (present in 17/45 samples)
and 14777C (present in 2/45 samples). These two variants have a low mean normalized
coverage, without other discernible features.

Regardless of the discordant variants, in the variants found in both pipelines, there is
a statistically significant correlation between the VL with TSS, and with PCP (Figure S5)—
adjusted R2 of 0.97 and a p-value < 2.2 × 10−16; linear regression model.

3. Discussion and Conclusions

In this study, we have developed a fully customizable pipeline—PCP—for the Pre-
cision ID mtDNA Whole Genome Panel, which produced BAMs accurately mapped to
the rCRS and that has revisited the heteroplasmy threshold of the current gold standard
method—TSS.

On the one hand, despite arising from the same set of samples and sequencing runs,
the output from PCP and TSS was sufficiently different to yield significant changes between
the two pipelines. In comparison with TSS, our method accomplished better performance
metrics in previously sequenced samples, namely, higher sensitivity and F1 scores without
a decrease in specificity and precision. This was mostly due to the additional detection of
heteroplasmic variants with a VL above 2.5%, but below TSS’s ~10% threshold. Interest-
ingly, this increase in the number of correct variants and the improved performance was
achieved despite PCP having lower coverage and fewer sequences. Moreover, the same
pattern of a higher number of variants at a lower threshold, notwithstanding a lower mean
coverage and fewer sequences, was also observed in an independent set of clinical samples.

On the other hand, mtDNA differences between the same sample are not unheard
of, as DNA polymerases, amplification protocols, sequencing runs, and variant callers
are frequent sources of disparity in genomics [35,44]. Discerning sequencing errors/false
positives from true heteroplasmic variants is a challenging task, usually achieved through
post-sequencing curation, looking for signs of poor amplification, strand bias, mutations in
LCR, and the presence of NUMTs [41,45–49].

Although sometimes ignored [50], heteroplasmic variants are ubiquitous [51–54] and
show significant tissue-specificity [53,54]. Interestingly, low-level heteroplasmic variants
(VL <10%) have shown matrilineal inheritance [55,56] with increased relevance in aging [57],
and in clinical settings, particularly cancer [58,59]. Nonetheless, the reliability of these low-
level variants has been a matter of debate [60–62] and, thus, current guidelines/workflows
suggest a heteroplasmy threshold of 10%, based on the limitations of Sanger sequencing
and electrophoresis technology [35,37,63–66].

False positives in both PCP and TSS showed a decreased normalized coverage, which
indicates poor amplification in those regions, and were mostly transitions, which is in
accordance with the literature [66,67]. However, the remaining putative mechanisms of
error were very different between the two pipelines, and even showed differences within
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the same pipeline, depending on where the novel variants were found (unmixed vs. mixed
samples). Correspondingly, in the analysis of the 1000 Genomes Project’s samples, no false
positives were shared.

In parallel, discordant variants in the stroke cohort showed most of the variants
previously flagged as false positives, albeit with many more variants only present in PCP at
a low level, which had not been flagged before. This different mutational pattern from the
samples sequenced within the 1000 Genomes Project might arise from the tissue-specificity
of heteroplasmic variants, since blood, from where we extracted the DNA in our stroke
cohort, has a lower level of heteroplasmy [53,54] and a very diverse mixture of mtDNA
content [68], as it encompasses multiple cell subtypes.

