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Copy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage
of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to
detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and
smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still
lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We
show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest
approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is
applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these
approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint
definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as
well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative
to the combination of aCGH and whole-exome sequencing.
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INTRODUCTION
Structural variations (SVs) are DNA variations larger than 50 base
pairs (bp) [1–3] and include copy number variants (CNVs)
(deletions, duplications and insertions), and copy number neutral
variants (inversions and translocations). SVs are considered
responsible for 50–95% of human samples sequence difference
to the reference genome [3, 4]. They are prominent in human
diseases, with 15% of patients with intellectual disability or
schizophrenia harboring clinically relevant CNVs [5, 6]. They can
alter the sequence of dosage-sensitive genes, lead to the
expression of fusion transcripts or modify the regulatory land-
scape of a gene [7, 8], by altering the three-dimensional
organization of genomes in topologically associated domains [9],
which can for example lead to enhancer adoption [7].
The techniques developed for SVs detection evolved towards

higher throughput and better resolution. Karyotyping allows to
detect the larger scale ones, such as trisomy 21 [10], or t(9;22)
translocation leading to BCR/ABL fusion transcript expression [11].
Molecular karyotyping relies on the simultaneous hybridization of
two differentially labeled DNA samples (test and control) to an
array with oligonucleotide probes and encompasses both high-
resolution microarray-based Comparative Genomic Hybridization
(aCGH) and single nucleotide polymorphism (SNP) arrays. They

reach a theoretical resolution of 1–3 kilobases (kb) with
commercially available 1M arrays [12]. Whole-exome sequencing
(WES) allows genome-wide identification of disease-causing
coding single nucleotide variants (SNVs) and small insertion-
deletions, but has limited abilities to detect larger SVs [13].
Whole-genome sequencing (WGS) allows to analyze non-coding

regions and to detect both balanced and unbalanced SVs at an
unprecedented resolution. It outdoes WES for smaller variants
detection [14] and aCGH for CNV calling [15]. While SV calling from
short-read WGS remains challenging [16], combining tools might
improve the results [17]. Algorithms indeed rely on several signal
types: discordant read pairs (with abnormal distance or orienta-
tion), split-reads, depth of coverage, or local read assembly. Callers
using one or more of these approaches exhibit different calls size
ranges, breakpoint precision and false discovery rates [18] and
suffer from considerable lack of reproducibility [19].
In this work, we use 24 patients with congenital limb

malformations to explore the relevance of several computational
tools aiming at CNV detection from WGS. We suggest different
approaches, applicable in everyday practice, bringing more
resolution to the call breakpoints than aCGH, and detecting a
higher, but manageable, amount of calls. We suggest that WGS

Received: 18 November 2020 Revised: 23 September 2021 Accepted: 4 October 2021
Published online: 8 November 2021

1Institute of Medical and Human Genetics, Charité Universitätsmedizin, Berlin, Germany. 2Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany. 3Charité
Universitätsmedizin Berlin, Berlin, Germany. 4Core Unit Genomics, Berlin Institute of Health, Berlin, Germany. 5Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178
Berlin, Germany. 6Max Planck Institute for Molecular Genetics, Berlin, Germany. 7Institut für Genomische Statistik und Bioinformatik, Bonn, Germany. 8Max Delbrück Center for
Molecular Medicine, Berlin, Germany. 9Present address: Institute of Human Genetics, University of Lübeck, Lübeck, Germany. 10These authors contributed equally: Manuel
Holtgrewe, Marten Jäger. ✉email: stefan.mundlos@charite.de

www.nature.com/ejhg

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00983-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00983-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00983-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00983-x&domain=pdf
http://orcid.org/0000-0002-0261-7210
http://orcid.org/0000-0002-0261-7210
http://orcid.org/0000-0002-0261-7210
http://orcid.org/0000-0002-0261-7210
http://orcid.org/0000-0002-0261-7210
http://orcid.org/0000-0001-8080-8779
http://orcid.org/0000-0001-8080-8779
http://orcid.org/0000-0001-8080-8779
http://orcid.org/0000-0001-8080-8779
http://orcid.org/0000-0001-8080-8779
http://orcid.org/0000-0002-3194-8625
http://orcid.org/0000-0002-3194-8625
http://orcid.org/0000-0002-3194-8625
http://orcid.org/0000-0002-3194-8625
http://orcid.org/0000-0002-3194-8625
http://orcid.org/0000-0002-9788-3166
http://orcid.org/0000-0002-9788-3166
http://orcid.org/0000-0002-9788-3166
http://orcid.org/0000-0002-9788-3166
http://orcid.org/0000-0002-9788-3166
https://doi.org/10.1038/s41431-021-00983-x
mailto:stefan.mundlos@charite.de
www.nature.com/ejhg


could be used as a first-line single test to detect a variety of
variants.

MATERIALS AND METHODS
Subjects, ethics approval and aCGH
DNA was prepared from blood using standard procedures. All individuals
provided written informed consent to participate in the study, approved
by the Charité Universitätsmedizin Berlin ethics committee. aCGH was
performed according to standard procedures [20]. Detailed methods are
available in Supplementary Fig. S1.

Whole-genome sequencing
Whole-genome sequencing was performed for the probands and their
parents to allow compared visual examination, but data from the index
case only was used for CNV calling. Libraries were prepared with the
TruSeq DNA PCR Free (350) library kit and sequenced on HiSeq X
(Macrogen, Korea). Raw images and base calls were generated through the
integrated analysis software RTA2 (Real Time Analysis 2). Conversion of the
BCL binary to FASTQ was performed with the Illumina package bcl2fastq2-
v2.20.2, with demultiplexing option set to default and without trimming
the adapters. Reads were aligned to the hg19 reference sequence with
BWA-MEM v0.7.12q. SNVs were called with the GATK [1] HaplotypeCaller,
v3.7-0-gcfedb67. Between 614,880,099 and 1,027,077,956 reads were
produced per patient (average 803,031,274), with 95.46–99.8% of mapped
reads. Mean coverage ranged between 27.6× and 43× (average 34×), with
40.5–88% of the reference covered at least 30× (average 67.7%). The bam
file for individual NA12878 was downloaded from the Genome in a Bottle
github page (https://github.com/genome-in-a-bottle/giab_data_indexes).
Reference SVs sets were downloaded from the phase 3 of the 1000
Genomes Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/
integrated_sv_map/).

CNV calling from WGS
CNV calling was performed with coverage-based callers: CNVnator [21]
(v0.3.3, default options, bin size 100), ERDS [22] (v1.1, default parameters),
FREEC [23] (default hg19_len100bp mappability file, breakpoint threshold
at 0.1, window value of 1000) and cnvkit [24] (v0.9.1a0, default -m
threshold parameters and mappability options); callers using paired-end
reads and split-reads: Delly2 [25] (v0.7.1, with the cohort re-genotyping
option, merged with bcftools v1.7) and Manta [26] (v1.2.1, default
parameters); and a mixed caller: Vaquita [27] (v0.4.0, default parameters).
For the 3430 and NA12878 samples, Delly v0.7.6, Manta v1.6.0, CNVnator
v0.4.1 and ERDS v1.1 were used via Miniconda3. Manta calls for sample
NA12878 were issued from the original publication [26]. Calls were re-
genotyped with SV2 [28], a support-vector machine-based software
estimating SV genotype likelihoods (v1.4.0, with the -M option); filtered
with SnpSift [29] (v4.2) for non-reference status in the index case using the
GNU parallel tool [30]; and compared with the bedtools [31] suite tool
intersect (v2.27.2). They were considered shared when their reciprocal
overlap was above 50%.

CNV calls visual classification
Ten patients from the cohort of 24 were randomly selected as the training
group (Fig. 1). For a random sampling of 2026 calls from 4 WGS callers
(Delly, Manta, ERDS, CNVnator), the alignments of reads were examined
and compared to those of the proband’s parents in the Integrative
Genomics Viewer [32] (IGV, v2.3.90). True positive calls were supported by
the presence of a coverage drop, paired-end abnormal signal or split-reads
(Supplementary Fig. S2). Shared calls showed similar profiles in the index
and both parents (gain, homozygous deletion, or heterozygous deletion in
all) and can either match shared true positive calls, or alignment artifacts.
False positive calls were not confirmed by the visualization in IGV, while no
conclusion could be made for the calls labeled doubtful. True positive and
false positive calls were used as ground truth sets to test the filtering
options. aCGH calls included one additional category, opposite calls
(Supplementary Fig. S3).