Our pipeline offers multiple advantages in comparison with TSS. Firstly, it is in line
with the Findable, Accessible, Interoperable, Reusable (FAIR) principles [69], increasingly
important in the field of genomics [70]. Thus, our open-access approach makes it easier to
implement validated and uniform bioinformatic protocols in genomics [3,71,72]. Secondly,
it outputs a BAM file with the correct rCRS reference, thus allowing for integration into
other NGS workflows and greatly facilitating variant annotation. This is particularly
important when dealing with high-throughput datasets, where manual curation and
inspection are not feasible nor efficient, thus favoring computational approaches to DNA
variant analysis [73]. Finally, it is fully customizable. In a world of limited resources
(personnel, time, samples, funding), our workflow is easily adaptable, depending on the
focus of each research project and tissue mutational pattern. On the one hand, if one
wishes to prioritize sample diversity in favor of replicates, variants might be called with
PCP and filtered if not present in TSS, since PCP captures ~98% of all TSS variants with a
very high VL correlation, and TSS discordant variants are likely to be false positives, in
accordance with our analysis. On the other hand, if one prefers to sacrifice sample diversity
in favor of VCM performance, the protocol for NUMT removal and heteroplasmy threshold
optimization in unmixed and mixed samples yields an optimal workflow specific to that
set of samples. Furthermore, the two approaches might be combined, or even expanded,
into FASTQ quality control, alignment, or further variant annotation, with the addition of
hypervariable segments [74], poly C-stretches [75], which are particularly difficult in Ion
Torrrent™ sequencing [76], and the presence of homoplasmic or heteroplasmic variants at
the HelixMTdb [67] (see Table S26 for an example). In summary, future clinical research will
benefit from using our open-source bioinformatic processing since it keeps the advantages
of the Precision ID library kit, particularly its low DNA input, while circumventing the
limitations of TSS, namely, its modified reference sequence, proprietary nature, and 10%
heteroplasmy threshold. For separating true variants from false variants, we also present a
range of options that can be used in combination or not, depending on the samples and
research focus: (I) A dedicated mixture optimization protocol; (II) Variant filtering based
on normalized coverage, strand bias, the presence of NUMTs, among other parameters;
(III) Filtering the output from PCP with TSS.

Nonetheless, our study also has a few limitations. Firstly, we used a limited set of
samples for the primary and mixture analysis, which are not representative of the range
of possible haplogroup combinations. Secondly, samples from our stroke cohort were not
sequenced in duplicate nor mixed, which did not allow for a replication of the performance
metrics we did previously. Finally, we did not consider insertions nor deletions and, thus,
we are unable to provide any recommendations for the analysis of those variants with our
pipeline.

Overall, we have developed the first open-source alternative to the enterprise software,
Ion Torrent Suite™ Software (TSS), for the Precision ID mtDNA Whole Genome Panel, with
improved performance metrics, and with an output in the correct rCRS reference. Since
the majority of existing mtDNA bioinformatic tools [6–21] are only compatible with the
correct rCRS format, and the few tools that perform variant calling in samples sequenced
with the Precision ID library kit [31,34–36] keep TSS’s modified reference sequence, PCP
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is currently the sole option that bridges this bioinformatic gap, allowing for the universal
variant calling of samples sequenced with the aforementioned library.

The herein presented pipeline, PCP, is available in the GitHub repository, https:
//github.com/filcfig/PCP (accessed on 1 November 2021). Additionally, we provide the
generated data for validation (see Data Availability Statement).

4. Materials and Methods
4.1. Sample Acquisition/Collection

In order to validate our pipeline—PrecisionCallerPipeline (PCP), we acquired three
cell-line samples from the Coriell Institute for Medical Research (Camden, NJ, USA),
i.e., HG00256, HG01626, and HG01757. These samples have been sequenced within the
1000 Genomes Project [4] on Illumina HiSeq (Illumina, Inc., San Diego, CA, USA), with
three different sequencing runs, mostly targeted at nuclear DNA: (I) Exome sequencing—
exome; (II) Low-coverage sequencing—lowCov; and (III) High coverage sequencing—
highCov.

With the aim of evaluating the sensitivity, specificity, precision, and F1 score (harmonic
mean of precision and sensitivity) [17,44] with different variant detection thresholds, we
performed three different mixtures at five different mixture levels (1, 2, 5, 10, and 25%):

• Mixture HT—Minor component: HG00256 (haplogroup H5b2, short identifier H) +
Major component: HG01626 (haplogroup T2a1b1a1b, short identifier T);

• Mixture TU—Minor component: HG01626 (haplogroup T2a1b1a1b, short identifier T)
+ Major component: HG01757 (haplogroup U4a, short identifier U);

• Mixture UH—Minor component: HG01757 (haplogroup U4a, short identifier U) +
Major component: HG00256 (haplogroup H5b2, short identifier H).

DNA concentration measured prior to shipping ranged from 307 to 331 ng/µL. Thus,
DNA mixtures were volume-based (Figure 1A).

As an independent set of samples, we analyzed 50 samples derived from a prospective
stroke cohort of patients at the Hospital de Santa Maria, Centro Hospitalar Universitário
Lisboa Norte. Blood samples were collected within 72 h of hospital admission and all
cases were reviewed and confirmed by trained neurologists. Inclusion criteria were: (I)
Ischemic stroke; (II) Age ≥ 18 years old; (III) Blood samples collected up to 72h after
symptom onset. The exclusion criteria were: (I) Active cancer diagnosis; (II) Previous
cerebral revascularization surgeries; (III) Modified Rankin score [77] ≥ 5. The approval
of the institutional review board (IRB) was conceded by the Comissão de Ética do Centro
Académico de Medicina de Lisboa (reference 435/16, approved on 14 December 2016),
informed consents were given by every subject, and the study followed the standards of
the Declaration of Helsinki. DNA extraction was performed after PBMC isolation with
the QIAamp® DNA Blood Midi Kit (QIAGEN GmbH, Hilden, Germany), according to the
manufacturer’s instructions.

4.2. DNA Sequencing

Samples were sequenced without prior long-range PCR (LR-PCR) with the Ap-
plied Biosystems™ Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific,
Waltham, MA, USA), in conjunction with the Ion Torrent™ Ion S5™ (Thermo Fisher Scien-
tific, Waltham, MA, USA), in accordance with the manufacturer’s instructions. Briefly, DNA
was quantified with a Qubit® 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA) and samples were diluted to 0.0067 ng/µL for an input of 0.1 ng of genomic DNA
in 15 µL. Libraries were prepared using the Ion Chef™ automated protocol, and samples
were then run on 530™ chips with the Ion Torrent™ Ion S5™ at Ipatimup—Instituto de
Patologia e Imunologia Molecular da Universidade do Porto (Porto, Portugal).

https://github.com/filcfig/PCP
https://github.com/filcfig/PCP
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4.3. Bioinformatic Processing
4.3.1. PrecisionCallerPipeline (PCP)

Our PCP pipeline automatically takes the FASTQ files from the sequencing facility
and outputs fully aligned BAM files mapped to the commonly used reference sequence,
rCRS [22]. We use a workflow based on Snakemake [78] that uses: (I) Awk, for SAM file
editing [79]; (II) BEDTools, for BAM to FASTQ conversion [80]; (III) BWA-MEM, for read
alignment [81]; (IV) Pycision, for amplicon delimitation and selection [34]; (V) SAMtools
for BAM conversion, sorting, indexing, and merging [82]; and (VI) Trimmomatic for read
quality control and trimming [83] (Figure 1B). Removal of NUMTs was tested before and
after final BAM merging with RtN! [47] (Figure 1C).

Samples were processed in a Linux-based system. For simplicity, a predetermined
file structure and the necessary files (except for the files from external software) may be
downloaded from https://github.com/filcfig/PCP.git (accessed on 1 November 2021).
A separate Snakefile (Snakefile_no RtN) is also provided to run the samples without the
removal of NUMTs.

Read quality analysis was performed with FastQC [84] and MultiQC [85]. For read
quality control, we opted to crop reads at 160 base pairs (bps), taking into account: (I) The
visual inspection of Phred score patterns per read bp (Figure 3D); (II) The length range
of 73–137 bps for the known “callable” sections of each amplicon [34], also considering
the company-reported amplicon average length of 163 bps, as the exact coordinates of the
amplicon themselves are unknown.