Filtering and combined strategies to improve WGS calling
Ground truth sets were used to compute performance statistics for each
WGS caller, without or with further filtering of the calls. Filtering options
included: re-genotyping with SV2, threshold on paired-end and split-read

support fraction (Delly, at least one of the latter above 0.3), threshold on
the adjusted p value (CNVnator, <0.5), exclusion of calls simultaneously
labeled as gain and deletion (with 75% reciprocal overlap), and overlap
with a call from another caller using the same signal (Delly/Manta; ERDS/
CNVnator, at 50% and 75% reciprocal overlap). Strategies combining those
callers and filtering options included: join the calls from the four callers;
intersect the calls from caller pairs using the same approach, then combine
both pools (“intersection-union” approach); and both of the latter
approaches followed by SV2 re-genotyping.

Calls intersection to known genome regions
WGS calls were further characterization with known genomic tracks: the
SVs from the gnomAD database (SV v2.1, https://gnomad.broadinstitute.
org/downloads#v2-structural-variants); the Repeat Masker reference, the
DAC Blacklisted Regions and the Duke Excluded Regions (UCSC Table
Browser, hg19); and reference alternated loci [33], lifted over to hg19.

qPCR
qPCR was performed as described previously [34]. Three amplicons inside
the CNV, one to the left, one to the right, and one on chromosome X were
used. Primers are available on request.

RESULTS
The landscape of CNV calls detected by each caller is
extremely variable
Four callers were selected based on their ability to detect aCGH
calls (Supplementary Fig. S4). The amount and range of detected
calls varied a lot and the sets poorly overlapped (Fig. 2A–D,
Supplementary Tables S1 and S2). The paired-end based callers
detected more calls per patient and were especially enriched in
small deletions. Coverage-based caller CNVnator detected sig-
nificantly more deletions and gains in the 1–50 kb range. Callers
using the same signal type showed higher overlap (Supplemen-
tary Table S2, Supplementary Fig. S5). Delly and CNVnator
uniquely called more events than Manta and ERDS, whose calls
were confirmed by another caller in around half the cases.

The fraction of visually confirmed calls varies depending on
call size and type
The visual inspection of a random selection of 1278 deletions and
748 gains established fractions of supported calls, based on true
positive and shared calls, ranging from 6.6 to 89.5% (Fig. 3A–C,
Supplementary Table S3). Small deletions were more reliable than
gains or larger events. 1–50 kb deletions called by ERDS and
Manta were the most reliable, and these two callers generally
were more accurate. For Delly and CNVnator, true positive rates for
deletions ranging from 1 to 5 kb were still above 50%. ERDS
showed the highest supported fraction of large deletions and
gains; calls however were often shared by the index case and the
parents, hence could match alignment artifacts. Gains above 50 kb
were almost never visually supported and came in vast majority
from coverage-based callers (19/21). They were hence not
included in the variants sets to avoid bias. True positive calls
were often detected by all four callers; almost all of them were
called by at least a pair of same-signal callers (Fig. 3D–F,
Supplementary Fig. S6). False positive calls were often unique,
or less frequently, unique to one pair of callers with shared signal.
True positive calls intersected more frequently with calls from the
gnomAD database (Fig. 3G, H), with lower maximal allele
frequency than shared calls. False positive calls showed more
overlap with regions matching alternating reference scaffolds
(Supplementary Fig. S7) but not poor mappability or Repeat
Masker elements.

Filters improve the positive predictive value of WGS calls
The true (329 deletions, 37 gains) and false (505 deletions, 435
gains) positive calls were used to assess the performance of
several filtering approaches described in the Methods
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Fig. 1 Schematics of the paper approach and one suggested pipeline. A From 24 patients with limb malformations, 10 were randomly selected
as a training group. Their aCGH calls were visually inspected to select four callers best able to detect them from WGS data. Calls from these callers
were in turn inspected to constitute sets of true positive and false positive calls, as to test filtering and combined calling options. Those options were
then validated on the fourteen remaining patients. B The intersection-union approach is suggested for both deletions and gains. The calls from with
Delly and Manta (paired-end based callers) are first filtered for calls matching a call from the opposite type (“delamp”). Calls from each pair of callers
supported by the same signal are then intersected with 75% reciprocal overlap. The calls are finally joined to form the final calls set. The whole
process takes less than 12 h on a cluster node with Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz (32 threads in total) with 126GB Ram.
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(Supplementary Table S3). The estimated sensibilities, specificities,
positive predictive values and accuracies based on these datasets
varied depending on the callers and type of calls (Fig. 4AB,