Variant calling was performed with freebayes v1.3.5 [42], mutserve v2, the command
line interface and successor of the mtDNA-Server pipeline [17,40], and VarScan 2 v2.3.7 [43].
Initially, we used 21 different heteroplasmy thresholds, ranging from 0.4% to 10.0%
(Figure 1C and Figure S1). After optimization, the maximum F1 score was achieved with
a heteroplasmy threshold of 2.5% and with NUMT removal before the final BAM merge
(Figure 1B, Tables S2 and S3); this processing was then used in all variant calling methods
(VCMs). For the Illumina sequencing runs (exome, lowCov, and highCov), a threshold of
0.4% was maintained as a reference. We used very similar parameters as [44], with the
exception of a base quality score of 20 for all VCMs, as well as, for freebayes, where we
used “–ploidy 1 –pooled-continuous”. Similar to [44], variants in positions 302–315 (position
310 was blacklisted in our analysis), 523–524, and 3104–3110 were excluded. Only single
nucleotide substitutions were considered, and variants below the established threshold
were filtered.

Haplogroup calling was carried out through HaploGrep v2.4.0 [18], and a contamina-
tion check was done with Haplocheck v1.3.3 [40], based on the output from mutserve.

4.3.2. Ion Torrent Suite™ Software (TSS)

For the current gold standard, data from each run was processed using the Ion Tor-
rent™ specific pipeline software, Ion Torrent Suite™ Software (TSS), using the reference
sequence PrecisionID_mtDNA_rCRS, and target regions PrecisionID_mtDNA_WG_targets
with the plugins CoverageAnalysis and VariantCaller. FASTQ and BAM files were gen-
erated using the plugin FileExporter. The software versions ranged from v5.8, v5.10, and
v5.12, according to the date of each run.

We compiled the VCF files arising from the sequencing runs and corrected all positions
> 16,569 to the first 80 bps in the rCRS. When we observed equal variants with different
coverages and variant levels (VLs), particularly in the first 80 bps, we calculated the mean
coverage and VL per mutation. Only single nucleotide substitutions were considered.

After exporting the corrected variants in a VCF format, where GT 1/0 was defined for
VL ≥ 90%, we ran the samples through HaploGrep and Haplocheck, similar to PCP.

4.4. Data Analysis

Data analysis was performed with R version 4.1.1 [86] in RStudio [87] with the
packages extrafont [88], infer [89], magick [90], patchwork [91], readxl [92], remotes [93],

https://github.com/filcfig/PCP.git
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scales [94], svglite [95], and tidyverse [96], as well as Excel 2016 (Microsoft Corporation,
Redmond, WA, USA).

Analyses were performed in parallel for PCP’s output and TSS’s output. For the
primary analysis, variants from the resequenced unmixed samples were compared to the
ones identified in Illumina for the exome, lowCov, and highCov sequencing runs, and
classified according to their reliability:

1. Grade A variants: homoplasmic variants (mean variant level ≥ 95%) found in both
highCov and lowCov, regardless of exome;

2. Grade B variants: heteroplasmic variants (mean variant level ≥ 0.4% and ≤ 95%)
found in both highCov and lowCov, regardless of exome, or found in highCov plus
exome, or lowCov plus exome;

3. Grade C variants: found in a single sequencing run;
4. Novel variants: found in the Ion Torrent runs only.

For the mixture analysis, variants from the 15 mixtures were classified according to the
interaction between both VL and primary variant classifications (explained previously) in
both components (minor and major). We began with a manual curation of all 512 theoretical
combinations, which gave rise to 128 possible scenarios, grouped in 47 micro classes,
7 meso classes, and 5 macro classes (Table S1). In this case, due to the possibility of shared
variants—variants in the same position in two different samples—having two different
classifications, we assumed that lower grade variants would prevail in combinations.
Hence, a shared variant with both Grade A and Grade C variant classifications would
receive a Grade C classification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222112031/s1.
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Appendix A

Table A1. Primary analysis: Distribution of variants with the mutserve variant calling method (VCM).

Variant Description PCP TSS

Broad
Classification

Detailed
Classification N

Mean Observed
VL

Mean Primary
VL

Mean Absolute
Difference in

VLs N
Mean Observed

VL Mean Primary VL
Mean Absolute
Difference in

VLs

[Min–Max] [Min–Max] [Min–Max] [Min–Max] [Min–Max] [Min–Max]

Grade A variant
found including exome 79 99.73%

[98.50%–100.00%]
99.61%

[97.03%–100.00%]
0.44%

[0.00%–2.73%] 77 99.43%
[98.20%–100.00%]

99.60%
[97.03%–100.00%]

0.65%
[0.00%–2.77%]

Grade B variant
found

including exome 5 26.06%
[3.50%–92.50%]

28.59%
[2.57%–94.77%]

2.91%
[0.93%–7.47%] 2 55.65%

[19.60%–91.70%]
58.57%

[22.37%–94.77%]
2.92%

[2.77%–3.07%]

excluding exome 8 7.07%
[2.50%–28.40%]

6.36%
[1.10%–28.35%]

0.79%
[0.05%–2.10%] 1 28.30% 28.35% 0.05%

Grade C variant
found from highCov - - - - 1 21.70% 0.40% 21.30%

Grade A variant lost including exome - - - - 2 - 100.00%
[100.00%–100.00%] -

Grade B variant lost

including exome 4 - 0.88%
[0.50%–1.27%] - 7 - 4.19%

[0.50%–17.37%] -

excluding exome 34 - 1.10%
[0.40%–5.75%] - 41 - 1.46%

[0.40%–6.20%] -

from lowCov and
exome 2 - 0.48%

[0.45%–0.50%] - 2 - 0.48%
[0.45%–0.50%] -

Grade C variant lost

from highCov 177 - 0.82%
[0.40%–5.80%] - 176 - 0.83%

[0.40%–5.80%] -

from lowCov 12 - 0.93%
[0.40%–3.80%] - 12 - 0.93%

[0.40%–3.80%] -

from exome 4 - 0.70%
[0.40%–1.00%] - 4 - 0.70%

[0.40%–1.00%] -

Novel variant Only present in
Ion Torrent 1 2.70% - - 2 25.15%

[19.30%–31.00%] - -

Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent Suite™ Software; N—number; VL—variant level; Min—minimum; Max—maximum.
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Table A2. Mixture analysis: Distribution of variants with the mutserve VCM.

Variant Description PCP TSS

Macro Meso Micro N
Mean Observed

VL

Within
Platform

Other
Platforms

N
Mean Observed

VL

Within
Platform

Other
Platforms

Mean Absolute
Difference in

VLs

Mean Absolute
Difference in

VLs

Mean Absolute
Difference in

VLs

Mean Absolute
Difference in

VLs

[Min–Max] [Min–Max] [Min–Max] [Min–Max] [Min–Max] [Min–Max]

Found
variants

Found
variants

Major Grade A 270 92.51%
[51.50%–100.00%]

3.51%
[0.00%–22.90%]

3.73%
[0.00%–23.42%] 260 92.10%

[56.80%–100.00%]
3.40%

[0.10%–18.20%]
3.55%

[0.00%–18.15%]

Major Grade B 39 20.82%
[2.60%–94.30%]

1.73%
[0.16%–6.32%]

2.09%
[0.29%–6.10%] 15 43.18%

[11.80%–94.20%]
2.26%

[0.14%–6.29%]
2.25%

[0.08%–4.98%]

Major Grade C - - - - 5 28.48%
[22.30%–34.10%]

8.65%
[1.03%–13.49%]

28.11%
[21.91%–33.72%]

Minor Grade A 133 16.95%
[2.50%–52.90%]

4.38%
[0.02%–28.00%]

4.41%
[0.06%–28.20%] 73 25.31%

[11.00%–48.30%]
5.73%

[0.00%–23.50%]
5.75%

[0.02%–23.60%]

Minor Grade B 8 7.54%
[3.30%–26.00%]

1.90%
[0.32%–3.95%]

1.72%
[0.14%–4.18%] 1 26.30% 3.38% 2.61%

Shared Grade A 125 99.89%
[99.20%–100.00%]

0.09%
[0.00%–0.40%]

0.20%
[0.00%–2.41%] 125 99.64%

[98.60%–100.00%]
0.20%

[0.00%–1.30%]
0.45%

[0.00%–2.71%]
Mixture
found

variants
Major Grade B 9 4.08%

[2.60%–5.70%] - 0.44%
[0.03%–1.69%] 4 12.60%

[11.90%–13.20%] - 3.12%
[0.83%–3.99%]