Supplementary Fig. S8, Supplementary Table S4). Filters on
intrinsic properties showed low sensitivities and/or accuracies.
The “delamp” filter was only applicable to paired-end callers,
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specifically for gains (Supplementary Fig. S9) and showed almost
perfect sensitivity. The reciprocal overlap threshold used for the
intersection filter did not affect its sensitivity but improved its
specificity. SV2 regenotyping performed well for deletions but
showed low sensitivities for gains.

Combining tools allows a superior detection of CNV calls,
within manageable limits
The combined positive and negative calls allowed to compare the
estimated performance of single callers; paired-end callers with
the “delamp” filter; and combined options described in the
Methods (Supplementary Table S5, Supplementary Fig. S10). The
intersection-union approach brought good results for both
deletions and gains (Fig. 4C). The union approach followed by
SV2 performed well for deletions, with lower sensitivity but higher
specificity. Both approaches yielded calls in all size ranges,
including large gains (Supplementary Table S6, Fig. 4B). Further
inspection of 200 deletions established visually true positive
fractions ranging from 12 to 75% (Supplementary Table S7,
Fig. 4F), markedly improved compared to unique callers. The
reliability of the calls decreases when the size range increase and
calls above 200 kb are almost never visually confirmed. Four gains
and eleven deletions from the intersection-union approach were
assessed by qPCR (Supplementary Table S8). Two deletions were
not confirmed; they were recurrent in the cohort and overlapped
with gnomAD calls with allele frequencies above 5% (Supple-
mentary Fig. S11). A large proportion of calls were in aCGH
targeted regions (Supplementary Table S9), and some included
several probes (Supplementary Fig. S12). The number of calls
yielded was in the lower end of the distribution for unique callers
(Fig. 4D, Supplementary Table S10). Filtering for calls detected in
more than 5% of alleles in gnomAD yielded, on average, 2180
deletions and 188 gains per patient. More stringency on the
threshold, up to 0.1%, had limited additional effect. Among these
extremely rare calls, 99 deletions and 61 gains intersected with
exonic regions, and 414 deletions and 25 gains with topologically
associated domains linked to limb malformation phenotypes.

WGS increases CNV detection and breakpoint accuracy
compared to aCGH
All aCGH calls of the training cohort were visually inspected
(Supplementary Tables S11 and S12) and the overall validity of
these labels was confirmed by intersecting gnomAD database
calls (Supplementary Table S13, Supplementary Fig. S3). Most
deletions (223/251) and gains (38/39) could be detected by at
least one caller with a reciprocal overlap of 50% (Supplementary
Fig. S4, Supplementary Table S14). Coverage-based callers
performed better, possibly because they rely on similar signal as
aCGH. Almost all missed calls matched a CNV call with lower
overlap, due to the poor precision of aCGH regarding breakpoints,
inherent to the sparse localization of probes (Supplementary
Fig. S1). For the validation cohort, aCGH calls undetected by the
intersection-union approach were visually inspected in IGV
(Supplementary Table S15). A majority of the calls were false
positives (48.6% of deletions, 91.9% of gains) or more precisely
characterized by WGS (35.9%, 2.4%).

The strategies proposed work on clinically relevant and
benchmarked samples
Patient 3430, not included in the initial cohort, presented with
mirror-image polydactyly of the hands and feet and a complex
variant with two overlapping duplications at chr7q36.1and a
breakpoint fusion of intron 1 of SHH and intron 8 of KDM4C [35].
The gain, initially classified as VUS, was correctly detected by
aCGH, as well as by the intersection-union approach, being called
by both coverage-based callers (Supplementary Fig. S13). WGS
however was needed to elucidate the fusion between chromo-
somes, detected by paired-end callers, and to suggest dysregula-
tion of SHH expression following formation of an SHH-KDM4C neo-
TAD. Finally, we tested the approach on the NA12878 reference
sample. Overall, the sensitivity is comparable to the best callers,
even if lowered in some cases (Supplementary Table S16).
However, the positive predictive value is most often increased,
as the set of yielded calls is smaller than for all callers but ERDS.
The callers used alone show marked variations in performance for
different type and sizes of calls; while the intersection-union
approach is consistently good (Supplementary Table S17).