Lost
variants

Mixture lost
variants

Major Grade B 26 - 2.77%
[1.88%–3.56%]

2.00%
[0.83%–2.72%] - - - -

Minor Grade A 137 - 2.44%
[0.98%–24.80%]

2.44%
[0.97%–24.98%] 187 - 3.86%

[0.98%–10.00%]
3.87%

[0.97%–10.00%]

Minor Grade B 57 - 0.48%
[0.03%–4.63%]

0.48%
[0.01%–4.74%] 14 - 2.65%

[0.20%–9.17%]
2.78%

[0.22%–9.48%]

Old lost
variants

Major Grade A - - - - 10 - - 91.40%
[75.00%–99.00%]

Major Grade B 186 - - 0.81%
[0.30%–2.70%] 241 - - 1.44%

[0.30%–16.50%]

Major Grade C 430 - - 0.72%
[0.30%–5.74%] 425 - - 0.73%

[0.30%–5.74%]

Minor Grade A - - - - 10 - - 8.60%
[1.00%–25.00%]

Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent Suite™ Software; N—number; VL—variant level; Min—minimum; Max—maximum.
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Table A2. Cont.

Variant Description PCP TSS

Macro Meso Micro N
Mean Observed

VL

Within
Platform

Other
Platforms

N
Mean Observed

VL

Within
Platform

Other
Platforms

Mean Absolute
Difference in

VLs

Mean Absolute
Difference in

VLs

Mean Absolute
Difference in

VLs

Mean Absolute
Difference in

VLs

[Min–Max] [Min–Max] [Min–Max] [Min–Max] [Min–Max] [Min–Max]

Minor Grade B 195 - - 0.09%
[0.00%–1.44%] 245 - - 0.16%

[0.00%–4.34%]

Minor Grade C 430 - - 0.06%
[0.00%–0.95%] 425 - - 0.06%

[0.00%–0.95%]

Shared Grade C 540 - - 0.86%
[0.40%–2.69%] 540 - - 0.86%

[0.40%–2.69%]

Novel
variants

Found
variants

Minor novel - - - - 5 21.24%
[16.80%–26.00%]

18.07%
[11.98%–24.07%] -

Shared novel - - - - 4 31.65%
[28.00%–35.10%]

12.10%
[8.10%–15.78%] -

Novel
variants

Novel variant:
mixture 12 27.26%

[2.50%–99.20%] - - 9 13.92%
[10.60%–21.10%] - -

Primary
novel

variants

Mixture lost
variants

Major novel 5 - 2.47%
[2.02%–2.67%] - 5 - 28.33%

[23.25%–30.69%] -

Minor novel 5 - 0.23%
[0.03%–0.68%] - 5 - 1.15%

[0.19%–3.10%] -

Shared novel - - - - 1 - 19.35% -

Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent Suite™ Software; N—number; VL—variant level; Min—minimum; Max—maximum.
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Figure A1. Performance analysis in PCP and TSS. (A, C, E, G) Performance metric variant classification per pipeline for 
Primary Grade A, Mixture Grade A, Primary Grade B, and Mixture Grade B datasets, respectively; (B, D, F, H) Perfor-
mance metrics per pipeline for Primary Grade A, Mixture Grade A, Primary Grade B, and Mixture Grade B datasets, 
respectively. Error bars denote minimum and maximum values. Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion 
Torrent Suite™ Software. 

  

Figure A1. Performance analysis in PCP and TSS. (A,C,E,G) Performance metric variant classification per pipeline for
Primary Grade A, Mixture Grade A, Primary Grade B, and Mixture Grade B datasets, respectively; (B,D,F,H) Performance
metrics per pipeline for Primary Grade A, Mixture Grade A, Primary Grade B, and Mixture Grade B datasets, respectively.
Error bars denote minimum and maximum values. Abbreviations: PCP—PrecisionCallerPipeline; TSS—Ion Torrent Suite™
Software.
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