DISCUSSION
CNVs play a major role in human genetic diversity and diseases
[7, 36]. WGS outperforms aCGH to detect them [15] and WES for the
calling of coding variants [14, 37], but remains underused as a first-
line tool, due to the absence of consensus for SV calling. Most studies
rely on high quality data (around 80x coverage [37]), optimization of
the whole WGS pipeline from library preparation [2], use of a high
number of different platforms [18], or design of new callers [27],
which is not always applicable in practice. In this paper, we assessed,
in a cohort of 24 patients, how CNV calling can be performed
efficiently with currently available tools, from “standard” Illumina
WGS with 30x average coverage. Our study relies in great part on
visual inspection of the calls; however, qPCR confirmed that, while
not perfect, this provides a good basis for detection performance
estimation. We hence suggest that combining tools proves to be an
efficient and applicable approach [17, 38].
Indeed, while the landscape of CNVs detected by each caller is

highly variable, their specificities can be leveraged to obtain a
more comprehensive call set. While callers based on similar signals
show higher overlap, some, like Manta and ERDS, inherently have
higher specificity. ERDS considers single-nucleotide variants
zygosity [22], which could explain its higher accuracy. Additional
filters improve the quality of CNV calls sets: removing the calls
flagged as both deletions and gains, which is a specific pitfall of
paired-end based callers; and using regenotyping tools, which
strongly increases specificity while also decreasing specificity. We
suggest combinations of tools that yield a good compromise
between specificity and sensitivity, in a variety of CNVs types and
sizes. Our pipeline also allowed to better detect the gains, and, to
a certain extent, larger calls, notoriously less reliable. The detection
performance however decreases with the size range of the calls.
The reader’s specific question will ultimately guide their

computational choice and the acceptable trade-off between
sensitivity and specificity. If their interest is in a small region with

Fig. 2 Description of the CNV calls landscape for four callers. A Total number of calls per patient in the training group for Delly, Manta,
CNVnator and ERDS, per CNV type. The paired-end based callers, especially Delly, showed higher numbers of calls than the coverage-based
ones, in particular ERDS. B Total number of calls per patient in the training group for the four callers, per CNV type and size range. The average
counts are indicated in red. C Distribution of the overlaps of Delly deletions calls with the other callers. Most calls were unique to Delly (light
green) or common to Manta only (darker green). D Distribution of the overlaps of ERDS gains calls with the other callers. Most calls were
common to CNVnator only (light orange) or unique to ERDS (darker orange). All overlaps configurations are reported in Supplementary
Fig. S5. E Example of deletion detected by both paired-end based callers, hence by the intersection-union approach, but not by the coverage-
based callers. F Example of deletion detected by both coverage-based callers only, hence by the intersection-union approach. This call was
shared in the trio and could be an alignment artifact.
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Fig. 3 Visual inspection of WGS CNV calls. A Several elements allowed to establish the trueness of a call: a drop in coverage, paired-reads
with abnormal insert size, or the presence of split-reads. Further examples are shown in Supplementary Fig. S2. B Repartition of visual
inspection labels across 1278 deletions and 748 gains, per size range and caller. The large calls, as the gains, were less reliable. C Fraction of
supported calls (true positive and shared calls) per size range and caller. ERDS specifically, and Manta, were generally more conservative than
Delly and CNVnator. D Repartition of callers overlap for calls labeled as true positives. They were most frequently detected by four callers, or at
least a pair of same-signal callers. E Number of callers simultaneously detecting calls with various inspection labels. The true positive calls were
most frequently confirmed by an orthogonal caller. F Repartition of callers overlap for calls labeled as false positives. They were most
frequently detected by a single caller, or at most a pair of same-signal callers. Number of overlaps (G) and maximal allele frequency of overlaps
(H) of calls, per inspection label. True positive calls intersected more frequently with a gnomAD call, however with lower frequency than
shared calls. Of note, false positive calls do not show particular recurrence in the database.
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Fig. 4 Performance of filters and pipelines on call sets accuracies. A, B Different filters, described in the method section, were tested on the
call sets. Contingency values are reported for deletions here: sensitivity, specificity (A), accuracy, and ratio in predictive positive value (B).
Filters on intrinsic calls properties show low specificities and accuracies. SV2 regenotyping performs well for deletions, with a 1.68–3.68
increase in positive predictive value. Delamp filters are not very specific, but really sensitive. Intersection performs better for coverage-based
than paired-reads based callers. C Number of calls detected by each proposed approach. D Contingency values for single callers, versus
intersection-union and union-SV2 approaches. The sensitivity of the calling does not increase much, if at all, by combining tools, but the
specifity, the accuracy and the positive predictive ratio are markedly improved. E Quantification of calls yielded by single callers and the
suggested approaches, after filtration for frequency, and regions of interest. F Repartition of visual inspection labels across 200 deletions and
200 gains issued from the intersection-union approach, per size range and caller. The supported fraction is significantly higher than for
individual callers (Fig. 3).
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high biological presumption, a higher false positive rate might be
tolerated in order to increase variants detection and juxtaposing
several callers could be the method of choice. If they want to
assess CNVs genome-wide, a higher predictive positive value
would be required and the use of a regenotyping tool or the
intersection of the calls would prove instrumental. In all cases,
visual inspection of the calls, while imperfect, remains invaluable.
Calling is just the first step of an analysis workflow, and the

need for comprehensive databases and accurate tools for
annotation is strong, as exemplified by the several hundreds of
rare calls we obtained. We show that filtering with higher
stringency on the frequency of gnomAD calls does not exert a
big effect on the set size. GnomAD v3 includes a reference of
433,371 SVs called from 14,891 genomes [38], which is
instrumental but way below the small variants counterpart of
the database. While WGS algorithms do not rely on comparison to
a control set, the use of cohort information allows interpretation,
but also improves the specificity of the calling [25, 39, 40], by
accounting for local imbalances of coverage linked to GC content,
or ubiquitous paired-end signal anomalies in repetitive regions.
Functional annotation of the genome is still a limiting factor in the
calls’ interpretation, and the prioritization of clinically relevant
CNVs will heavily rely on better understanding of the non-coding
genome. The fact that we could not identify the causative variant
in our initial cohort of 24 patients is illustrative of the need for
powerful tools to interpret them.
Calling CNVs from WGS hence remains challenging but

outperforms aCGH. It detects significantly more relevant CNVs,
in aCGH target size range and regions. The sparsity of aCGH
probes limits the breakpoint localization accuracy, which is a
strong drawback since overlapping SVs are not always linked to
the same phenotype [41]. Breakpoint localization is accurate to the
nucleotide with paired-end based callers and hindered by bin size
for coverage-based algorithms; the latter has an optimum
between 30 and 100 bp for CNVnator [21]. WGS also localizes
the gains insertion site, which is crucial for variant interpretation,
as exemplified by our patient with a SHH-KDM4C neo-TAD [35], or
a duplication in TENM3 explaining intellectual deficiency upon
disruption of IQSEC2 sequence [13, 37]. Both cases were detected,
but unexplained, by aCGH. Finally, while this work focused on
CNVs, WGS allows detecting balanced SVs and more complex
events.
Just as aCGH, short-read sequencing has intrinsic limitations

that can only be overcome by other sequencing or calling
approaches. De novo assembly, locally or genome-wide, might
allow removing some artifacts and detecting insertion of novel
sequences [42], as shown in 150 Danish genomes [43]. Sequen-
cing techniques allowing to span over short and long tandem
repeats, such as long read sequencing or mate-pair sequencing,
lead to the identification of numerous SVs including inversions,
complex variants, and long tracks of repeats [44], but have high
rates of false positive SNVs. Techniques gathering longer-range
and/or haplotype-phased information such as 10x Genomics
linked-reads [45], strand-specific sequencing [46], or HiC data [47],
as well as combinations of multiple approaches [18] are efficient,
but not yet applicable for a large number of patients in a
reasonable monetary and time frame.
In conclusion, we show that WGS is a valid first-line option for

CNV calling, as also suggested by other studies [2, 15]. We suggest
combining tools relying on various signal types to increase CNV
calling detection from short-read Illumina WGS, specifically
regarding estimated predictive positive values. Annotation of
the data is still limited but will be improved with more widespread
use of WGS. Turn-around time and price are crucial criteria in the
selection of a diagnosis method. Using multiple techniques
increases both, hence we advocate that WGS, while not yet
perfect, should be considered.
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